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To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most
fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem
from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum
entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations
and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable
parameter is changed through a critical value. Accompanying this process, except for a small region about
the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time
evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the
nature of classical nonlinear dynamics, constituting its signature.
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Entanglement [1,2], a form of quantum superposition, is
a fundamental phenomenon constituting the cornerstone of
quantum computing and quantum information science [3].
The phenomenon has been observed in experiments of
large molecules [4] and even small diamonds [5]. Recently,
there is also great interest in entanglement in optomechan-
ical systems [6–12].
While the principle of superposition is defined with

respect to linear systems, our physical world, when viewed
classically, is nonlinear. A nonlinear dynamical system
can exhibit all kinds of interesting phenomena such as
periodic oscillations, quasiperiodicity, and chaos [13], and
they can have distinct fingerprints or manifestations when
the system is treated quantum mechanically. Especially,
the studies of quantum manifestations of classical chaos
constitute the field of quantum chaos, and there have been
tremendous efforts in the past four decades [14] in this
field. With respect to entanglement, there is no classical
correspondence in the strict sense, as the measurement
of a physical state at one place immediately influences
the measurement at the other. In view of the ubiquity of
nonlinear dynamics in physical systems and of the funda-
mental importance of quantum entanglement, curiosity
demands that we ask the following question: What is the
interplay between nonlinear dynamics and quantum entan-
glement? In this regard, earlier works indicated that the
transition from integrability to quantum chaos is related
to quantum-phase transition in the Dicke model [15], and
the transition is accompanied by the emergence of an
entanglement singularity in the quantum cusp catastrophe
model [16,17]. Signature of nonlinear behavior in entan-
glement may have significant practical implications in the

development of devices and systems for quantum comput-
ing and quantum information processing.
In this Letter, we address the nonlinear-dynamics–

quantum-entanglement issue by using optomechanical
systems, a field of intense recent investigation [18–31].
An optomechanical system consists of an optical cavity and
a nanoscale mechanical oscillator, such as a cantilever.
When a laser beam is introduced into the cavity, a resonant
optical field is established that exerts a radiation force
on the mechanical cantilever, causing it to oscillate. The
mechanical oscillations in turn modulate the length of the
optical cavity, hence, its resonant frequency. There is, thus,
coupling between the optical and the mechanical degrees of
freedom. This coupling, or interaction, can lead to cooling
of the mechanical oscillator toward the quantum ground
state, a topic of great interest [32,33]. The optomechanical
coupling, thus, provides a straightforward way to entangle
the optical with the mechanical modes, and this can have
profound implications to optical information science and
quantum computing [11,34]. With regard to nonlinear
dynamics, there were experimental works reporting chaos
in optomechanical systems [31,35,36].
There are recent theoretical works on quantum entangle-

ment in optomechanical systems [6–12]. For example, a
protocol was proposed for entanglement swapping with
application to optomechanical systems [9], and recent work
revealed robust photon entanglement in optomechanical
interfaces [10] and ways to achieve strong steady-state
entanglement in a three-mode optomechanical system
[11]. The interplay between synchronization and entangle-
ment inoptomechanical systemshas alsobeenexplored [12].
However, existing works focused on the situation where the
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classical dynamics are either steady-state [6,8–12] or peri-
odic oscillations [7]. Our goal is to search for nonlinear
dynamical behaviors beyond and to investigate the effects
of such behaviors on quantum entanglement. Our main
findings are the following. In an experimentally realizable
parameter regime, as the power of the driving laser is
increased, there is a transition from periodic to quasiperiodic
motions, where in the latter, the system is strongly nonlinear
with two incommensurate frequencies. Entanglement is
enhanced towards the transition, vanishes as the transition
point is being reached, but is restored abruptly after the
transitionandcontinues tobeenhancedas the systemevolves
deeply into the quasiperiodic regime. A surprising result is
that,with respect to timeevolution, there aredirect signatures
of classical nonlinear dynamics in quantum entanglement.
In particular, for classically periodic dynamics, the time
evolution of the entanglement measure is also periodic, but
when the classical system enters into the quasiperiodic
regime, the quantum entanglementmeasure exhibits a beats-
like behavior with two distinct frequencies. Entanglement,
especially when the classical system is quasiperiodic, is
robust with respect to temperature variations.
Model.—We consider a generic type of optomechanical

systems, as shown in Fig. 1(a). Such a system is essentially
a Fabry-Perot cavity with a fixed, partially reflecting mirror
at the left side and a movable, perfectly reflecting end
mirror on the right side. The cavity has equilibrium length
l0 and finesse F. The movable mirror is attached to a
mechanical oscillator of mass m, characteristic frequency
ωM, and dissipation rate ΓM. The fixed end of the cavity has
the optical decay rate κ ¼ πc=ð2Fl0Þ. We assume that a
single optical mode of frequency ωc is excited by an
external laser field of frequency ω0, where ωc ∼ ω0 so that

the detuning is on the order of the mechanical frequency
ωM. The Hamiltonian of the system can be written as
[6,37,38] Ĥ ¼ ℏωcâ†âþ ℏωMb̂

†b̂ − ℏg0â†âðb̂† þ b̂Þþ
iℏðEe−iω0tâ† − E�eiω0tâÞ þ Ĥκ þ ĤΓM

, where âðâ†Þ and
b̂ðb̂†Þ are the annihilation and creation operators associated
with the optical and mechanical modes, respectively. The
first two terms in the Hamiltonian describe the frequencies
of the uncoupled optical and mechanical components,
respectively, and the third term represents the change in
the characteristic frequency of the optical mode as a result
of the mirror movement. The quantity g0 ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωMÞ

p
is the vacuum optomechanical coupling strength character-
izing the interaction between one single photon and one
single phonon—see Sec. S1 in the Supplemental Material
[39]. The quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωMÞ

p
is the mechanical zero-

point fluctuation with effective mass m, and G≃ ωc=l0.
The fourth term describes the interaction between the
cavity field and the driving laser field of complex amplitude
E, where the input laser power is jEj2 ¼ 2κP=ℏω0. The last
two terms in the Hamiltonian represent the dissipation
resulting from the cavity decay and mechanical friction,
respectively.
Methods.—To explore and exploit nonlinear behaviors

in the optomechanical system, we use the Heisenberg
equations of motion [40]. The dynamics of the optical-
cavity field can be described by its corresponding complex
amplitude, and the motion of the mechanical mode can be
characterized by a pair of canonical coordinates q and p.
By replacing the photon annihilation (creation) operators
by the complex light amplitude and the position operator of
the cantilever by its classical counterpart in the Heisenberg
equations, we obtain the classical equations of motion [40].
This can effectively be regarded as a classical system
described by four independent variables, two associated
with the optical mode and two with the mechanical mode.
In the language of nonlinear dynamics, the optomechanical
system in Fig. 1 has a four-dimensional phase space.
The degree of quantum entanglement can be quantita-

tively assessed by using the corresponding quantum
Langevin equations. Following the standard input-output
theory [41] and making use of the reference frame rotating
at the laser frequency, we can get the following nonlinear
quantum Langevin equations [6,7]:

q
: ¼ ωmp; p

: ¼ −ωmq − ΓMpþ
ffiffiffi
2

p
g0a†aþ ξ;

a
: ¼ −ðκ þ iΔ0Þaþ i

ffiffiffi
2

p
g0aqþ Eþ

ffiffiffiffiffi
2κ

p
ain; (1)

where Δ0 ¼ ωc − ω0 is the cavity detuning. Here, we
assume that the optical bath is in thermal equilibrium,
i.e., in some incoherent state, so that ain can be interpreted
as a noise term [41]. The vacuum noise-input term can be
described by a zero-mean Gaussian random process. The
autocorrelation function of the vacuum noise is hainðtÞain†
ðt0Þi¼δðt−t0Þ. The mechanical mode is under the influence
of stochastic Brownian noise that satisfies the non-
Markovian autocorrelation relation [6,42,43]: hξðtÞξðt0Þi ¼
ðΓM=ωMÞ

R ð2πÞ−1e−iωðt−t0Þωfcoth ½ℏω=ð2kBTÞ� þ 1gdω.

FIG. 1 (color online). (a) Schematic illustration of a typical
optomechanical system driven by a single-mode laser. The laser
beam enters the optical cavity through the fixed mirror, but
photons inside the cavity can also decay through the mirror. The
movable mirror is totally reflecting and linked to a frictional
mechanical oscillator. [(b),(c)] Time series of the dimensionless
canonical coordinate ~q for the situations where the classical
dynamics are periodic and quasiperiodic, respectively.

PRL 112, 110406 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 MARCH 2014

110406-2



For the quantum effect of the mechanical mode to be
important, the quality factor of themechanical oscillator must
be sufficiently high: Q ¼ ωM=ΓM ≫ 1. In this regime, we
have the following Markovian delta-correlated relation:
hξðtÞξðt0Þþξðt0ÞξðtÞi=2¼ΓMð2n̄þ1Þδðt− t0Þ, where n̄ ¼
1=ðexp ½ℏωM=ðkBTÞ� − 1Þ is the mean mechanical phonon
number and T is the temperature of the mechanical bath.
Equation (1) is a set of quantum stochastic equations that can
be simulated numerically (cf., Sec. S3 in the Supplemental
Material [39]), and the standard ensemblemethod can beused
to calculate the degree of quantum entanglement. Another
method was introduced in Ref. [7], where a time-dependent
covariance matrix is calculated to fully characterize the
evolution of the Gaussian state. We use both methods and
set the system in the weakly coupling regime so that the
magnitudes of noise are small compared to the zeroth-order
effects (cf., Sec. S2 in the Supplemental Material [39]).
In the Gaussian-evolution method, we assume small

fluctuations so that the relevant quantum operators can be
expanded about their respective mean values: OðtÞ ¼
hOiðtÞ þ δOðtÞ, where O≡ ðq; p; a; a†Þ, yielding a set of
inhomogeneous equations governing the time evolution
of the fluctuations u

: ðtÞ ¼ AðtÞuðtÞ þ nðtÞ, where AðtÞ is a
4 × 4 matrix and nðtÞ characterizes the input noise (see
Sec. S4 in the Supplemental Material [39]). We can also
obtain a set of equations for the mean values of the operators,
but they have the same forms as the corresponding classical
equations of motion. Whereas Eq. (1) is nonlinear, u

: ðtÞ is a
set of stochastic linear equations, meaning that the fluctua-
tions will evolve asymptotically into zero-mean Gaussian
states but only when none of the Lyapunov exponents in the
corresponding classical system is positive. The covariance-
matrix approach is, thus, not applicable to situations where
the classical dynamics are chaotic [44]. For a nonchaotic
dynamical process, the properties of the quantum fluctua-
tions can be determined from the 4 × 4 covariance matrix
that obeys [7,42] V

: ðtÞ ¼ AðtÞVðtÞ þ VðtÞATðtÞ þD,
where the element of the covariance matrix is defined as
Vij ¼ huiuj þ ujuii=2, and D ¼ diagð0; γMð2n̄þ 1Þ; κ; κÞ.
This comes from hniðtÞnjðt0Þþnjðt0ÞniðtÞi=2¼δðt−t0ÞDij,
characterizing the magnitudes of the noisy terms. For
convenience, we can express V as

V ¼
�
VA VC

VT
C VB

�
;

where VA, VB, andVC are 2 × 2matrices associated with the
mechanical mode, the optical mode, and the optomechanical
correlation,respectively.Thedegreeofquantumentanglement
between the mechanical and optical modes can, thus, be
assessed by calculating the so-called logarithmic negativity,
defined as [45] EN ≡max½0;− ln ð2η−Þ�, where η− ≡
ð1= ffiffiffi

2
p Þ½ΣðVÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣðVÞ2 − 4 detV

p
�1=2 and ΣðVÞ ¼

detðVAÞ þ detðVBÞ − 2 detðVCÞ (cf., Sec. S5 in the
Supplemental Material [39]). We define Ep ≡ − ln ð2η−Þ as
the pseudoentanglement measure so that EN ¼ maxð0; EpÞ.

For the ensemble method, we simulate Eq. (1) a large
number of times to obtain time series of the fluctuations.
We can then obtain the time series of the covariance matrix
from its definition, i.e., Vij ¼ huiuj þ ujuii=2. The entan-
glement degree can be calculated from the definition of EN .
Results.—We find that there are wide parameter regimes

in which the optomechanical system exhibits periodic
and quasiperiodic motions, the representative time series
of which are shown in Figs. 1(b) and 1(c), respectively.
Whereas quasiperiodic motions and even chaos have been
discovered recently in a coupled BEC (Bose-Einstein
condensation) type of hybrid optomechanical system
[46], to our knowledge there were no previous reports of
quasiperiodic motions in the generic optomechanical sys-
tems as in Fig. 1, which typically occur for low values of
the cavity-decay rate, e.g., κ < 0.2ωM, and for moderate
values of the detuning, e.g., for Δ0 ≈ −0.8ωM. The dis-
sipation rate of the mechanical oscillator can take on values
from a large range, e.g., 10−5ωM ∼ 10−3ωM. For computa-
tional convenience, we rescale the dynamical variables:
~q ¼ ffiffiffi

2
p

g0q=ωM and ~P ¼ 8g20E
2=ω4

M. Using the classical
Heisenberg equations, we calculate the bifurcation diagram
of the system, i.e., the asymptotic extreme values of the
dynamical variables as a function of the power of the
driving laser, as exemplified in Fig. 2(a), for the exper-
imentally reasonable parameter setting of ωM ¼ 2πMHz,
Q ¼ 25000, and m ¼ 10.67 ng. For this diagram, the
cavity is assumed to be driven by a blue detuned laser
with value of the detuning Δ0 ¼ −0.81ωM and wavelength
λ ¼ 1064 nm. The damping of the mechanical mode is
related to the quality factor Q by ΓM ¼ ωM=Q. To ensure
the validity of the photon-pressure Hamiltonian, we esti-
mate x=l0 ¼ ~qωM=ωc ∼ 10−8, so the small-displacement
assumption is well justified [37,40]. As the normalized
laser power is increased through a threshold value ~Pc, a
transition from periodic oscillation to quasiperiodic motion
occurs. Figure 2(b) shows the Lyapunov spectrum versus ~P.
We observe that for ~P < ~Pc, the maximum Lyapunov
exponent is zero but there is only one zero exponent,
signifying the existence of a periodic attractor. For ~P > ~Pc,
the maximum Lyapunov exponent remains to be zero but
there are two such exponents. In particular, the second
largest Lyapunov exponent is negative for ~P < ~Pc but it
becomes zero for ~P > ~Pc, a feature characteristic of the
transition from periodicity to quasiperiodicity. In the range
of ~P values shown, the third and the fourth Lyapunov
exponents are all negative. The feature that there is no
positive Lyapunov exponent renders applicable the use of
the quantum Langevin equation to calculate the degree of
quantum entanglement, because zero-mean Gaussian ran-
dom inputs lead to fluctuation patterns that remainGaussian.
This preservation of the Gaussian distribution means
that the fluctuations can be fully determined by the covari-
ance matrix. Figure 2(c) shows the pseudo-entanglement
maximum Ep;m as a function of ~P. Note that there is
entanglement when the value of Ep is greater than 0, so
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the shaded region in which the values of Ep;m fall below
zero indicates lack of entanglement. The surprising phe-
nomenon is that, as the system evolves towards the transition
point, the value of Ep;m continues to increase but drops to
zero rather abruptly as the transition is reached. In the
vicinity of the transition, quantum entanglement disappears.
As the classical dynamics becomes quasiperiodic, entangle-
ment is restored immediately because the value of Ep;m is
recovered and continues to increase as the laser power is
further increased. The basic observation is that strongly
nonlinear behavior can lead to the enhancement of quantum
entanglement between the optical and mechanical modes.
To probe further into the dynamics of quantum entangle-

ment through the classical transition point, we calculate the
time evolution of the pseudoentanglementmeasureEpðtÞ for
representative values of the driving laser power, as shown
in Fig. 3 for four cases. Results from the ensemble approach
by simulating the quantum Langevin equations with 3000
realizations are also included. We observe a strong correla-
tion between EpðtÞ and the evolution of the classical
dynamics, in that EpðtÞ, after a short transient period,
exhibits periodic (quasiperiodic) behavior if the classical
dynamics is periodic (quasiperiodic). In all cases of Ep > 0

so that there is entanglement, the phenomenon of death and
rebirth of entanglement [47,48] with time occurs, in which
EpðtÞ becomes negative and then restores to some positive
value after a time interval. From the perspective of applica-
tions, the entanglement duration time is of the order of a
microsecond so that the effects of entanglement oscillations
are negligiblewhen the desirable quantum operations can be
achieved at sufficiently high speed. The remarkable phe-
nomenon is that when quasiperiodicity sets in so that the
classical dynamics possesses two incommensurate frequen-
cies, the corresponding quantum pseudoentanglement
dynamics, after its “rebirth,” exhibits a surprising “beats”
or temporalmodulation phenomenon. There is, thus, a direct
consequence of classical nonlinear characteristics in quan-
tum entanglement.
We remark that there are proposals to quantify the

entanglement experimentally [6,49,50]. In particular, with
the aid of an ancillary cavity, one can construct the
covariance matrix through homodyne detection and then
calculate the logarithmic negativity.
To summarize, using optomechanical systems as a

paradigm, we have addressed the manifestations of
classical nonlinear dynamics in quantum entanglement,
with a focus on two common types of classical dynamics:
periodic and quasiperiodic motions. Our result is that
strong signatures of the classical dynamics exist in the
respective quantum entanglement dynamics. For example,
when the classical dynamics is quasiperiodic, the corre-
sponding quantum entanglement exhibits a surprising
“beating” behavior in its time evolution. Not only is the
degree of entanglement enhanced as the classical dynamics
transits from periodic to quasiperiodic motions but the
entanglement corresponding to the latter is also more
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FIG. 3 (color online). (a)–(d) Time evolution of Ep for four
values of the laser driving power ~P as specified by the
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thin red dashed lines represent the results from the ensemble
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~Pc ¼ 0.05842 at which a transition from periodic to quasiperi-
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temperature robust (cf., Sec. S6 in the Supplemental
Material [39]). Pushing the classical system into a highly
nonlinear regime so that it exhibits more complicated
motion than periodic oscillation can, thus, be beneficial
for achieving quantum entanglement [44].
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