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Observation of alternately localized Faraday waves in a narrow tank
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There are many experimental works and analyses of gravity water surface waves in
vibrating high-aspect-ratio rectangular tanks. In most cases, the waves are symmetric
or antisymmetric in the direction along the short sides. Here we report an unusual
alternately localized Faraday wave (ALFW) in this system which is neither symmetric
nor antisymmetric along the short side direction. The peculiar feature is that close to the
boundary there are a series of large oscillating regions and flat regions; i.e., the surface
barely moves during the experiment. The large oscillating regions and the flat regions
appear alternately not only in the direction along the long side of the tank, but also along the
short side. The large surface deformation implies strong nonlinearities of the phenomenon.
The spectrum of the discrete cosine transformation of the surface profile shows clearly that
there are only two dominating modes. However, further analyses reveal that it is not simply
a two-mode excitation through external driving, but a one mode excitation, then pumping
the other mode excited through strong internal mode interactions in a leading-passive way.
We use the phenomenological nonlinear mode competition model, which is a set of coupled
nonlinear Mathieu equations, to reproduce the ALFW pattern. Theoretical analyses and
numerical simulations indicate that both nonlinear internal mode interactions and nonlinear
bounding effects account for this phenomenon. Phase locking and amplitude bounding can
be reproduced quantitatively by the model. The instability boundary in the parameter space
obtained by numerical simulations fits the one obtained by experiments very well.

DOI: 10.1103/PhysRevFluids.4.014807

I. INTRODUCTION

Since the first report of Faraday waves in experiments [1], a numerous experimental [2–9],
theoretical [10–18], and numerical [19–28] works among others have been devoted to the study of
parametrically driven gravity surface waves. In addition, extensive investigations have been devoted
to exploiting new surface wave patterns in the past few decades [29–39]. A variety of ordered
wave patterns, such as triangles [30], quasipatterns that have no discrete translational symmetry
[32], superlattice patterns [4,33,37,40], localized waves [35,37,38], and patterns stemming from
various types of dispersions that depend on the depth of the fluid [41,42], intricate nonlinear surface
dynamics [13,43], different boundary shapes of the containers [32,44–46], and directions of driving
forces [5,47], have been observed in Faraday waves. Indeed, there exist comprehensive review
articles and books on this subject [48,49]. Now there are good understandings of the physical
mechanism underlying Faraday waves in an ideal fluid [48–52], where the onset of instability of
the normal modes resulting from parametric resonance is governed by the Mathieu equation [52].
Note that this type of stability analysis is completely linear. It is known that the parametric instability
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in the Mathieu equation leads to exponential divergence of the solution [10,53]. The introduction
of linear damping can only modify the instability boundary, but is not enough to bring the unstable
solution bounded. It is actually the inherent nonlinearity of the surface wave that limits the growth
of the amplitude [48,54]. Thus the nonlinear effects always play an important role in shaping the
experimentally observed patterns of Faraday waves [8,48,49].

In recent years, with the development of experimental techniques and instruments, new types
of Faraday wave patterns have been observed in experiments, such as star-shaped gravity surface
waves in a cylindrical container [34] and highly localized oscillations aligned along one direction
of rectangular tanks [39]. In particular, with high viscosity, Edwards et al. [32] found various
patterns that are independent of the shapes of the containers. In this paper, we report the observation
of a 3D Faraday wave pattern, having as many as five separated regions with large oscillations
that unilaterally localized in a narrow (the aspect ratio is L/b = 9.091) rectangular tank, which is
driven harmonically in the vertical direction. In particular, the localized wave has structure in both
directions of the tank; that is, when the localized wave has large amplitudes on one side along the
long boundary, it will be almost flat on the opposite side all the time, and the flat and large oscillation
regions appear alternately along the long boundary.

In finite extended systems, the dissipation cannot be neglected [55,56]. Pattern formations are
well described in terms of a few spatial modes; in particular, Douady and Fauve investigated
pattern selection rules in the Faraday instability [4], and Residori et al. investigated two-mode
competition phenomena [7], and the time evolution of the pattern is then related to the evolution of
the coefficients of these modes [36]. Equations of coefficients have been developed for describing
forced nonlinear surface wave systems [54,57,58], and the dissipation rates can be obtained by fitting
the instability curves under linear conditions and added to the mode equations phenomenologically.
In this article, the inviscid Euler-Lagrange formula, derived by Miles [13], is linearized to perform
the stability analysis. Due to the significant high amplitudes of the pattern, nonlinearities will be
taken into consideration and the mode competition equations used in [54] are adopted to model our
system, which give good descriptions to the experiments.

The rest of the paper is organized as follows. In Sec. II, the parameters of the experimental
setup are given. We present the main features of the localized water surface wave observed in our
experiment, followed by a description of the evolution of the surface profile, both in real space and
in mode space, which characterizes clearly how the alternately localized Faraday wave (ALFW)
pattern is developed. The wave profiles for different driving frequencies are also provided, and the
frequency range where the ALFW pattern can emerge is determined.

We give basic formulas governing water surface waves and boundary conditions in Sec. III.
Through linear approximation, the parametric resonance between the response mode and the
external driven force is revealed in Sec. IV.

Because of the moderately strong driven force and the existence of both parametric and internal
resonances, nonlinearities will play an important role in shaping the localized pattern in our
experiment. We adopt a phenomenological nonlinear model [54] to formulate the observed pattern
and provide a physical illustration of its validity in Sec. V. In Sec. VI, we derive the coefficients of
the nonlinear model by fitting to the experimental data and give an estimation of the uncertainties of
these coefficients. Besides, a representative solution of the nonlinear model for the time evolution of
the two modes is compared with the data obtained from experiments. Both amplitude bounding and
phase-locking phenomena are revealed in the simulations, and they coincide with the experimental
data very well.

Our discussion and the conclusion of our work are provided in Sec. VII.

II. EXPERIMENTS

A. Experimental setup

In our experiment, a plexiglas rectangular tank (Fig. 1) with aspect ratio 9.091 is partially filled
with high-purity water. The length L and width b of the tank are 50.0 cm and 5.5 cm, respectively.

014807-2



OBSERVATION OF ALTERNATELY LOCALIZED FARADAY …

FIG. 1. The experimental setup. (A) The high-speed CMOS camera (Basler, acA2040-180 km, 180 fps
at 2048 × 2048) that records the front side profile of the water surface wave. (B) The closed-loop power
amplifier that generates the harmonic signal and drives the vibrator. (C) The computer with the software to set
parameters of the power amplifier. (D) The tank that is partially filled with water. The length in the x direction is
L = 50.0 cm, the width in the y direction is b = 5.5 cm, and the depth of the water at rest is d = 5.0 cm. (E)
The laser range finder. (F) The vibrator. (G) The accelerometer that is attached to the vibration platform,
whose signal is fed back to the power amplifier to form a closed-loop control for the vibrating amplitude and
frequency.

The depth d of the water at rest is 5.0 cm. Surfactants, which can reduce the interfacial tension
between two liquids or between a liquid and a solid [49,59], have significant effects on properties of
the dynamics of surface waves [60,61]. Several drops of surfactants, e.g., Kodak Photo-Flo [38,59],
are then added to minimize the surface pinning effect at the walls and reduce the surface tension,
such that the boundaries of the surface may be regarded as moving freely and the eigenmodes of the
Laplacian operator are approximately cosine functions. The tank is fixed on a vibration table, which
vibrates harmonically in the vertical direction.

The whole setup of our experiment is shown in Fig. 1. It consists of a vibration unit (DongLing
Vibration ES-3-150/LT0404, with the signal-to-noise ratio greater than 100 dB and frequency
resolution equal to 0.1%), whose vibrator is driven by a power amplifier which can output amplified
harmonic signals. The system has a closed-loop control regarding the amplitude and the frequency of
the vibrator, where the power amplifier receives a feedback signal from an accelerometer that fixed
on the vibrator; therefore the amplitude and the frequency of the vibrator can be fixed to the input
value with high precision. A computer is used to set up parameters for the vibration unit to specify
the starting amplitude or frequency, the step, the ending amplitude or frequency, and the duration of
each step. In the beginning of the experiment, a laser range finder (Keyence IL-S025) is also used
to measure the amplitude and frequency of the vibrator, which agree with the input values well, and
the relative errors in A and f are 1.2% and 0.09%, respectively (see Supplemental Material [62]). It
is important to know the level of horizontal vibration in the setup for parameters and payloads that
we have used in the experiments, as the electromagnetic shakers possess such off-axis vibrations
that could lead to spurious conclusions [63]. Therefore, we have measured the horizontal vibration
using the laser range finder, and find that the amplitudes are around 6.5 × 10−5 cm in both x and y

directions, which is about two orders smaller than the vertical driven amplitude A = 0.018 cm. It is
known that while the vertical force plays the role of parametrically driving (exponential instability),
the horizontal force plays the role of externally driving (linear instability) [13]. Taking mode (12,0)
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FIG. 2. The snapshots of the ALFW pattern in a period of oscillation. From (a) to (e) are the wave profiles
with phase 0, π

2 , π, 3π

2 , 2π , respectively. Regions in dashed boxes are almost flat all the time, while the regions
in solid boxes oscillate with significant amplitudes; see (b) and (d). The driving frequency is f = 8.66 Hz and
the driving amplitude is A = 0.018 cm, which are representative parameters for this phenomenon to occur.

for instance and taking the dissipation and horizontal force into consideration, one can obtain
that the contribution of the horizontal force to the amplitude of the surface wave [13] is around
2.4 × 10−5 cm, which can be neglected in our case.

A water tank with length L = 50 cm and width b = 5.5 cm is fixed on the vibrator. It is partially
filled with water where the height at rest is d = 5.0 cm. It is known that the dominant source of
dissipation results from surface contamination that occurs fairly rapidly if the container is open to
air; thus in our experiment, to reduce dissipation from surface contamination, the tank is covered
right after adding water and surfactants. A high-speed CMOS camera (Basler-acA2040-180 km,
180 fps at 2048 × 2048 resolution) is placed in front of the tank to record the front side profile of
the water surface. We extract the pixel data of the outline of the surface profile on the front side.
Perspective correction is applied to this pixel data; after that the data are rescaled to actual values to
yield the profile η(x, y = 0). Discrete cosine transformation (DCT) is applied along the x direction
to obtain its DCT spectra ηm.

B. Experimental phenomenon

In this subsection, we will first give a description of the basic features of the ALFW pattern, and
then elucidate how the pattern is developed.

In order to characterize the pattern, we extract the wave profile at steady state from the captured
video. Figures 2(a)–2(e) show the profiles of the ALFW pattern at phase stages 0, π

2 , π, 3π
2 , 2π in

one period of oscillation. Since the eigenmodes of the system are approximately cosine functions,
the DCT would be a natural choice to perform spectral analysis, with its transformation coefficients
being precisely the height of each normalized mode.

We find from the captured profiles the following:
(i) One of the important features of the pattern is that there are as many as five spatially

localized regions with large oscillations, separated by flat regions that almost do not move during
the oscillation. The localized region and the flat region appear alternately in both x and y directions
(Fig. 2). In particular, in the y direction, if there is a localized region with large oscillations on the
front side, it will be flat at the rest level on the opposite side all the time, forming a strong contrast,
and vice versa. For example, the corners at the front side are flat regions that barely move during the
oscillation, while the back corners belong to the localized region, which oscillates wildly. This is in
contrast with most previously reported localized surface wave patterns, which are either one packet
waves (e.g., the standing soliton [38]) or a series of packets only distributed along the x direction.

(ii) By the DCT of the front side of the surface profile (Fig. 3), it is found that although the
localized pattern of the water surface wave is complicated, the components of its spectrum are
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FIG. 3. The DCT spectrum of the front side (y = 0) of the surface profile shown in Fig. 2(b). It is clear that
two clean modes, (8,1) and (12,0), dominate, with an opposite sign of their values.

rather simple: just two natural modes, (12,0) and (8,1), dominate. This result violates our intuition
at first glance. Here, we would like to emphasize that although the spectrum of the pattern is rather
simple, the pattern does not trivially result from the two linearly superposed counterpropagative
natural modes.

Note that from the DCT of η(x, 0), only the mode number m in the x direction can be determined,
such as 12 or 8, while the mode number n in the y direction (0 or 1) cannot be fixed directly. In our
case, n is determined by comparing the derived profile (Fig. 4) with the experimentally obtained
surface wave.

(iii) The third feature of the ALFW pattern is robustness. We have repeated the experiments
several times under each set of driving parameters; the pattern always emerges and oscillates at
the same angular frequency, which implies the independence of the pattern on initial conditions.
Furthermore, the phenomenon is stable to parameter variations as it appears in a finite region in the
parameter space.

Interestingly, the DCT coefficients of the dominant modes have opposite sign, which indicates
that the relative phase between these two modes is between π/2 and 3π/2. When the relative
phase between modes (12,0) and (8,1) is close to 0 or π , the peaks of the ALFW pattern achieve
the maximum and the flat regions achieve their minimum. By artificially adjusting the relative
phase between the dominant modes (8,1) and (12,0) to be π , we reproduce the ALFW pattern,
as sketched in Fig. 4. In fact, the phase of mode (12,0) is always in advance of that of mode

FIG. 4. The illustration of constructing the ALFW pattern by phenomenologically superposing the (12,0)
and (8,1) modes. (a) Mode (12,0), (b) mode (8,1), and (c) superposition of the two modes with equal weights
but opposite signs. Both large oscillation regions (enclosed by solid boxes) and the flat regions (enclosed by
dashed boxes) are clearly seen. Note that our observed ALFW phenomenon is not only a linear superposition
of the two modes, as they have different eigenfrequencies. Actually, the nonlinear interaction between these
two modes locks their relative phase, finally resulting in the ALFW pattern.
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FIG. 5. The evolution of the ALFW pattern in (a) real space and (b) mode space. The driven parameters
are A = 0.04 cm, f = 8.64 Hz. (a) Shows the time series of the profile η on one side of the tank (y = 0 cm,
the front side of the profiles in Fig. 2). (b) Shows the time series of the DCT coefficients for the relevant modes
in the x direction. The (12,0) mode is excited around t = 10 s, the (8,1) mode is developed around t = 20 s,
and the system reaches a steady state around t = 30 s, forming the ALFW pattern. The coefficients of all the
other modes remain close to 0.

(8,1) by approximately π , as we will demonstrate in Sec. VI (Fig. 9). This indicates that the
phases of these two modes are locked. The eigenfrequencies of these two modes differ slightly.
Without considering dissipation, the frequencies of modes (12,0) and (8,1) are 8.6980/2 Hz and
8.7389/2 Hz, respectively; see Eq. (9). The linear stability analysis yields that these two modes are
all unstable. If this is the case, their frequencies will be detuned to the same value due to the external
driving, and the nonlinear interaction between the two modes will exert additional selection rules
and reduce the number of possible phases, which may lead to robust phase locking. However, when
taking dissipation into consideration, they are 8.6974/2 Hz and 8.7378/2 Hz; see Eq. (15). As we
will show in Sec. IV B, with dissipation, mode (8,1) is no longer in the Faraday instability region
[Fig. 7(b)]; thus its excitation and phase locking with mode (12,0) are actually due to the nonlinear
driving from mode (12,0).

Now, we examine how this ALFW pattern is developed. At each time instance, we record the
wave profile η(x, y = 0, t ) at the front boundary of the tank. Figure 5(a) shows the time evolution
of this profile. In the meantime, at each time instance, we do the DCT to η(x, 0, t ) with respect
to x, and get the spectrum of the amplitudes ηm(t ) in the mode space. The results are shown in
Fig. 5(b). It is clear from the time series of the profile and the DCT spectrum that after turning on
the vibrator at t = 0, a transient time lasts about ten seconds, where the water surface is almost
static. As the fluctuations of the surface enhance, a standing wave of a single mode with wave
number k12,0 emerges, which indicates the excitation of mode (12,0). After the standing wave being
established and the amplitude exceeds some threshold, at around t = 20 s, the mode (8,1) is also
excited, and gradually the amplitudes of these two modes become stable, where the ALFW profile
is formed. Over the whole stage, the coefficients of all the other modes remain close to 0. These
features reveal how the ALFW pattern is formed.

We have also examined the water surface wave with different driving parameters. For example,
we fix the driving amplitude at 0.018 cm and vary the driving frequency systematically. The
representative snapshots are plotted in Fig. 6. When the driving frequency f is in the range of
[8.68, 8.76] Hz, only the (12,0) mode is excited; if f is in the range of [8.64, 8.67] Hz, then both
(12,0) and (8,1) modes can be excited, and the ALFW pattern is formed. When the driving frequency
is greater than 8.76 Hz or smaller than 8.64 Hz, and the driving amplitude is at 0.018 cm, none of
the modes are in the unstable region; thus the water surface remains static. Therefore, there is a
region in the parameter space of the driving frequency and the driving amplitude where the pattern
can emerge. The boundary of this region in the parameter space can be determined by nonlinear
competition theory, as developed in Sec. V, which agrees with the experimental results well [see
Fig. 8(a)].
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FIG. 6. Representative water surface profiles at the front boundary when the system is steady and the
amplitude is at its maximum. The driving amplitude is fixed to 0.018 cm. From top to bottom the frequencies
are 8.77 Hz to 8.63 Hz with a decreasing step of 0.01 Hz. If the driving frequency is greater than 8.76 Hz or
smaller than 8.64 Hz, the water surface cannot be excited at the given driving amplitude. There is an abrupt
change in the dominant modes between 8.68 Hz and 8.67 Hz. If the driving frequency f is in the range of
[8.68, 8.76] Hz (enclosed by the orange rectangle), only the (12,0) mode is excited; if f is in the range of
[8.64, 8.67] Hz (enclosed by the sky blue rectangle), then both (12,0) and (8,1) modes can be excited, and the
ALFW pattern is formed. Note that the profile for f = 8.68 Hz and 8.69 Hz is the same for the upper ones but
with a π phase difference.

III. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS OF GRAVITY
WATER SURFACE WAVES

In this section we provide briefly the basics of mathematical models of water surface waves,
based on which further analysis will be carried out. The starting point is the Navier-Stokes equation

∂u
∂t

+ (u · ∇)u = ρg − ∇p + μ∇2u, (1)

where u = u(x, y, z) is the three-dimensional velocity field, ρ is the density of water, g is the
gravity constant, p is the pressure, and μ is the viscous factor. Typical values of the parameters in
our experiment are given in Table I.

TABLE I. Typical values of parameters in our experiment.

Symbol Value

Length of x domain, L (cm) 50.0
Surface tension, γ (dyn/cm) 20.0
Length of y domain, b (cm) 5.5
Density of water, ρ (g/cm3) 1.0
Mean depth in the z direction, d (cm) 5.0
Gravity constant, g (cm/s2) 981
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To formulate our model, we fix the coordinate on the tank (Fig. 1). The linearized effects of
the surface tension γ∇2η/ρẑ (see [49,52]) on the free surface z = η(x, y, t ) and the effects of
harmonic driving force I cos ωt are incorporated into the gravity parameter g, where I = ẑAω2;
A and ω = 2πf are the driving amplitude and the driving angular frequency, respectively. The
resulting effective gravity constant is g̃ = g + γ∇2η/ρẑ + I cos ωt . Assuming that the water in the
tank is irrotational, ∇ × u(x, y, z) = 0, and incompressible, ∇ · u(x, y, z) = 0, then the velocity
potential φ(x, y, z, t ) can be introduced as u(x, y, z) ≡ ∇φ(x, y, z), which satisfies the Laplacian
equation

∇2φ(x, y, z) = 0. (2)

Neglecting the bulk dissipation provisionally, Eq. (1) can be reduced to the Bernoulli equation

∂φ

∂t
+ 1

2
(∇φ)2 + g̃z + p − p0

ρ
= 0, (3)

where p0 is the pressure of atmosphere on the water surface. A moderate amount of additive
(Kodak Photo-Flo) is added into the water to minimize the effects of surface tension [38], such
that the boundaries of the contact line satisfy, approximately, the homogeneous Neumann boundary
conditions,

∂η(x, y, t )

∂x

∣∣∣∣
y=0,b

≈ 0,
∂η(x, y, t )

∂y

∣∣∣∣
x=0,L

≈ 0. (4)

The no-penetration boundary conditions on the wall and at the bottom read

n̂ · ∇φ(x, y, z, t ) = 0, (x, y, z) ∈ ∂V, (5)

where n̂ is the unit normal vector at the wall. The dynamical equation [Eq. (3)] on the surface
z = η(x, y, t ) and the requirement of the free surface η(x, y, t ) give the dynamical and kinetic
boundary conditions, respectively:

∂φ

∂t
+ 1

2
(∇φ)2 + g̃η = 0, z = η, (6a)

∂η

∂t
+ ∇φ · ∇η = ∂φ

∂z
, z = η. (6b)

IV. LINEAR ANALYSIS

A. Linear approximations

In order to perform stability analysis of the system, we adopt the Lagrangian form derived in
[13]. Because of the homogeneous Neumann boundary conditions (4) of the water surface z =
η(x, y, t ) at the walls, the surface wave can be expanded by cosine function basis ψmn(x, y) =
cos kmx cos kny:

η(x, y, t ) = ηmn(t ) cos kmx cos kny, (7)

where the wave numbers are km = mπ/L, kn = nπ/b. The satisfaction of both the Laplacian
equation [Eq. (2)] and the no-penetration boundary conditions Eq. (5) of the velocity potential
φ(x, y, z, t ) leads to the expansion:

φ(x, y, z, t ) = φmn(t ) cosh kmn(z + d ) cos kmx cos kny, (8)

where k2
mn = k2

m + k2
n. The dispersion relation between the natural angular frequency ωmn and the

corresponding wave vector kmn can be obtained by dropping the nonlinear terms of Eq. (6):

ω2
mn �

(
g + γ

k2
mn

ρ

)
kmn tanh(kmnd ). (9)
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The first term is due to gravity, and second term is due to the surface tension. For the relevant modes
considered in this paper and the estimated value of γ from the experimental data (Sec. VI), the
relative weight of the surface tension over the gravity is about 1% (see Supplemental Material [64]).
Even for pure water with maximum surface tension [65], the relative weight is still only around 4%.
Although surface tension may have observable effects, it is far from being comparable to the gravity
effect. Therefore the dynamical phenomena observed in our experiments are mainly gravity surface
waves.

The Lagrangian of the system is

L = (ρS)−1(T − V ) =
∞∑

m,n,m′,n′=0

(
1

2
am′n′,mn

∂ηmn

∂t

∂ηm′n′

∂t
− 1

2
g̃ηmnηmn

)
,

where S = L × b is the cross area of the tank. The nonlinear inertial coefficients a ≡ {am′n′,mn}, in
the small slope limit, can be expanded in series of generalized coordinates ηmn,

am′n′,mn = δmm′δnn′am′n′ +
∑

m′′,n′′=0

am′′n′′,m′n′,mnηm′′n′′

+ 1

2

∑
m′′′,n′′′=0

am′′′n′′′,m′′n′′,m′n′,mnηm′′′n′′′ηm′′n′′ + · · · , (10)

where

amn = k−1
mn tanh−1(kmnd ) �

(
g + γ

k2
mn

ρ

)
ω−2

mn (11)

is the linear part of the inertia; am′′n′′,m′n′,mn, am′′′n′′′,m′′n′′,m′n′,mn, . . . are the nonlinear coupling
coefficients of the first order, the second order, etc., respectively.

Dropping terms of order O(η) in Eq. (10), we obtain the linearized Lagrangian

L0 =
∞∑

m,n=0

(
1

2
amn

∂ηmn

∂t

∂ηmn

∂t
− 1

2
g̃ηmnηmn

)
. (12)

B. Parametric instability analysis

Substituting the linear inertia [Eq. (11)] into the linearized Lagrangian [Eq. (12)], and employing
the Euler-Lagrange equations, one can obtain a set of Mathieu equations for each mode (m, n):

d2ηmn

dt2
+ (

ω2
mn + Imn cos ωt

)
ηmn = 0, (13)

where Imn = kmn tanh(kmnd )Aω2; A and ω are the driving amplitude and the driving angular
frequency. Here the fluid is provisionally assumed to be inviscid (no dissipation). However, in
a realistic case, dissipation is inevitable, which will change both the parameter values and the
boundary of the instability region. Adding the dissipation term μm,nη̇m,n to the left of Eq. (13),
where μmn is the dissipation rate, and taking the transformation

ηmn = ξmn exp (−μmnt/2), (14)

we will have the natural frequencies �m,n that incorporate the dissipation effect

�2
m,n = ω2

m,n − μ2
m,n

4
. (15)
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FIG. 7. For fixed driven parameters A = 0.018 cm and f = 8.66 Hz, the stability phase diagram of the
Mathieu equation [Eq. (16)] (a) without and (b) with dissipation. The orange squares are the parameter
values for the 0 modes, and the blue plus symbols are those for the 1 modes in the y direction. (a) The gray
region indicates the unstable phase without dissipation. (b) The light orange and gray areas are the unstable
regions with dissipation 0.625 s−1 [for mode (12,0)] and 0.873 s−1 [for mode (8,1) when it is excited solely],
respectively. It shows that in (a) by assuming the inviscid condition in our experiment, both modes (12,0) and
(8,1) fall in the gray unstable region, while in (b) with the dissipation (see text), the unstable region shrinks and
mode (8,1) is no longer unstable. Inset of (b) shows the zoom-in of the tip of the unstable region, with light
orange and blue shaded areas being the boundary with the maximum uncertainty in dissipation. The outer and
inner outlines of the light orange area covering the solid curve correspond to μ12,0 = 0.6 and 0.645 s−1, and
the outer and inner outlines of the blue area covering the dashed curve correspond to μ8,1 = 0.845, 0.887 s−1,
respectively, which demonstrate clearly that mode (12,0) is unstable and mode (8,1) is stable, and the results
are robust with maximum uncertainties in key coefficient estimations.

By rescaling the time as τ = ωt/2, we can write Eq. (13) in the form of the standard Mathieu
equation [52]

d2ξmn

dτ 2
+ (

λ2
mn + 2qmn cos 2τ

)
ξmn = 0, (16)

where λ2
mn = 4�2

m,n/ω
2 and qmn = 2Akmn tanh(kmnd ). In fact, the dissipation term μ2

mn in the
formula of λ2

mn is much smaller than the term 4ω2
mn, so that it can be neglected. Thus the effect

of dissipation μmn on the instability region is mainly reflected in its exponential factor in the
transformation Eq. (14). Actually, the dissipation effects will reduce the area of the instability
region.

In Fig. 7, the subharmonic unstable region of the Mathieu equation is painted in the shaded
area, and the corresponding parameter values of the 0 and 1 modes in the y direction are plotted.
Figure 7(a) is for the inviscid case (μmn = 0), while Fig. 7(b) is with dissipation. From the well-
known results of the Mathieu equation, mode ξmn is exponentially unstable if the corresponding
parameter pair (qmn, λ

2
mn) falls in the unstable region in the phase space, and then it can be observed

in experiments. Note that Fig. 7 is the instability space of the linearized system and is applicable
only for Faraday waves in the stage when their amplitudes are small. So only the linear coefficients,
γ and μm,n, are relevant. To be concrete, the dissipation rates of modes (12,0) and (8,1) can be
estimated by fitting the instability curves [54], which are approximately 0.625 s−1 and 0.873 s−1 for
modes (12,0) and (8,1), respectively. Note that for mode (8,1), the dissipation is obtained from the
instability boundary where it is the only unstable mode for subharmonic response, which is different
from that shown in Fig. 8, where mode (8,1) is unstable mainly due to the driving by mode (12,0);
otherwise it will be stable in that parameter region.

In the inviscid case, when the driving amplitude and frequency are A = 0.018 cm and f =
8.66 Hz, for instance, there are two modes (12,0) and (8,1) that fall in the unstable region [Fig. 7(a)].
However, when a proper dissipation is introduced in the model to fit with the experiments, the
unstable region shrinks and mode (8,1) has been kicked out; only mode (12,0) still resides in the
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FIG. 8. The phase diagram in the driven parameter space. The crosses and triangles are the instability
boundaries obtained experimentally for modes (12,0) and (8,1), respectively. The solid and dashed curves
are fittings from our model (22). The adopted parameters are γ = 20 dyn/cm, and μ12,0 = 0.625 s−1,
μ8,1 = 0.65 s−1, α8,1 = −1100/I8,1. The unstable regions for modes (12,0) and (8,1) are marked by I and II,
respectively. Note that in region II, mode (12,0) is also unstable; thus region II is for the ALFW phenomenon.
The driving amplitude and frequency we used for most of the results in the paper, A = 0.018 cm and
f = 8.66 Hz, is marked by an arrow in region II. The circles indicate the parameter values in Fig. 6. The
gray circles are outside the unstable region, the orange circles are where only mode (12,0) is unstable, the
blue circles are where both mode (12,0) and mode (8,1) are unstable. The corresponding uncertainty range
for parameters γ, μ12,0 (light orange) and for parameters μ8,1, α8,1 (light blue) are also shown. The outer and
inner outlines of the orange area covering the solid curve correspond to γ = 20.1 dyn/cm, μ12,0 = 0.6 s−1 and
γ = 19.65 dyn/cm, μ12,0 = 0.645 s−1, respectively. The outer and inner outlines of the blue area covering
the dashed curve correspond to μ8,1 = 0.64 s−1, α8,1 = −1000I−1

8,1 and μ8,1 = 0.66 s−1, α8,1 = −1200I−1
8,1 ,

respectively.

unstable region [Fig. 7(b)]. Note that uncertainties of the fitted coefficients are estimated and even
with the maximum uncertainty, the results are still robust; i.e., mode (12,0) is unstable and mode
(8,1) is stable. However, since both modes (12,0) and (8,1) are prominent in the DCT spectrum
(Fig. 3), the observed (8,1) mode in our experiments must be excited by mode (12,0) through the
nonlinear interactions, which will be analyzed in detail in Sec. V.

V. NONLINEAR MODEL IN THE UNSTABLE SUBSPACE

In light of the DCT spectrum of the surface pattern, we consider the subspace spanned by the two
dominant modes (12,0) and (8,1). The surface profile can be written in terms of the corresponding
coefficients η12,0 and η8,1,

η(x, y, t ) = η12,0(t ) cos(k12x) cos(k0y) + η8,1(t ) cos(k8x) cos(k1y), (17)

and the reduced Lagrangian (without dissipation) can be written as

Lsub = 1
2a12,0;12,0η̇

2
12,0 + 1

2a8,1;12,0η̇8,1η̇12,0 + 1
2a12,0;8,1η̇12,0η̇8,1 + 1

2a8,1;8,1η̇
2
8,1

− 1
2 (g − I cos ωt )η2

12,0 − 1
2 (g − I cos ωt )η2

8,1. (18)

The nonlinearity arises from the nonlinear inertia am′n′,mn, which depends on η. In the unstable
subspace, it is easy to calculate the coupling overlaps a12,0;12,0 = a12,0[1 − 4k2

12(η2
12,0 + η2

8,1)] +
· · · , a8,1;12,0 = 0, a12,0;8,1 = 0, a8,1;8,1 = a8,1[1 − 4k2

8,1(η2
12,0 + 3

8η2
8,1)] + · · · .

Substituting Lsub into the Euler-Lagrange equations and neglecting the terms of order
O(η4), we obtain the corresponding second-order ODEs in the four-dimensional unstable
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subspace:

d2η12,0

dt2
+ {

ω2
12,0 − I12,0

[
1 + 4k2

12,0

(
η2

12,0 + η2
8,1

)]
cos ωt

}
η12,0

= k12,0 tanh(k12,0d )
[
4η12,0

(
k12,0η̇

2
12,0 − k8,1η̇

2
8,1

) + 8k12,0η8,1η̇8,1η̇12,0
]

− 4ω2
12,0k12,0

(
η2

12,0 + η2
8,1

)
η12,0, (19a)

d2η8,1

dt2
+ {

ω2
8,1 − I8,1

[
1 + 4k2

8,1

(
η2

12,0 + 3η2
8,1/8

)]
cos ωt

}
η8,1

= k8,1 tanh(k8,1d )
[
η8,1

(−4k12,0η̇
2
12,0 + 3k8,1η̇

2
8,1/2

) + 8k8,1η12,0η̇12,0η̇8,1
]

− 4ω2
8,1k8,1

(
η2

12,0 + 3η2
8,1/8

)
η8,1. (19b)

The coupling terms between the two dominant modes appear naturally.

Phenomenological strong nonlinear model

It is interesting to find that the structure of the above two cubic nonlinear equations resemble the
mode competition equations used by Gollub et al. [54]. Both quadratic “parametric coupling” and
cubic nonlinear terms appear. The above equations can be further simplified to a phenomenological
model based on certain physical considerations. First, the resonant coupling terms η2

8,1η12,0 cos ωt

in the equation of η12,0 and η2
12,0η8,1 cos ωt in the equation of η8,1 should be kept to account for

the internal mode interactions. Second, the other nonlinear terms can be neglected, but the self-
cubic terms are retained to keep the system bounded [48], which can be combined as β12,0η

3
12,0 and

β8,1η
3
8,1. Therefore, letting α12,0 and α8,1 be the coefficients for the resonant coupling terms, we

obtain

η̈12,0 + [
ω2

12,0 − I12,0
(
1 + α12,0η

2
8,1

)
cos ωt

]
η12,0 = β12,0η

3
12,0 (20)

and

η̈8,1 + [
ω2

8,1 − I8,1
(
1 + α8,1η

2
12,0

)
cos ωt

]
η8,1 = β8,1η

3
8,1. (21)

Taking the dissipation effects back into consideration, we have

η̈12,0 + μ12,0η̇12,0 + [
ω2

12,0 − I12,0
(
1 + α12,0η

2
8,1

)
cos ωt

]
η12,0 = β12,0η

3
12,0, (22a)

η̈8,1 + μ8,1η̇8,1 + [
ω2

8,1 − I8,1
(
1 + α8,1η

2
12,0

)
cos ωt

]
η8,1 = β8,1η

3
8,1. (22b)

Now we have the equations that are exactly the same as in [48,54].

VI. DETERMINATION OF THE KEY PARAMETERS AND UNCERTAINTY ANALYSIS

The unstable region can be obtained experimentally as follows. First, we discretized the
parameter space with �A = 0.001 cm and �f = 0.0125 Hz. Then for each point (A, f ) in the
parameter space, we conducted the experiment and waited at most 10 minutes to see if any mode
can be excited, as demonstrated in Fig. 6, then moved to the next parameter value. Due to the
exponential divergency of the Mathieu instability, if there is an unstable mode, it will be excited
quickly, typically within one minute. Thus 10 minutes are in general long enough to observe an
excitation of the unstable modes if there are any. The criterion of excitation of a mode is judged by
the DCT spectrum. Then the boundary of the unstable region can be obtained by setting a critical
value of 0.1 cm. The results are shown in Fig. 8. From the mode coupling equations (22), for each set
of the coefficients, the instability boundary in the parameter space (A, f ) can be determined. Thus
the key coefficients of the nonlinear model can be derived from the fitting to the experimentally
obtained boundaries and the time series of the two dominating modes. The fitting coefficients of
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the nonlinear model are the surface tension γ , the dissipation rates μ12,0 and μ8,1, the coupling
coefficients α12,0 and α8,1, and the cubic nonlinear coefficients β12,0 and β8,1. Since the instability
boundary of the leading mode (12,0) is relatively independent and mostly relies on the values
of γ and μ12,0, thus they can be determined first. The instability boundary of the passive mode
(8,1) relies on γ , μ8,1, and also α8,1. Therefore μ8,1 and also α8,1 can be determined second. The
cubic nonlinearity coefficients β12,0, β8,1 and the nonlinear modal coupling coefficient α12,0 jointly
determine the height of the two modes’ amplitudes and their relative phase, which can be determined
third. According to the discussion above, the fitting of these parameters is carried out in three steps.
Uncertainties of these coefficients and their effects are also analyzed.

A. Determination of γ and μ12,0

For the weakly dissipative Mathieu equation (whether linear or not), the dissipative coefficient
μm,n can be, in principle, determined solely from the tip (the leftmost threshold in the parameter
space) of the boundary curve [66,67]. This is true for mode (12,0), because there exists a region in
the parameter space containing a tip where only mode (12,0) is excited. However, this is not the
case for mode (8,1), as the tip of the instability boundary for mode (8,1) is covered by the unstable
region for mode (12,0).

The dissipative coefficient can be estimated from experimental data via the formula μm,n �
ω∗q∗

m,n/4, where the star indicates quantities at the tip of the instability region [66,67]. For mode
(12,0), it is

μ12,0 � ω∗I ∗
12,0

4ω2
12,0

= ω∗3k12,0 tanh(k12,0d )A∗

4gk12,0 tanh(k12,0d )
= ω∗3A∗

4g
. (23)

On the other hand, it is known that the driven angular frequency at the tip (subharmonic) is twice
the natural frequency of the instability mode. For mode (12,0), we have

ω∗ = 2

[(
g + γ

k2
m,n

ρ

)
km,n tanh(km,nd )

]1/2

. (24)

Therefore we can fit (μ12,0, γ ) with the tip of the experimentally obtained instability boundary, e.g.,
(ω∗, A∗) = (2π × 8.7 rad/s, 0.0151 cm), as shown in Fig. 8. As such, we obtain the surface tension
γ = 20 dyn/cm, and the dissipative coefficient μ12,0 = 0.625 s−1 as our best fit.

Note that for the standard dimensionless dissipative Mathieu equation ẍ + μẋ +
[1 + h cos(2 + ε)t] x = 0, close to the tip of the subharmonic instability boundary, i.e., ε 
 1 and
h 
 1, the instability condition is given by

−
√(

1
2h

)2 − 4μ2 < ε <

√(
1
2h

)2 − 4μ2, (25)

where h > 4μ. Thus the weakly damping condition is given by μ < h/4 
 1. For mode (m, n),
μ = μm,n/ωm,n. In our experiments, for mode (12,0), we have μ = μ12,0/ω12,0 = 0.0229, which is
much less than one and justifies the weak dissipation condition.

The uncertainties for parameters γ, μ12,0 (the orange region in Fig. 8) can be estimated as
follows. The outer and inner outlines of the orange region indicate the minimum variation to the
parameter γ, μ12,0 to cover all the data on the instability boundary. In particular, the outer and
inner outlines correspond to γ = 20.1 dyn/cm, μ12,0 = 0.6 s−1 and γ = 19.65 dyn/cm, μ12,0 =
0.645 s−1, respectively. For any parameter p, we define the relative uncertainty as

u = |pmax − pmin|
2p0

, (26)

where p0 is the fitted value. So the relative uncertainties for γ and μ12,0 are uγ = 1.13% and uμ12,0 =
3.6%, respectively.
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FIG. 9. Comparison of the simulated asymptotic trajectories (the curves) and the experimental data (the
symbols) with driven parameters A = 0.018 cm and f = 8.66 Hz. The solid curve and the squares are for mode
(12,0), while the dashed curve and the plus symbols are for mode (8,1). In our simulations, the coefficients in
Eq. (22) are μ12,0 = 0.625 s−1, α12,0 = 150/I12,0, β12,0 = 100 cm−2 s−2, μ8,1 = 0.65 s−1, α8,1 = −1100/I8,1,
β8,1 = −800 cm−2 s−2, and the initial condition is η12,0 = 0.01 cm, η8,1 = 0 cm, and η̇m,n = 0 cm/s. The
magnitude of the initial fluctuation is 0.01 cm. The amplitudes, frequencies, and relative phase between the
two dominant modes (12,0) and (8,1) approach constant values asymptotically. The relative phase is always
a little more than π , which shows the phase locking between the two dominant modes due to the nonlinear
coupling, and also enhances the coherence and stability of the ALFW profile of the observed surface waves.

B. Determination of μ8,1 and α8,1

The relative uncertainties for parameters μ8,1 and α8,1 can be obtained similarly as shown in
the blue region in Fig. 8. The best fit to the data yields μ8,1 = 0.65 s−1, α8,1 = −1100I−1

8,1 . The
outer and inner outlines of the blue region, to cover all the data points, correspond to μ8,1 =
0.64 s−1, α8,1 = −1000I−1

8,1 and μ8,1 = 0.66 s−1, α8,1 = −1200I−1
8,1 , respectively. The relative

uncertainties are then uμ8,1 = 1.54% and uα8,1 = 9.09%, respectively.
It should be noted that for mode (8,1), the above dissipation is obtained by fitting to the instability

boundary when mode (12,0) is also unstable, e.g., when the ALFW pattern is observed. Furthermore,
since this is the case where the instability of mode (8,1) is due to the driving of mode (12,0), the
obtained dissipation for the mode coupling model is different from that used in Fig. 7(b), where
only mode (12,0) is unstable due to the subharmonic Mathieu instability.

C. Determination of β12,0, β8,1, and α12,0

The dissipation term in the Mathieu equations cannot bound the exponential growth of the
amplitude to be finite; in fact, it is the nonlinear terms, i.e., β12,0 and β8,1, that bound the amplitude.
In the meantime, the parameter α12,0 plays the role of feedback from the passive mode, so it may
also affect the leading mode’s amplitude. We can use the asymptotic amplitudes to determine the
nonlinear factors β12,0, β8,1, and the feedback coupling α12,0.

In this framework, we choose a representative pair of parameters in phase space, e.g., f =
8.66 Hz, A = 0.018 cm. The detailed methodology is as follows. For each set of values for these
three coefficients, the coupled ODEs (22) for the mode amplitudes are solved numerically by RK4 in
the time domain with step h = 0.005 s, and the steady state solutions ηm,n for modes (12,0) and (8,1)
are obtained and compared with the time series obtained from experiments in Fig. 9. Since there
are three coefficients, we fix two of the coefficients, and vary the remaining one (see Supplemental
Material [68]). For example, we can fix β8,1 and β12,0, and vary α12,0. By comparing their amplitudes
with that of the experimental data, we can obtain the amplitude difference for the two modes �η12,0

and �η8,1. This procedure can be carried out for the other two coefficients. After a few rounds, a
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set of optimal values for these three coefficients can be obtained, which are β12,0 = 100 cm−2 s−2,
β8,1 = −800 cm−2 s−2, α12,0 = 150/I12,0. One can see from Fig. 9 that both the amplitudes and the
relative phase agree well between the model Eq. (22) and the experimental results; in particular, the
amplitude is bounded, and the phase of mode (12,0) is fixed to be in advance of the phase of mode
(8,1) by a little more than π . This specific phase locking enhances the localization of amplitude in
water surface waves, which is consistent with the observations in our experiments.

Since there may still be discrepancies between the theoretical model and the experiment, a
complete simultaneous coincidence for both of the modes cannot be obtained. Thus with two
coefficients taking the value from the set of optimal coefficients, varying the remaining one, there
will be two values that each correspond to a better coincidence with one mode (see the Supplemental
Material [68]). The difference between these two values can be regarded as the uncertainty for this
parameter, e.g., for a coefficient p, u = �p/2p0. From the numerical results, we have uα12,0 = 10%,
uβ12,0 = 4.3%, uβ8,1 = 9.9%.

Since the experiment always starts from a nearly static state, i.e., ηm,n � 0 and η̇m,n � 0, in our
simulation, the initial values for ηm,n and η̇m,n are small. In this regime, the excitation behavior of the
system is mainly dominated by the Mathieu instability. Therefore, since mode (8,1) is in the linearly
stable region, with the dissipation, η8,1 will shrink quickly; while even there is dissipation, mode
(12,0) lies in the unstable region, and thus η12,0 will increase exponentially, until nonlinear effects
take part such that η12,0 can be bounded to a finite value. And when η12,0 becomes large enough, the
nonlinear interaction from mode (12,0) to mode (8,1) becomes dominant, making it unstable so that
η8,1 also increases to a finite value. Given this mechanism, insofar as the initial values are small,
they will have little influence to the final evolution of the system, either in amplitude or relative
phase.

VII. DISCUSSION AND CONCLUSION

In this paper, we have reported and interpreted a type of gravity water surface wave observed
in a harmonically driven narrow water tank, which is alternately a localized Faraday wave. In the
direction along the narrow sides, it is neither symmetric nor antisymmetric, but alternately having
large oscillations on one side while almost flat on the opposite side, and vice versa. The spectrum of
the DCT of the surface profile shows a clean two-mode domination [modes (12,0) and (8,1)], which
contradicts the commonly observed localized waves that have fast decay but continuous spectrum
[38].

We have adopted the nonlinear mode competition model to explain the phenomenon. In
particular, in the linear approximation of the system without considering dissipation, one arrives
at the Mathieu equation, where both modes (12,0) and (8,1) are unstable. If this is the case, their
frequencies will be detuned to the same value due to the external driving, and only two values of
the phase are possible for subharmonic response. Since dissipation is inevitable in the experiments
[55,56], we have then considered dissipation effects in the system, which again yields a standard
Mathieu equation. The effect of dissipation changes the parameter values for the modes, but the
change is so small that it does not have discernible effects. The main contribution from dissipation
is that the unstable region shrinks. As a result, the mode (8,1) is kicked out of the unstable region,
and only mode (12,0) still remains unstable. But in the observed ALFW pattern, the amplitude of
mode (8,1) is quite large. The reason lies in the nonlinear mode coupling from mode (12,0) to mode
(8,1), which forms an internal resonant term for mode (8,1), making it unstable. This is indeed the
case, as in the development of the ALFW pattern, mode (12,0) is always the first mode that gets
excited, and only when its amplitude becomes large enough, mode (8,1) begins to emerge. The
amplitudes of all the other modes remain close to zero. In addition, the relative phase of these two
modes is locked by the nonlinear interactions, forming the stable ALFW pattern observed in the
experiments.

From the nonlinear mode coupling equations for these two dominant modes and physical
considerations, we have deduced the nonlinear mode competition equations, e.g., nonlinearly
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coupled Mathieu equations with self-nonlinear-interactions, which were first used by Gollub et al.
[54]. The numerical simulations of this nonlinear coupled ODE model agree with the experimental
data very well. This model explains the ALFW pattern completely, where the dissipation effect has
been considered, the two modes are phase locked, and the amplitudes are bounded. Thus the internal
nonlinear coupling between these two modes is revealed correctly. Furthermore, the boundary of
the unstable region for the two modes can also be obtained by this model, which agrees with the
experiments well.

Although mode (8,1) can be excited solely with a much larger driven amplitude, which is
consistent with previous observations that the 1st modes in the narrow direction typically have
larger dissipations than the 0th modes [4,5], in the parameter space shown in Fig. 8, mode (8,1) is
stable by its own and its excitation is exclusively due to the nonlinear driving from mode (12,0).
Therefore, the observed ALFW phenomenon is actually not exactly a two-mode competition, but
a rather leading-passive pair of modes with mutual nonlinear interactions. Furthermore, even close
to the region where (8,1) is the only mode that gets excited, the inverse pair where mode (8,1) is
excited first and then it drives mode (12,0) unstable have not been observed in our experiment. A
possible rationalization could be that in that case, since the dissipation for mode (8,1) is much larger
than (12,0), mode (12,0) is always favorable and excites, if not earlier, no later than mode (8,1).

In short, the observed ALFW pattern has been explained well by the nonlinear mode competition
model with two dominant modes, where only one mode can be excited directly by the external
driving, and the excitation of the other mode is through strong nonlinear couplings with this excited
mode. The good agreement between experiments and numerics validates the model and the physical
picture.

As nonlinear mode coupling is quite common in realistic systems, we expect that our analytical
approach could have broad applications in similar phenomena where nonlinear interactions between
modes are non-negligible. Specifically, an ALFW-like pattern could exist in other gravity surface
waves in high aspect ratio tanks. The combination of the 0th and the 1st modes in the narrow (y)
direction is essential, and the natural frequencies of these two modes should be close. The ratio of
the mode numbers m1 and m2 in the x direction should be 3 : 2 for better visual effects. Higher
modes in the y direction, with one even and one odd, and other ratios of the mode numbers in the x

direction are also possible to yield similar phenomena, but lower modes are preferable as typically
they have larger amplitudes and they are easier to be excited.
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