
Supplemental Material for

Observation of alternately localized Faraday
waves in a narrow tank

I. LASER RANGEFINDER MEASUREMENTS FOR AMPLITUDE AND

FREQUENCY OF THE VIBRATOR

The motion of the vibrator can also be measured from a laser rangefinder (Keyence

IL-S025). The results are shown in Fig. 1 in this response. With the input parameter

A = 0.018 cm and f = 8.66 Hz, the local maxima of the oscillation of the vibrator varies

around A = 0.018 cm with a standard deviation of 2.163 × 10−4 cm, leading to a relative

error of 1.2%. The power spectrum of the measured oscillation shows a clean peak around

f = 8.66 Hz, whose exact value is 8.668 Hz, resulting in a relative error of 0.09%. The

weight (Spectral Purity) of the power spectrum at f = 8.668 Hz is 0.80. We have added the

above discussion to the revised manuscript.

II. RELATIVE WEIGHT OF SURFACE TENSION

The surface tension γ will affect the boundary of the instable region in the parameter

space. In particular, the dissipation µ shifts the boundary, especially the tip, leftwards or

rightwards; and the surface tension γ shifts the boundary upwards and downwards. By

adjusting their values simultaneously, one can fit with the experimental data well, as shown

in Fig. 8 of the paper, to derive their values. We have listed the value of γ obtained in this

way in Table 1. We have specified clearly in Sec. VI A that how this is done and what is

the estimation error for these key parameters.

It is known that the waves will redistribute the surfactant, leading to surface tension

gradients. To estimate the effect of redistribution of the surfactant, let us first consider

the relative effect of the surface tension term, comparing with the leading term caused by

gravity.

According to the latest Release on Surface Tension of Ordinary Water Substance1, the

surface tension of pure water at 20◦C is about 72.74 dyn/cm. We have added several drops

of Kodak Photo-Flo surfactants in the pure water to decrease the surface tension, such
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FIG. 1. (a) The z-direction displacement z(t) of the vibrator measured by the laser rangefinder.

The driven amplitude and frequency are set as A = 0.018 cm and f = 8.66 Hz, respectively. (b)

The local maxima z∗ of z(t), which are distributed around A = 0.018 cm. The standard derivation

of the local maxima is estimated as 2.163× 10−4 cm, and the relative error is 1.2%. (c) The power

spectra (PS) of the Fourier transform of z(t). The peak is located at f∗ = 8.668 (Hz). The relative

error of frequency is estimated as 0.09%. The weight (Spectral Purity) of the power spectrum at

f = 8.668 Hz is 0.80.

that it will be smaller than 72.74 dyn/cm. In fact, by fitting to the experimental data, we

estimated the surface tension to be 20.0 dyn/cm with a relative error 7.2%. The relative

effect of the surface tension can be approximated by the ratio, denoted by Γm,n, of the two

terms in Eq. (9) in the paper:

Γm,n =
γk2

m,n

gρ
, (1)

where g = 980.0 cm/s2 is the gravity constant, ρ ≃ 1.0 g/cm3 is the mass density of pure

water. Regarding to the relevant modes, (12,0) and (8,1), the square of their wave numbers
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are k2
12,0 ≃ 0.5685 cm−2 and k2

8,1 ≃ 0.5789 cm−2, respectively. So

Γ12,0 ≈
20× 0.5685

980× 1
= 0.0116, Γ8,1 ≈

20× 0.5789

980× 1
= 0.0118, (2)

which reveals that the effect of the surface tension on modes (12, 0) and (8, 1) is two orders

smaller than gravity.

In the case where the surfactant is redistributed by the wave, the maximum effect of the

surface tension will be the one for pure water, where γ = 72.74 dyn/cm. Then

Γ12,0 ≈
72.74× 0.5685

980× 1
= 0.0422, Γ8,1 ≈

72.74× 0.5789

980× 1
= 0.0430, (3)

which is still much smaller than gravity. Therefore it may have effects, but not a dominant

factor for the physics observed here. Indeed, the effect of surface tension cannot be neglected

completely. It can shift the unstable region upwards in the parameter space, and through

which its value can be estimated.

III. UNCERTAINTY ESTIMATION OF β12,0, β8,1 AND α12,0

The dissipation term in the Mathieu equations cannot bound the exponential growth of

the amplitude to be finite, in fact, it is the nonlinear term, i.e. β12,0 and β8,1, that bound

the amplitude. In the meantime, the parameter α12,0 plays the role of feedback from the

passive mode, so it may also affect the leading mode’s amplitude. We can use the asymptotic

amplitudes to determine the nonlinear factors β12,0, β8,1, and the feedback coupling α12,0.

In this framework, we choose a representative pair of parameter in phase space, e.g.

f = 8.66 Hz, A = 0.018 cm. The detailed methodology is as follows. Since there are three

coefficients, for each set of values for these three coefficients, we obtain the steady state

solutions ηm,n for mode (12, 0) and (8, 1). Then we fix two of the coefficients, and vary the

remaining one. For example, we can fix β8,1 and β12,0, and vary α12,0. By comparing their

amplitudes with that of the experimental data, see Fig. 2(a), we can obtain the amplitude-

difference for the two modes ∆η12,0 and ∆η8,1, as shown in Fig. 2(b) for a representative

case. This procedure can be carried out for the other two coefficients. After a few rounds,

a set of optimal values for these three coefficients can be obtained. However, since there

are still discrepancies between the model and the experiment, a complete simultaneous
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FIG. 2. (a) For the set of the optimal values of the three coefficients, α12,0 = 150/I12,0, β12,0 = 100

cm−2s−2, µ8,1 = 0.65 s−1, a comparison between the experimental data and the simulation result.

(b-d) Fix two of the coefficients at the optimal value, the dependence of ∆ηm,n versus the third

coefficient: (b) α12,0, (c) β12,0, and (d) β8,1. The arrows indicate the optimal value. The boundary

of the shaded region is when ∆η12,0 or ∆η8,1 equals to zero. The relative uncertainties are uα12,0 =

10%, uβ12,0 = 4.3%, uβ8,1 = 9.9%.

coincidence for both of the modes cannot be obtained. Thus with two coefficients taking the

value from the set of optimal coefficients, varying the rest one, there will be two values that

each corresponds to a coincidence with one mode, as shown in Fig. 2(b-d). The difference

between these two values can be regarded as the uncertainty for this parameter, e.g., for a

coefficient p,

u = ∆p/2p0.

From the results in Fig. 2(b-d), we have uα12,0 = 10%, uβ12,0 = 4.3%, uβ8,1 = 9.9%.
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IV. VIDEO 1

This video shows the surface wave in Figure 2 with A=0.018 cm, f=8.66 Hz.

V. VIDEO 2

This video shows the evolution of the ALFW in Figure 5 with A=0.04 cm, f=8.64 Hz.
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