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Conductance fluctuations in chaotic bilayer graphene quantum dots
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Previous studies of quantum chaotic scattering established a connection between classical dynamics and
quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations
but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-
layer graphene systems, for which the quasiparticles are massless Dirac fermions, exhibits, due to scarring,
this classical-quantum correspondence, but sharp conductance fluctuations persist to a certain extent even when
the classical system is fully chaotic. There is an open issue regarding the effect of finite mass on relativistic
quantum transport. To address this issue, we study quantum transport in chaotic bilayer graphene quantum
dots for which the quasiparticles have a finite mass. An interesting phenomenon is that, when traveling along
the classical ballistic orbit, the quasiparticle tends to hop back and forth between the two layers, exhibiting a
Zitterbewegung-like effect. We find signatures of abrupt conductance variations, indicating that the mass has
little effect on relativistic quantum transport. In solid-state electronic devices based on Dirac materials, sharp
conductance fluctuations are thus expected, regardless of whether the quasiparticle is massless or massive and
whether there is chaos in the classical limit.
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I. INTRODUCTION

Quantum chaos is a field that studies the quantum
manifestations of classical chaos [1]. Earlier works were
mostly on nonrelativistic quantum systems described by
the Schrödinger equation. Recent years have witnessed a
tremendous interest in two-dimensional Dirac materials [2]
such as graphene [3–9], topological insulators [10], molybde-
num disulfide (MoS2) [11,12], HITP [Ni3(HITP)2] [13], and
topological Dirac semimetals [14,15], which has led to the
emergence of the field of relativistic quantum chaos [16–23].
A fundamental issue of interest is to uncover and understand
the phenomena of relativistic quantum origin that are not found
in nonrelativistic quantum chaotic systems. A remarkable
example is Klein tunneling, a uniquely relativistic quantum
phenomenon, which has dramatic effects on conductance
fluctuations in graphene quantum point contacts [24] and
regularization of tunneling in chaotic Dirac fermion and
graphene systems [20]. The focus of this paper is on a rel-
ativistic quantum manifestation that differs characteristically
from its counterpart in the nonrelativistic quantum world:
the presence of persistently sharp conductance fluctuations
in chaotic graphene systems.

Conductance fluctuations are a fundamental phenomenon
in open quantum systems. An important result is univer-
sal conductance fluctuations (UCFs) in mesoscopic systems
[25–29]. The pioneering work of Lee and Stone [25] estab-
lished theoretically that, for mesoscopic metal samples, when
the inelastic diffusion length exceeds the sample dimensions,
the conductance fluctuations are of the same order as the
conductance quanta, which is independent of the sample
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size and of the degree of disorder at low temperatures,
thereby exhibiting universal features. This result was con-
sistent with both experimental studies [26] and numerical
simulations [28].

Since the discovery of graphene [3–6], the anomalous
transport behavior of its charge carriers has attracted a
great deal of attention [7–9]. The phase coherent length
of graphene at low temperatures can be as long as several
hundred nanometers [30] or even micrometers [31]. It has been
demonstrated experimentally that, for graphene quantum dots
smaller than 100 nm, the conductance peaks become strongly
nonperiodic, indicating a major contribution of the quantum
confinement [32]. While it can be difficult for current tech-
nology to cut graphene precisely following a particular shape
under 100 nm, the irregularities of the boundary often pushes
the classical dynamics to the chaotic regime, yielding transport
properties mimicking those of quantum chaotic scatterings
and also Gaussian ensembles of the peaking spacing distribu-
tions [32]. Conductance fluctuations in graphene systems have
been studied experimentally and analyzed using the framework
of UCFs [33–35]. Rycerz et al. [36] found theoretically that
for strong disorder, the fluctuation behaviors agree with the
Altshuler-Lee-Stone prediction [25,37]. However, in the case
of weak disorder, abnormally large conductance fluctuations
(with magnitude several times larger than that in the strong
disorder case) can occur, which can be attributed to the absence
of backscattering due to the honeycomb lattice structure.
Horsell et al. [38] subsequently found that the variance of
UCFs in both monolayer and bilayer graphene flakes is
strongly affected by elastic scattering, particularly intervalley
scattering. Though the correlation of the fluctuations as a
function of the Fermi energy is insensitive to the specific scat-
tering mechanisms under common experimental conditions.
For few-layer graphene flakes in contact with superconducting
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leads, conductance fluctuations can be enhanced if the applied
voltage is smaller than the superconducting energy gap [39].

The seminal work of Jalabert, Baranger, and Stone [29] sug-
gested that conductance fluctuations in the ballistic regime can
be a probe of quantum chaos, establishing, as far as we know,
for the first time a connection between quantum transport in
solid-state devices and classical chaos. Subsequent works [40–
47] revealed that UCFs are intimately related to the study of
quantum chaotic scattering [48,49]. A result in nonrelativistic
quantum chaotic scattering is that, for those with integrable or
mixed (nonhyperbolic) classical dynamics, sharp conductance
fluctuations can occur. This is because, in the corresponding
classical phase space, there are Kolmogorov-Arnold-Moser
(KAM) islands centered about stable periodic orbits, which
quantum mechanically have little interaction between the
corresponding bounded states and the electron waveguides
(leads), leading to extremely sharp conductance fluctuations on
energy scales of the same order of magnitude as the interaction
energy [50]. The abrupt conductance changes are in fact a kind
of Fano resonance [51–55]. However, if the classical dynamics
are chaotic, due to ergodicity of classical orbits, the states
will have strong interactions with the leads regardless of their
positions. As a result, there is little probability for localized
states with long lifetime to form, giving rise to smooth
conductance fluctuations in the energy scale determined by the
interaction strength. The distinct types of classical dynamics
thus have marked fingerprints in the quantum conductance
fluctuation patterns, which can be exploited to modulate
the conductance fluctuations in quantum dot devices by
controlling the corresponding classical dynamics [56,57]. We
note that a closed system exhibiting chaos in the classical
limit is capable of generating scarred states in the quantum
regime, which are concentrations of the electronic states
about certain classical periodic orbits [17,22,58,59]. However,
when the system is open, the degree of localization of the
originally scarred states is generally much weaker than that of
the localized states in classically integrable or nonhyperbolic
systems.

In relativistic quantum dots such as those made of mono-
layer graphene, a recent work [19] revealed that systems
with mixed classical dynamics exhibit sharper conductance
fluctuations than those with chaotic classical dynamics, which
is similar to nonrelativistic quantum systems. However, even
when the classical dynamics are fully chaotic, monolayer
graphene quantum dots still permit the existence of highly
localized states, leading to Fano-like resonances with sharp
conductance fluctuations. This implies that quasiparticles in
a chaotic graphene confinement can make the classically
unstable orbits somewhat more “stable” in relativistic quantum
systems, implying that the interplay between chaos and
relativistic quantum mechanics can lead to phenomena that
are not present in nonrelativistic quantum systems.

A unique feature of monolayer graphene is that the quasi-
particles are massless Dirac fermions. However, an open issue
concerns about the interplay between finite mass and chaos
in relativistic quantum transport. In this paper, we address the
generality of persistently sharp conductance fluctuations in
relativistic quantum chaotic systems. We use chaotic bilayer
graphene quantum dots (BGQD) as a prototypical class of
systems. The key feature of bilayer graphene is that the

quasiparticles have a finite mass. We find that persistently
sharp conductance fluctuations are still present in BGQDs,
indicating that a finite mass is not capable of breaking down
the localized states. Another finding is that, in bilayer graphene
quantum dots, electrons tend to “hop” between the two layers
along the classical ballistic trajectory in each layer. Thus, the
local density of states (LDS) for one layer does not form an
“orbit” per se: An “orbit” emerges only when the LDS for
both layers are combined. Our results indicate that in both
massless and massive chaotic relativistic quantum systems,
Fano-like resonances and sharp conductance fluctuations
are a common feature. While in nonrelativistic quantum
systems the resonances can be removed by making the system
classically chaotic [56,57], the same cannot be expected in
relativistic quantum systems. This may have implications in
the development of relativistic quantum electronic devices.

II. MODEL OF CHAOTIC BILAYER GRAPHENE SYSTEMS

Bilayer graphene is composed of two coupled monolayers
of carbon atoms, each with a hexagonal lattice structure. We
use the AB stacking bilayer graphene model [60], which
includes inequivalent A1 and B1 atoms in the top layer and
A2 and B2 atoms in the bottom. The two graphene layers
are arranged in such a way that the A1 atoms are directly
above the B2 atoms, while B1 or A2 atoms are above or
below the center of hexagons in the other layer. We consider
the tight-binding model, which characterizes the electronic
structure of graphene reasonably accurately [61], which is
applicable to systems of a finite number of layers [7–9]. The
tight-binding Hamiltonian for bilayer graphene is [60]

H = − γ0

∑
l,〈i,j〉

(a†
l,ibl,j + H.c.) − γ1

∑
i

(a†
1,ib2,i + H.c.)

− γ3

∑
〈i,j〉

(b†1,ia2,j + H.c.),

where a
†
l,i(b

†
l,i) and al,i(bl,i) are creation and annihilation

operators for sublattice A(B) at site Rl,i in layer l (1,2),
γ0 = t is the nearest-neighbor hopping energy in a single
layer (hopping between different sublattices), γ1 and γ3 are
energies for the hopping processes A1 ←→ B2 and B1 ←→
A2, respectively, which represent the interlayer coupling.
The coupling parameters have the standard values [62]: γ0 =
2.8 eV, γ1 = 0.4 eV, and γ3 = 0.3 eV.

In the momentum space, the low-energy bands can be
approximated as E ≈

√
γ 2

1 /4 + v2p2−γ1/2, where γ1, p, and
v are the interlayer hopping energy, momentum, and Fermi
velocity, respectively [63]. A quasiparticle in the bilayer
graphene thus can be regarded effectively as a massive
relativistic fermion [63], as opposed to massless particles in
monolayer graphene [7–9,61].

To study the characteristics of quantum scattering dynamics
in open BGQDs with different types of classical dynamics,
we choose the cosine billiard [64,65] as the confinement
domain of the quantum dot, which consists of two semi-infinite
leads connecting to the billiard at x = −L/2 and x = L/2,
respectively, and two hard walls: a flat one at y = 0 and a
curved wall defined as y(x) = W + (M/2)[1 − cos(2πx/L)].
Not only are the classical dynamics of this billiard system
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well understood [64,65], but also its quantum scattering
dynamics in the nonrelativistic regime [66] and for monolayer
graphene [19] have been studied. Varying the geometric
parameters W/L and M/L can generate a continuous spec-
trum of distinct types of classical dynamics. For example,
for W/L = 0.36 and M/L = 0.22, the classical scattering
dynamics is fully chaotic without any stable periodic orbits.
For W/L = 0.18 and M/L = 0.11, the classical phase space
is mixed (nonhyperbolic) with both KAM islands surrounding
stable periodic orbits and chaotic sets [44]. For comparison, we
also consider the case where the two parameters are chosen to
lie between the chaotic and nonhyperbolic cases: W/L = 0.27
and M/L = 0.165.

To probe into the transport properties, we utilize the
nonequilibrium Green’s function method (NEGF) in the tight-
binding framework to calculate the quantum transmission and
the local density of states (LDS) [67]. In particular, the retarded
Green’s function is

G(E) = [EI − H − �R(E) − �L(E)]−1, (1)

where � is the retarded self-energy characterizing the effect
of the lead and the subscripts R and L indicate the right and
left leads, respectively. The transmission T is given by

T (E) = Tr[�L(E)G(E)�R(E)G†(E)], (2)

where �L,R(E) are the coupling matrices of the quantum dot
for the left and right leads:

�L,R(E) = i[�L,R(E) − �
†
L,R(E)]. (3)

In the low-temperature limit, the conductance can be calculated
using the Landauer formula [67]:

G ≈ 2e2

h
T (E). (4)

The local density of states for the device can be obtained
through

ρ = − 1

π
Im[diag(G)], (5)

and the local current between the nearest-neighbor lattice point
i and j is given by

Ji→j = 4e

h
Im

[
HijC

n
ji(E)

]
, (6)

where Cn = G�LG† is the electron correlation function and
Hij is an element of the Hamiltonian matrix [67]. To improve
the computational efficiency, the transmission, LDS, and local
current can be calculated using the recursive Green’s function
method.

III. RESULTS

A. Transmission fluctuations

We present results of transmission fluctuations through the
BGQDs that correspond to three distinct types of classical
dynamics: mixed, intermediate, and chaotic. For comparison,
results from 2DEG quantum dots [nonrelativistic quantum dots
(NRQD)] are also included. In our simulation, the maximum
number of propagating modes is Nmode = 96 for all cases
for BGQDs, and Nmode = 48 for 2DEG quantum dots, so
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FIG. 1. (Color online) Transmission versus energy for the cosine
billiard quantum dot in both relativistic and nonrelativistic regimes:
(a) bilayer graphene (BGQD); (b) 2DEG quantum dot (NRQD). The
blue, green, and red curves from top to bottom show the mixed,
intermediate, and chaotic cases: W/L = 0.36 and M/L = 0.22,
W/L = 0.27 and M/L = 0.165, and W/L = 0.18 and M/L = 0.11,
respectively. The circles in (a) indicate the energy values used in
Fig. 4. For all cases, we use Nmode = 96 for BGQDs and Nmode = 48
for 2DEG quantum dots.

their leads have comparable width. The boundaries for the
BGQDs are zigzag in the horizontal direction. Figure 1
shows the transmission coefficient T of the three types of
BGQDs versus the Fermi energy, together with the results
from the 2DEG quantum dots with the same corresponding
classical dynamics. We see that, for both BGQDs and 2DEG
NRQDs, as the classical dynamics change from mixed to
chaotic, the conductance fluctuations become progressively
smooth. This is consistent with previous results of quan-
tum chaotic scattering in monolayer graphene quantum dots
(MGQDs) [19]. However, when comparing the BGQDs with
the corresponding 2DEG NRQD cases, we see that for the
same geometry (especially in the chaotic case, the bottom
lines in both panels), the conductance fluctuations for the
latter are nearly perfectly smooth, while for BGQDs there
are still sharp conductance fluctuations. This phenomenon
was also previously observed for MGQDs [19]. In general,
while in nonrelativistic quantum systems classical chaos can
effectively eliminate sharp conductance fluctuations through
the destruction of highly localized states in the dot region,
chaos does not seem to be as effective in removing the localized
states in relativistic quantum dot systems. As a result, sharp
conductance fluctuations in BGQDs persist. We emphasize
that this does not mean that classical chaos has little or no
effects on relativistic quantum transport—it is just that the
effect is not as strong as in the nonrelativistic quantum case.
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In fact, from Fig. 1(a), we see that, to a certain extent, chaos
does suppress the conductance fluctuations, even for massive
relativistic quasiparticles in BGQDs.

B. Fano resonances and resonances width

To gain a physical understanding of the persistent sharp
conductance fluctuations in BGQDs, we analyze the resonance
width, the localized states, and the local current patterns.
Specifically, the transmission resonance is characterized by
Fano profiles [52], where the width of the resonance can be
related to the localization of the electronic states [53,57,68,69],
leading to sharp conductance fluctuations. In particular, the
quantum transport system can be effectively regarded as an
isolated quantum dot described by a Hamiltonian matrix H ,
which is weakly coupled to two leads, one on each side of
the dot region. The eigenenergies and eigenfunctions for the
isolated dot can then be calculated (Hψ0α = E0αψ0α), yielding
a set of real eigenenergies and eigenfunctions {E0α,ψ0α |
α = 1, . . . ,N}, where N is the number of discrete points (or
atoms). The effect of the leads can be characterized by the
retarded self-energy matrix �R . The effective Hamiltonian
for the dot, taking into account the leads, then can be
written as [H + �R(E0)], with a new set of eigenenergies
and eigenfunctions: {Eα,ψ0α}. Because of the coupling to the
leads, electrons can “escape” from the dot region to the leads,
so the eigenenergy must be complex:

Eα = E0α − 	α − iγα, (7)

where the imaginary part is proportional to the inverse of the
“lifetime” of the corresponding electron eigenstate in the dot
region before entering one of the leads. The self-energy can
be treated as a small perturbation to the closed dot system,
because the energy has nonzero values only at the boundary
points of the dot region adjacent to the leads. With respect to
E0α , the new eigenenergies Eα include a shift 	α from E0α ,
and the imaginary part γα that characterizes the exponential
decay of the wave function from the dot region. The energy
scale of the resonance is determined by γα given by [53,57]

γα ≈ −〈ψ0α|Im(�R)|ψ0α〉. (8)

The behavior of γα in the complex plane of the eigenenergy
provides a physical picture of the localized states and the sharp
conductance fluctuations. In particular, as the Fermi energy
is changed, the self-energy is a slow variable because it is
mainly determined by the width of the leads. In the vicinity
of the resonance energy, the self-energy can effectively be
regarded as a constant. The characteristics of the resonance are
mostly determined by the eigenwave function of the isolated
system, ψ0α . If it is highly localized within the dot, it will
have extremely small values at the boundary points where the
self-energy has nonzero values, leading to a small value of
γα and thus to a sharp resonance. On the contrary, if ψ0α is
dispersive, it typically will have large values at the boundary
points, giving rise to a large value of γα . The effects of the
wave-function patterns on the values of γα in BGQDs has
been examined numerically.

The connection between classical dynamics and localiza-
tion of the electronic states is then as follows: When the
classical dynamics is integrable or mixed, there are stable
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FIG. 2. (Color online) Resonance width profile γα for relativistic
quantum dots and their nonrelativistic quantum counterparts for
different types of classical dynamics: (a) BGQD, mixed (b) BGQD,
intermediate (c) BGQD, chaotic, (d) NRQD, mixed, (e) NRQD,
intermediate, and (f) NRQD, chaotic. The energy values at which
the self-energy is evaluated are E0 = 0.2t for (a)–(c) and E0 = t for
(d)–(f).
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FIG. 3. (Color online) The mean value of log10(γα/t) in a moving
window with the window size 0.04t and the step size 0.004t . The
upper line in different panels in Fig. 2 are excluded in the average
as it accounts for the smooth variation rather than sharp conductance
resonances. Panel (a) is for BGQD (left panels in Fig. 2) and panel
(b) is for NRQD (right panels in Fig. 2). The blue circles, green
asterisks, and red plus symbols show the mixed, intermediate, and
chaotic cases, respectively.
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FIG. 4. (Color online) Representative local density of states (LDS, the first row) and the corresponding x component of the electron flow
(the second row) for BGQDs with mixed (a), intermediate (b), and chaotic (c) classical dynamics. For the LDS patterns, the dark (red) region
denotes higher values, and the color scale is normalized for each panel for better visualization. The left, middle, and right panels are for the first
layer, the second layer, and combined layers, respectively. The Fermi energies are 0.3137t for (a), 0.4187t for (b), and 0.3784t for (c), with the
respective maximum and minimum values of the LDS patterns as (3.0016,1.2 × 10−3), (0.4987,7.7 × 10−3), and (0.4823,5.6 × 10−3).

periodic orbits about which the wave function can be strongly
localized. As the classical dynamics becomes more chaotic,
the KAM islands are destroyed and the periodic orbits become
unstable, making it difficult to form long-lived resonant states.
Thus, in general, classical chaos can smooth out conductance
fluctuations. Indeed, from Fig. 1, we see that, as the classical
dynamics becomes more chaotic, the conductance curve

exhibit less sharp fluctuations. This reasoning suggests that
γα for various resonant states should shift toward increasingly
larger values as the classical dynamics of the system becomes
progressively more chaotic.

Results from a systematic calculation of the imaginary part
γα for the various cases are shown in Fig. 2. The energy at
which the self-energy matrix is evaluated is E0 = 0.2t for
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BGQD [Figs. 2(a)–2(c)] and E0 = t for NRQD [Figs. 2(d)–
2(f)]. Since the calculated Eα values are accurate only in the
vicinity of E0, the energy intervals in Figs. 2(a)–2(f) are chosen
to be relatively small and close to E0. Note that the upper line of
the γα values are in the range of 0.01t to 0.1t , which correspond
to the smooth variation in the conductance curve, and only
the lower γα values correspond to the sharp conductance
resonances. From Figs. 2(a) and 2(d), we see that, for mixed
classical dynamics, both BGQD and NRQD have γα values as
small as 10−6t , leading to the sharp conductance fluctuations
in the top curves of Fig. 1. As the classical dynamics becomes
more chaotic, the values of γα shift upwards, as shown in
Figs. 2(b) and 2(e). For the fully chaotic case [Figs. 2(c)
and 2(f)], the values of γα are large and their spread is small.
To reveal the effect more clearly, we have plotted in Fig. 3
the averaged value of log10(γα/t) in a moving window to
remove the fluctuations presented in Fig. 2. Since the upper
line of the γα values correspond to the smooth variation
in the conductance curve, it is excluded when doing the
average.

In general, classical chaos can exert a strong effect on
the conductance fluctuations for both nonrelativistic and
relativistic quantum dot systems (for the latter regardless of
zero or finite mass). In the relativistic quantum case, however,
the effect of chaos-induced enlargement of γ is less dramatic
as compared with the nonrelativistic case.

C. Localized LDS and electron flow patterns

Qualitative insights into the role of classical dynamics in
the conductance fluctuation patterns in BGQDs can be gained
by calculating the LDS and electron flow patterns for some
representative energy values. For a bilayer graphene system,
the interlayer hopping energy is relatively weak as compared
to the intralayer counterpart, i.e., the values of γ1 and γ3 are
about 1/10 of γ0, and the LDS and electron flow patterns
are not identical for the two layers. For simplicity, we show
here only the x component of the electron flow. In Fig. 4,
the left and middle columns show the LDS and electron
flow patterns for each layer, and the right column shows the
combined patterns from both layers. We see that the LDS and
electron flows are highly correlated, e.g., they are localized
in the same region of the dot. The two layers are strongly
coupled so the electrons flow back and forth between the
two layers, as can be identified unambiguously in Fig. 4(a),
where, in certain regions, the electron and its flow are mostly
localized to one layer but to the corresponding adjacent regions
on the other layer. When the patterns from both layers are
combined, the LDS patterns reveal the underlying classical
periodic orbits. The y and z components of the current show
similar features. From these results, we see that the classically
mixed case has relatively more pronounced localized states,
but the localized patterns weaken as the classical phase space
contains more chaotic regions. The degree of localization can
be qualitatively described by the ratio of the maximum to the
minimum values of LDS, where a larger ratio corresponds
to stronger localization, as shown in Fig. 5. The typical
values of the ratio for BGQDs are about 103, a few hundreds,
and less than 100 for the mixed, intermediate, and chaotic
cases, respectively. The values for 2DEG quantum dots are

0.3 0.325 0.35 0.375 0.4

102

103

E/t

R
at

io

(a)

0.3 0.325 0.35 0.375 0.4

102

103

E/t

R
at

io

(b)

FIG. 5. (Color online) Ratio of the maximum to the minimum
values of the LDS versus energy: (a) BGQD and (b) NRQD. From
top to bottom the blue circles, green asterisks, and red plus symbols
show the mixed, intermediate, and chaotic cases, respectively.

comparably smaller. The electron flow pattern show similar
features.

Through a comparison between the patterns for BGQDs and
NRQDs, we see that the former exhibits more localized LDS
and thus sharp conductance fluctuations. This is consistent
with previous results on monolayer graphene systems in the
context of transport [19], tunneling [70,71], and spectral
statistics [72].

IV. CONCLUSIONS

To probe into the effect of classical chaos on relativistic
quantum transport for quasiparticles with mass, we examine
the transport properties of bilayer graphene quantum dots.
Previous works revealed that sharp conductance fluctuations
can occur in nonrelativistic quantum dot systems but only when
the classical dynamics is integrable or mixed, but they persist
for relativistic, massless quasiparticles (e.g., from monolayer
graphene) even when the classical dynamics is chaotic. The
main purpose of our work is to determine whether finite mass
effect can eliminate the sharp conductance fluctuations. Our
results provide a negative answer. In particular, we find that
chaos has similar effect on graphene quantum dots, regardless
of whether they are monolayer or bilayer. While chaos can
smooth out conductance fluctuations to certain extent, its
effect is weaker on relativistic quantum transport systems
as compared with those on the nonrelativistic counterparts,
regardless of whether the relativistic particle is massless or
massive.

Transport in bilayer graphene quantum dot, however, has
its own peculiar characteristics that, along a classical ballistic
“orbit,” the quasiparticle hops back and forth between the two
layers, as evidenced by the LDS and electron flow patterns. The
present work thus complements previous works to provide a
more complete picture about the interplay between classical
chaos and quantum transport.
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[49] R. Blümel and U. Smilansky, Physica D 36, 111 (1989).
[50] R. Akis, D. K. Ferry, and J. P. Bird, Phys. Rev. Lett. 79, 123

(1997).
[51] U. Fano, Phys. Rev. 124, 1866 (1961).
[52] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod.

Phys. 82, 2257 (2010).
[53] L. Huang, Y.-C. Lai, H.-G. Luo, and C. Grebogi, AIP Adv. 5,

017137 (2015).
[54] Y. Yoon, M.-G. Kang, T. Morimoto, M. Kida, N. Aoki, J. L.

Reno, Y. Ochiai, L. Mourokh, J. Fransson, and J. P. Bird,
Phys. Rev. X 2, 021003 (2012).

[55] J. Fransson, M.-G. Kang, Y. Yoon, S. Xiao, Y. Ochiai, J. L. Reno,
N. Aoki, and J. P. Bird, Nano Lett. 14, 788 (2014).

[56] R. Yang, L. Huang, Y.-C. Lai, and L. M. Pecora, Appl. Phys.
Lett. 100, 093105 (2012).

[57] R. Yang, L. Huang, Y.-C. Lai, C. Grebogi, and L. M. Pecora,
Chaos 23, 013125 (2013).

[58] E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).
[59] F. J. Arranz, F. Borondo, and R. M. Benito, Phys. Rev. Lett. 80,

944 (1998).
[60] M. Koshino and T. Ando, Phys. Rev. B 73, 245403 (2006).

012918-7

http://dx.doi.org/10.1166/mex.2011.1002
http://dx.doi.org/10.1166/mex.2011.1002
http://dx.doi.org/10.1166/mex.2011.1002
http://dx.doi.org/10.1166/mex.2011.1002
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1021/jp040650f
http://dx.doi.org/10.1021/jp040650f
http://dx.doi.org/10.1021/jp040650f
http://dx.doi.org/10.1021/jp040650f
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.82.2673
http://dx.doi.org/10.1103/RevModPhys.82.2673
http://dx.doi.org/10.1103/RevModPhys.82.2673
http://dx.doi.org/10.1103/RevModPhys.82.2673
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1038/nnano.2010.279
http://dx.doi.org/10.1038/nnano.2010.279
http://dx.doi.org/10.1038/nnano.2010.279
http://dx.doi.org/10.1038/nnano.2010.279
http://dx.doi.org/10.1038/nnano.2012.193
http://dx.doi.org/10.1038/nnano.2012.193
http://dx.doi.org/10.1038/nnano.2012.193
http://dx.doi.org/10.1038/nnano.2012.193
http://dx.doi.org/10.1021/ja502765n
http://dx.doi.org/10.1021/ja502765n
http://dx.doi.org/10.1021/ja502765n
http://dx.doi.org/10.1021/ja502765n
http://dx.doi.org/10.1126/science.1245085
http://dx.doi.org/10.1126/science.1245085
http://dx.doi.org/10.1126/science.1245085
http://dx.doi.org/10.1126/science.1245085
http://dx.doi.org/10.1038/nmat3990
http://dx.doi.org/10.1038/nmat3990
http://dx.doi.org/10.1038/nmat3990
http://dx.doi.org/10.1038/nmat3990
http://dx.doi.org/10.1098/rspa.1987.0080
http://dx.doi.org/10.1098/rspa.1987.0080
http://dx.doi.org/10.1098/rspa.1987.0080
http://dx.doi.org/10.1098/rspa.1987.0080
http://dx.doi.org/10.1103/PhysRevLett.103.054101
http://dx.doi.org/10.1103/PhysRevLett.103.054101
http://dx.doi.org/10.1103/PhysRevLett.103.054101
http://dx.doi.org/10.1103/PhysRevLett.103.054101
http://dx.doi.org/10.1103/PhysRevE.81.055203
http://dx.doi.org/10.1103/PhysRevE.81.055203
http://dx.doi.org/10.1103/PhysRevE.81.055203
http://dx.doi.org/10.1103/PhysRevE.81.055203
http://dx.doi.org/10.1209/0295-5075/94/40004
http://dx.doi.org/10.1209/0295-5075/94/40004
http://dx.doi.org/10.1209/0295-5075/94/40004
http://dx.doi.org/10.1209/0295-5075/94/40004
http://dx.doi.org/10.1209/0295-5075/98/50007
http://dx.doi.org/10.1209/0295-5075/98/50007
http://dx.doi.org/10.1209/0295-5075/98/50007
http://dx.doi.org/10.1209/0295-5075/98/50007
http://dx.doi.org/10.1103/PhysRevE.86.016702
http://dx.doi.org/10.1103/PhysRevE.86.016702
http://dx.doi.org/10.1103/PhysRevE.86.016702
http://dx.doi.org/10.1103/PhysRevE.86.016702
http://dx.doi.org/10.1103/PhysRevLett.110.064102
http://dx.doi.org/10.1103/PhysRevLett.110.064102
http://dx.doi.org/10.1103/PhysRevLett.110.064102
http://dx.doi.org/10.1103/PhysRevLett.110.064102
http://dx.doi.org/10.1103/PhysRevB.90.224301
http://dx.doi.org/10.1103/PhysRevB.90.224301
http://dx.doi.org/10.1103/PhysRevB.90.224301
http://dx.doi.org/10.1103/PhysRevB.90.224301
http://dx.doi.org/10.1103/PhysRevB.84.035426
http://dx.doi.org/10.1103/PhysRevB.84.035426
http://dx.doi.org/10.1103/PhysRevB.84.035426
http://dx.doi.org/10.1103/PhysRevB.84.035426
http://dx.doi.org/10.1103/PhysRevLett.55.1622
http://dx.doi.org/10.1103/PhysRevLett.55.1622
http://dx.doi.org/10.1103/PhysRevLett.55.1622
http://dx.doi.org/10.1103/PhysRevLett.55.1622
http://dx.doi.org/10.1103/PhysRevB.30.4048
http://dx.doi.org/10.1103/PhysRevB.30.4048
http://dx.doi.org/10.1103/PhysRevB.30.4048
http://dx.doi.org/10.1103/PhysRevB.30.4048
http://dx.doi.org/10.1103/PhysRevLett.54.2696
http://dx.doi.org/10.1103/PhysRevLett.54.2696
http://dx.doi.org/10.1103/PhysRevLett.54.2696
http://dx.doi.org/10.1103/PhysRevLett.54.2696
http://dx.doi.org/10.1103/PhysRevLett.54.2692
http://dx.doi.org/10.1103/PhysRevLett.54.2692
http://dx.doi.org/10.1103/PhysRevLett.54.2692
http://dx.doi.org/10.1103/PhysRevLett.54.2692
http://dx.doi.org/10.1103/PhysRevLett.65.2442
http://dx.doi.org/10.1103/PhysRevLett.65.2442
http://dx.doi.org/10.1103/PhysRevLett.65.2442
http://dx.doi.org/10.1103/PhysRevLett.65.2442
http://dx.doi.org/10.1103/PhysRevB.86.155403
http://dx.doi.org/10.1103/PhysRevB.86.155403
http://dx.doi.org/10.1103/PhysRevB.86.155403
http://dx.doi.org/10.1103/PhysRevB.86.155403
http://dx.doi.org/10.1140/epjst/e2007-00223-7
http://dx.doi.org/10.1140/epjst/e2007-00223-7
http://dx.doi.org/10.1140/epjst/e2007-00223-7
http://dx.doi.org/10.1140/epjst/e2007-00223-7
http://dx.doi.org/10.1126/science.1154663
http://dx.doi.org/10.1126/science.1154663
http://dx.doi.org/10.1126/science.1154663
http://dx.doi.org/10.1126/science.1154663
http://dx.doi.org/10.1103/PhysRevLett.97.016801
http://dx.doi.org/10.1103/PhysRevLett.97.016801
http://dx.doi.org/10.1103/PhysRevLett.97.016801
http://dx.doi.org/10.1103/PhysRevLett.97.016801
http://dx.doi.org/10.1126/science.1125925
http://dx.doi.org/10.1126/science.1125925
http://dx.doi.org/10.1126/science.1125925
http://dx.doi.org/10.1126/science.1125925
http://dx.doi.org/10.1038/nature05555
http://dx.doi.org/10.1038/nature05555
http://dx.doi.org/10.1038/nature05555
http://dx.doi.org/10.1038/nature05555
http://dx.doi.org/10.1209/0295-5075/79/57003
http://dx.doi.org/10.1209/0295-5075/79/57003
http://dx.doi.org/10.1209/0295-5075/79/57003
http://dx.doi.org/10.1209/0295-5075/79/57003
http://dx.doi.org/10.1016/j.ssc.2009.02.058
http://dx.doi.org/10.1016/j.ssc.2009.02.058
http://dx.doi.org/10.1016/j.ssc.2009.02.058
http://dx.doi.org/10.1016/j.ssc.2009.02.058
http://dx.doi.org/10.1088/0957-4484/21/27/274005
http://dx.doi.org/10.1088/0957-4484/21/27/274005
http://dx.doi.org/10.1088/0957-4484/21/27/274005
http://dx.doi.org/10.1088/0957-4484/21/27/274005
http://dx.doi.org/10.1103/PhysRevLett.68.3491
http://dx.doi.org/10.1103/PhysRevLett.68.3491
http://dx.doi.org/10.1103/PhysRevLett.68.3491
http://dx.doi.org/10.1103/PhysRevLett.68.3491
http://dx.doi.org/10.1103/PhysRevLett.69.506
http://dx.doi.org/10.1103/PhysRevLett.69.506
http://dx.doi.org/10.1103/PhysRevLett.69.506
http://dx.doi.org/10.1103/PhysRevLett.69.506
http://dx.doi.org/10.1103/PhysRevB.54.10841
http://dx.doi.org/10.1103/PhysRevB.54.10841
http://dx.doi.org/10.1103/PhysRevB.54.10841
http://dx.doi.org/10.1103/PhysRevB.54.10841
http://dx.doi.org/10.1103/PhysRevLett.80.1948
http://dx.doi.org/10.1103/PhysRevLett.80.1948
http://dx.doi.org/10.1103/PhysRevLett.80.1948
http://dx.doi.org/10.1103/PhysRevLett.80.1948
http://dx.doi.org/10.1103/PhysRevLett.84.5504
http://dx.doi.org/10.1103/PhysRevLett.84.5504
http://dx.doi.org/10.1103/PhysRevLett.84.5504
http://dx.doi.org/10.1103/PhysRevLett.84.5504
http://dx.doi.org/10.1103/PhysRevLett.84.63
http://dx.doi.org/10.1103/PhysRevLett.84.63
http://dx.doi.org/10.1103/PhysRevLett.84.63
http://dx.doi.org/10.1103/PhysRevLett.84.63
http://dx.doi.org/10.1103/PhysRevLett.88.236804
http://dx.doi.org/10.1103/PhysRevLett.88.236804
http://dx.doi.org/10.1103/PhysRevLett.88.236804
http://dx.doi.org/10.1103/PhysRevLett.88.236804
http://dx.doi.org/10.1103/PhysRevLett.91.246803
http://dx.doi.org/10.1103/PhysRevLett.91.246803
http://dx.doi.org/10.1103/PhysRevLett.91.246803
http://dx.doi.org/10.1103/PhysRevLett.91.246803
http://dx.doi.org/10.1103/PhysRevLett.60.477
http://dx.doi.org/10.1103/PhysRevLett.60.477
http://dx.doi.org/10.1103/PhysRevLett.60.477
http://dx.doi.org/10.1103/PhysRevLett.60.477
http://dx.doi.org/10.1016/0167-2789(89)90252-2
http://dx.doi.org/10.1016/0167-2789(89)90252-2
http://dx.doi.org/10.1016/0167-2789(89)90252-2
http://dx.doi.org/10.1016/0167-2789(89)90252-2
http://dx.doi.org/10.1103/PhysRevLett.79.123
http://dx.doi.org/10.1103/PhysRevLett.79.123
http://dx.doi.org/10.1103/PhysRevLett.79.123
http://dx.doi.org/10.1103/PhysRevLett.79.123
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1063/1.4906797
http://dx.doi.org/10.1063/1.4906797
http://dx.doi.org/10.1063/1.4906797
http://dx.doi.org/10.1063/1.4906797
http://dx.doi.org/10.1103/PhysRevX.2.021003
http://dx.doi.org/10.1103/PhysRevX.2.021003
http://dx.doi.org/10.1103/PhysRevX.2.021003
http://dx.doi.org/10.1103/PhysRevX.2.021003
http://dx.doi.org/10.1021/nl404133d
http://dx.doi.org/10.1021/nl404133d
http://dx.doi.org/10.1021/nl404133d
http://dx.doi.org/10.1021/nl404133d
http://dx.doi.org/10.1063/1.3690046
http://dx.doi.org/10.1063/1.3690046
http://dx.doi.org/10.1063/1.3690046
http://dx.doi.org/10.1063/1.3690046
http://dx.doi.org/10.1063/1.4790863
http://dx.doi.org/10.1063/1.4790863
http://dx.doi.org/10.1063/1.4790863
http://dx.doi.org/10.1063/1.4790863
http://dx.doi.org/10.1103/PhysRevLett.53.1515
http://dx.doi.org/10.1103/PhysRevLett.53.1515
http://dx.doi.org/10.1103/PhysRevLett.53.1515
http://dx.doi.org/10.1103/PhysRevLett.53.1515
http://dx.doi.org/10.1103/PhysRevLett.80.944
http://dx.doi.org/10.1103/PhysRevLett.80.944
http://dx.doi.org/10.1103/PhysRevLett.80.944
http://dx.doi.org/10.1103/PhysRevLett.80.944
http://dx.doi.org/10.1103/PhysRevB.73.245403
http://dx.doi.org/10.1103/PhysRevB.73.245403
http://dx.doi.org/10.1103/PhysRevB.73.245403
http://dx.doi.org/10.1103/PhysRevB.73.245403


BAO, HUANG, LAI, AND GREBOGI PHYSICAL REVIEW E 92, 012918 (2015)

[61] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[62] G. Y. Wu, N.-Y. Lue, and Y.-C. Chen, Phys. Rev. B 88, 125422

(2013).
[63] E. McCann and M. Koshino, Rep. Prog. Phys. 76, 056503

(2013).
[64] G. A. Luna-Acosta, K. Na, L. E. Reichl, and A. Krokhin, Phys.

Rev. E 53, 3271 (1996).
[65] G. A. Luna-Acosta, A. A. Krokhin, M. A. Rodrı́guez,

and P. H. Hernández-Tejeda, Phys. Rev. B 54, 11410
(1996).
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