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Discrete breathers and energy localization in a nonlinear honeycomb lattice
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Discrete breathers (DBs) in nonlinear lattices have attracted much attention in the past decades. In this work,
we focus on the formation of DBs and their induced energy localization in the nonlinear honeycomb lattice
derived from graphene. The key step is to construct a reduced system (RS) with only a few degrees of freedom,
which contains one central site and its three nearest neighbors. The fixed points and periodic orbits of the RS can
be obtained from the Poincaré section of the dynamics. Our main finding is that the long-running DB solution of
the full honeycomb system corresponds to the periodic orbit given by one of the fixed points of RS, where the
central site and its nearest neighbors vibrate inversely. When the initial condition deviates from this fixed point,
the local vibration is attracted to it after a short transient process. When the initial condition is assigned to other
fixed points of the RS, the initial excitation energy flows to the other part of the full system quickly, resulting in
a delocalized wave propagation. Another main finding is that the long-lived DB solutions emerge only when the
initial excitation energy is larger than a threshold value, above which the frequency of the DB exceeds the phonon
band edge. The excitation energy generally dissipates from the local region due to the interactions between the
DB and phonons near the � point in the dispersion relation. These results provide a holistic physical picture
for the DB solutions in two-dimensional nonlinear lattices with complex potentials, which will be crucial to the
understanding of energy localization in the realistic two-dimensional materials.
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I. INTRODUCTION

Discrete breathers (DBs), also known as intrinsic localized
modes or nonlinear localized excitations, have been a cen-
tral topic in nonlinear dynamics of anharmonic lattices with
discrete translational symmetry, which have attracted much at-
tention in the nonlinear dynamics community during the past
decades [1–9]. The DBs can be defined as the time-periodic
and spatially localized solutions of discrete systems, which
have been rigorously proved in Fermi-Pasta-Ulam-Tsingou
(FPUT) lattice [10], and Klein-Gordon lattice [11]. The DBs
have also been found theoretically in various coupled ordi-
nary differential equations of Hamiltonian systems [12–21].
Experimental observations of DBs have been reported with
various physical systems [3,22–24], such as electrical lat-
tice [25], forced-damped array of coupled pendulum [26],
diatomic granular crystals [3], and PT -symmetric nonlinear
metamaterials [27].

Discreteness and nonlinearity are two key recipes for the
emergence of DBs, where discreteness sets up the phonon
band edges and nonlinearity can modulate the frequency of
possible time-periodic excitations [28,29]. The frequency of
the long-lived DB can be found beyond the band edge of
the phonon band, where the localized wave packet will not
be dispersed by the linear modes [7,30]. The DBs may have
frequencies above or below the phonon band, which corre-
spond to systems with hard-type or soft-type anharmonicity,
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respectively [7]. The latter case generally requires on-site term
in the potential, which shifts the lower boundary of the band
to a finite positive value. However, a recent work shows that
the long-range interactions can also open a gap below the
phonon band, and supports the existence of low-frequency
DBs without on-site potential [31]. The existence of gap DBs,
also referred to as intra-band DBs, needs the phonon band to
have a gap between adjacent branches, which is generally the
case for nonlinear diatomic lattices [15,32–34]. In addition,
according to the Fourier spectrum of the trajectory, the DBs
can be periodic, quasiperiodic, or chaotic [35,36].

Various methods have been developed to search the DB
solutions in nonlinear lattices. The simplest way to observe
the DB is to exploit the targeted initial condition, i.e., displace
one or few sites to the target values, which, however, cannot
obtain DB solutions within a reasonable precision [37]. An-
other approximate method widely used in the literature is the
rotating wave approximation [38,39]. A method with higher
precision is based on the correspondence between the DBs and
the periodic orbits in the phase space or in the Fourier spec-
trum, which can be achieved with the iteration procedure of
Newton and steepest descent scheme [29]. Here, the reduced
problem scheme proposed by Flach and Willis [28,40,41] is
employed, as the DB is highly spatially localized and pertains
certain symmetries, and a two degree-of-freedom subsystem
for a central site and its nearest neighbors is considered, while
the other sites are assumed to remain static. The dynamical
behavior for this subsystem can be obtained completely via
the Poincaré sections. The stable fixed points on the Poincaré
section correspond to periodic orbits of the original dynamics
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FIG. 1. Schematic of the nonlinear honeycomb lattice with a to-
tal of 480 sites. The full system used in the MD simulations contains
4800 sites in total, where the periodic boundary condition is applied
along x and y axes.

for the subsystem, which lead to the DB solutions of the full
system.

Graphene sheet, where carbon atoms are tightly packed
in two-dimensional (2D) honeycomb lattice, supplies an out-
standing system for the investigation of DBs [42–44]. The
DBs in fully hydrogenated graphene, also termed as graphane,
is confirmed with density functional theory [42] and molecu-
lar dynamics (MD) simulations [45], where a hydrogen atom
oscillates with large amplitude in the direction normal to the
graphene plane. To excite the gap DB, strain needs to be
applied to the graphene sheet to open the gap of phonon band
between the acoustic and optical branches [46–49]. The trans-
verse DBs have also been investigated with MD simulations,
where the initial condition is given by a bell-shaped func-
tion, and the MD simulations are performed by large-scale
atomic/molecular massively parallel simulator (LAMMPS)
software with the adaptive intermolecular reactive empirical
bond-order (AIREBO) potential [44]. Besides that, the DBs
also exist in the realistic model for carbon-hydrogen systems
with tight-binding MD simulations [50].

In this paper, we would like to search the DB solutions
in the nonlinear honeycomb lattice with the reduced prob-
lem scheme as many 2D natural and artificial materials have
this structure. In Sec. II, the nonlinear honeycomb lattice, an
abstract model of graphene lattice [51], is introduced, whose
potential energy characterizing the interaction between adja-
cent sites is given by a simplified valence force field (VFF)
model [52]. The reduced system (RS) is proposed in Sec. III,
which contains only a few degree-of-freedom, i.e., a central
site and its three nearest neighbors. In addition, when the three

neighbors move synchronously, the RS can be further sim-
plified as a two degree-of-freedom system, where a complete
dynamical analysis can be performed, which may shed light
on the search of DBs in the full system. In Sec. IV, numerous
numerical simulations are performed with the simplified VFF
potential, and the results indicate that, when the full system is
excited with the initial condition given by the fixed point in the
Poincaré section of the RS, the long-lived DB solution can be
observed, which emerges only when the energy is larger than a
threshold value. A short summary and discussion is presented
in Sec. V.

II. THE NONLINEAR HONEYCOMB LATTICE

The dynamical system in this work is a nonlinear honey-
comb lattice which can be regarded as a simplified abstract
model of graphene sheet. Figure 1 shows the schematic of the
nonlinear honeycomb lattice, and in our simulations, we have
used a system with 4800 sites to reduce the finite size effects.
The interactions between adjacent sites is a simplified version
of the VFF potential [52,53], which was proposed by Lobo
et al. in 1997 for systems whose interactions between carbon
atoms are the sp2 bonds, such as graphene and fullerenes. The
expression of the VFF potential is given by [52,53]

Usp2 =
N∑

i=1

γ Di · Di + 1

2

N∑
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∑
j

α

4a2
0

(
r2

i j − a2
0

)2

+
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i=1

∑
j<k

β

a2
0

(
ri j · rik + 1

2
a2

0

)2

, (1)

where α = 155.9 J/m2, β = 25.5 J/m2 and γ = 7.4 J/m2

are constants, index i labels the sites, indices j and k label
the nearest neighbors of site i, N is the system size or the
number of atoms, ri j is the bond vector from site i to j,
a0 = 1.421 Å is the equilibrium bond length, and Di = ∑

j ri j

is the dangling bond vector introduced by Chelikowsky et.al.
in predicting the three dimensional structure of silicon clus-
ters, which can characterize the transfer of dangling bond
strength to backbonds [54]. The first term accounts for the
variation of angle between the neighboring pz-orbitals ap-
proximately perpendicular to the graphene plane, which gives
the quadratic energy in displacement for the out-of-plane de-
formation [54–56]. The second and third terms characterize
the change of bond length and angle between the adjacent C-C
bonds, respectively.

Nanoelectromechanical resonators based on 2D materials
have become an important topic due to its ultra-high mechani-
cal vibration frequency and ultra-low energy consumption and
thus potential engineering applications [57–59]. For graphene
resonators, the graphene sheets are deposited on the sub-
strate with a trench, and the suspended part can be actuated
electrically or optically and will vibrate along the direction
perpendicular to the graphene plane [60–62]. The prelimi-
nary numerical simulations exhibit that the magnitude of the
in-plane motion is few orders smaller than that of the out-of-
plane motion under the initial condition where the graphene
sheet is deformed according to the fundamental mode. As
a result, we only consider the out-of-plane motion, i.e., the
motion along z-direction, and Eq. (1) can be simplified as
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(Appendix A):
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N∑

i=1
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Here zi is the displacement of site i from its equilibrium
position. It is clear that the orders of U (2), U (4)

1 , and U (4)
2 are 2,

4, and 4, respectively, which is very similar with the potential
of the FPUT-β lattice where each site interacts only with its
nearest neighbors. For the VFF potential, the net force acting
on site i comes from its nearest and next-nearest neighbors.
This simplified VFF model has been employed in our previous
works investigating energy equipartition problem in graphene
resonators with fixed boundary conditions [51,63], and it has
been demonstrated that the nonlinear honeycomb lattice with
potential Eq. (2) is an excellent platform for examining vari-
ous dynamical behaviors.

As mentioned above, the phonon band edge plays an im-
portant role in the formation of the DBs. For the unstrained
graphene where all the carbon atoms locate at the equilibrium
position, the lower band edge approaches to zero, and there is
no gap between the branches. Thus, to stay outside the phonon
bands and to prevent phonon scattering, the DBs can only exist
above the upper phonon band edge. The dispersion relation of
Eq. (2) is presented in Appendix B, and the maximum of the
ZO branch is only determined by the parameter γ in U (2) with
the following expression [52]:

fu = 1

2π

√
72γ /mC = 26.025 THz, (3)

where mC = 1.9926 × 10−26 kg is the mass of the carbon
atom. In addition, the bond between adjacent atoms is ef-
fectively a hard-type spring, that the frequency will increase
when the amplitude of vibration becomes larger [64]. This is
actually a necessary condition for this system to sustain DBs,
that when its amplitude is large enough the frequency can go
beyond the upper band edge.

To reduce the numerical error, the parameters m0 =
1.9926 × 10−26 kg, a0 = 1.421 × 10−10 m, and t0 = 1.0 ×
10−14 s are used to nondimensionalize the equation of motion.
Then the mass of the sites and the equilibrium bond length
become unit, the dimensionless constants α′, β ′ and γ ′ are
0.7824, 0.1280, and 0.0371, respectively, and the dimension-
less upper phonon band edge f ′

u is 0.2603.
The MD simulations are performed with potential Eq. (2),

which means that the in-plane motion of each atom is con-
strained. The Verlet algorithm with a time step 0.001 is used
for the integration of the Newtonian equations of motion of
the sites. The periodic boundary conditions are applied on
both x and y directions, which is the conventional setup in the
investigation of DBs. We have performed the MD simulations
with both fixed and periodic boundary conditions, and the
results are very similar when the system size is large enough.
That is to say, the DBs also exist in the system with fixed

FIG. 2. The reduced system. Blue sites are able to move in the
force field, while the red ones are fixed during the numerical sim-
ulation. According to the expression of Eq. (2), all the nearest and
second nearest neighbors of movable sites should be appended to the
system.

boundary condition, which is just the circumstance for the
graphene resonators.

III. DYNAMICS OF THE REDUCED SYSTEM

A. The reduced system

Due to the peculiar properties of DBs, they are highly
localized in real space, i.e., only a few sites near the central
one oscillate with relatively large amplitude, while most of the
other sites are nearly frozen around the equilibrium position.
In addition, as the frequency of the DB is usually higher
than the phonon band edge, the coupling between the DBs
and the phonons is negligible, thus the energy transfer from
the DB to phonons is almost prohibited. In this sense, we
can only consider the dynamics of the sites near the central
site belonging to the breathers. This scheme is called reduced
problem, which was first proposed by Flach et al. [28,40,41]
and has been applied to search the DBs in one-dimensional
nonlinear discrete Klein-Gordon lattice [40] and 2D discrete
Hamiltonian lattice [28].

It is expected that the size of the DBs in 2D nonlinear
honeycomb lattice is small. As a reasonable guess, we assume
that the DBs contain only four sites: a central site and its three
nearest neighbors, as illustrated by the blue sites in Fig. 2.
Except the movable sites, the RS also contains fifteen fixed
sites, e.g., all the nearest and second-nearest neighbors of the
movable sites, to ensure that the potential of the movable
sites can be calculated self-consistently. Obviously, the RS
is a model with threefold rotational symmetry. There will be
motions that all the nearest neighbors of the central site move
synchronously. In this regard, the dynamics of the RS can be
reduced to a two degrees-of-freedom, and its Hamiltonian can
be written as

H = 1
2v2

0 + 3
2v2

1 + Usp2 (z0, z1), (4)

where v0 (v1) and z0 (z1) are the velocity and displacement of
the central site (its nearest neighbors), respectively. The first
two terms are the kinetic energies of the corresponding sites,
and the third term is the potential energy given by Eq. (2),
which is zero when all the sites are at rest in the equilibrium
position.
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FIG. 3. (a)–(c) Poincaré sections between the trajectories and the subspace [z1, v1, z0 = 0, v0 > 0]. The initial excitation energies E for
(a)–(c) are 0.17, 1.30, 7.50, respectively. The trajectories with different colors in the same panel correspond to different initial conditions with
the same excitation energy. In panel (c), the fixed points (periodic orbits) are labeled by I–IV, which are the promising candidates for DBs of
the full system. The vertical gray dashed line in panel (c) gives the initial conditions used in Fig. 6.

B. Dynamics of the RS

The dynamical behaviors of the RS can be illustrated with
the Poincaré section between the trajectory and the subspace
[z1, v1, z0 = 0, v0 > 0]. For this purpose, the RS is actuated
with a series of initial conditions which have the same ex-
citation energy E : The displacements of all the sites are set
to zero, and the initial velocity v0 > 0 and v1 are assigned
to the central site and its three nearest neighbors, and E =
1
2v2

0 + 3
2v2

1 . Then the MD simulations are performed in the
RS with these initial conditions, and the positions and ve-
locities of all the sites are collected every few steps to draw
the Poincaré section. Note that some orbits may be missed
with such setup, resulting in some blank areas in the Poincaré
section. In this case, additional initial conditions chosen from
these areas can be used to fill up the whole space of the
intersection.

Figure 3 shows the Poincaré sections of the RS with
three representative excitation energies. (i) For small energy,
Fig. 3(a) exhibits that the motions of the sites are regular
with two fixed points in the upper and lower part of the
Poincaré section, which correspond to periodic trajectories
in phase-space. Around them are a series of quasiperiodic
orbits. (ii) As the initial excitation energy E becomes larger,
a period-3 orbit arises near the original upper fixed point, as
shown in Fig. 3(b). Another interesting change is that the
quasiperiodic trajectories near the fixed point in the lower
part of the intersection are evidently deformed, i.e., three
sharp corners gradually emerge. (iii) As the excitation energy
increases further, the dynamics of RS become more compli-
cated. Figure 3(c) shows the Poincaré sections for E = 7.50.
The period-3 orbit of the upper plane moves outward further,
as marked by III, and the central fixed point becomes unstable,
generating two stable fixed points (periodic orbits) at the left
and right side (IV). Note that the two fixed points represent
two antisymmetric [z0(t ) → z′

0(t ), z1(t ) → z′
1(t )] but discon-

nected periodic orbits. On the lower plane, the deformed
corners around the central fixed point (I) are detached and
form a new period-3 orbit II. This transition occurs around
E = 1.30. In the meantime, chaotic sea emerges. We have
calculated more cases with larger excitation energies, and the

structure of the Poincaré section will not change qualitatively
except that the area of chaotic sea becomes larger.

We shall focus on the periodic orbits (fixed points in the
Poincaré section) as they are the potential candidates for the
exact solutions of DBs. Figures 4(a)–4(d) show the time evo-
lutions of the sites for the same time window with respect to
the orbits I–IV in Fig. 3(c), respectively. The central site and
its nearest neighbors vibrate inversely for orbits I [Fig. 4(a)]
and in phase for orbit IV [Fig. 4(d)]. The data given by the
black asterisks are those drawn on the Poincaré sections. For
orbits II and III, the vibrations of the central site and its
nearest neighbors are a little more complicated as they are
both period-3 orbits [Figs. 4(b) and 4(c)]. In the next section,
orbits I–IV are set as the initial conditions to search for the
DB solutions in the full system.
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FIG. 4. (a)–(d) The time evolution of the displacements of the
central site (blue solid line) and its nearest neighbor (red dashed line).
Panels (a)–(d) correspond to the initial conditions labeled by I–IV in
Fig. 3(c), respectively. The black asterisks are the points drawn in the
Poincaré sections.
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IV. DBs IN THE FULL SYSTEM

A. Existence of DBs

From now on, we search the DB solutions for the nonlinear
honeycomb lattice with MD simulations in the full system
which contains 4800 sites in total. One of the sites of the
graphene sheet is chosen as the central site, and at t = 0 s, all
the sites are placed at their equilibrium positions except the
central particle and its nearest neighbors, which are displaced
according to the periodic orbit found in the RS. Then the full
system evolves at the microcanonical ensemble for 1.0 × 107

steps, and the displacements and velocities of all the sites are
recorded every few steps for further investigation. When DBs
exist, the energy of the system will be localized in the space
near the central site, where the other sites of the system remain
almost static. In this sense, the DBs can be characterized by
the ratio of the local energy EL to the total energy ET of the
full system, i.e.,

η = EL

ET
, (5)

where EL is defined as the summation of the energy of the
central site, its nearest and second-nearest neighbors [the 10
red sites in the insets of Figs. 5(b) and 5(c)], and ET is the
total energy of all the sites, which is naturally equal to the
excitation energy initially fed into the system.

Figure 5(a) shows, for a given initial excitation energy
ET = 7.5 [the same for Fig. 3(c)], the time evolution of η,
where the initial conditions are given by the orbits I–IV in
Fig. 3(c). For orbit I, it is a fixed point in the RS. It can be
seen that, when the full system is actuated with this initial
condition, only a tiny fraction of the initial excitation energy
dissipates to the other part of the system, i.e., η � 1, and then
the local energy EL stabilizes with a small fluctuation for a
long time. Figure 5(b) is the Fourier spectrum of the trajecto-
ries of the central site. The dynamical behaviors of the local
vibration can be characterized by the two main frequencies,
marked by f1 and f2 in Fig. 5(b), and the other peaks can be
given by the linear combinations of these two frequencies. It
can be inferred that this is a quasiperiodic DB solution for the
nonlinear honeycomb lattice. The verification of the existence
of DBs can also be read out from the energy distribution
versus the particle position, where the central site has the
largest energy while the sites out of the RS have negligible
values [inset of Fig. 5(b)].

For the RS, orbit II exists only when the energy is larger
than 1.33. When it is set as the initial condition for the MD
simulation of the whole system, more energy than that for
orbit I is transferred out from the local region of the RS around
t = 10 ∼ 20 of the MD simulations [Fig. 5(a)]. But after a
short transition, the ratio of the energy is almost stabilized
around η ∼ 0.85 for a long time, indicating the possibility
of a DB solution. We have then plotted the Fourier spectrum
for orbit II in the stable region for t from 5000 to 10 000,
which shows very similar results as that for orbit I, as shown
in Fig. 5(c). Therefore, it can be conjectured that: For orbit
II, after a part of the excitation energy escapes from the lo-
cal excited region, the remaining energy redistributes among
the localized sites and the dynamics are attracted to the DB

FIG. 5. (a) The time evolution of the ratio η where the initial con-
ditions in the MD simulations are chosen from the orbits I-IV of the
RS in Fig. 3(c). The black dashed line indicates η = 1. (b), (c) The
Fourier spectrum of z0(t ) for the orbits I and II presented in panel (a),
respectively. f1 = 0.280, f2 = 0.533 for panel (b) and f1 = 0.276,
f2 = 0.511 for panel (c). Note that the nondimensionalized upper
band edge is f ′

u = 0.2603, as marked by the vertical dashed line. The
insets show the energy distribution for the sites near the central one,
where the height of each site represents its total energy.

initialized from orbit I. But since the outer sites are excited
too, the DB is less stable that it has a shorter life time.

To verify this conjecture, a set of MD simulations are
performed with the same excitation energy E = 7.50, but
the initial conditions are uniformly picked up from the
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FIG. 6. (a) Dependence of the average of η [Eq. (5)] from t =
5000 to t = 10 000 on the initial velocity v1 for the same excitation
energy E = 7.50, where the initial conditions for MD simulations are
uniformly picked from the segment {(z1, v1)|z1 = 0, −2 < v1 < 0}
in Fig. 3(c). The inset shows the trajectories of the central particle
z0(t ) and its nearest neighbors z1(t ) when the initial condition is
on orbit II. (b) The frequency for the dominant peak in the Fourier
spectrum of z0(t ) under the same initial conditions in panel (a).
In both panels, the orbits I (v1 = −1.30) and II (v1 = −1.89) are
marked by black asterisks.

segment {(z1, v1)|z1 = 0,−2 < v1 < 0} in the Poincaré sec-
tion in Fig. 3(c), as indicated by the gray dashed line, which
covers the orbit I and II of the RS. Figure 6(a) shows the
dependence of η on the velocity v1, where the orbit I and II
are marked by black asterisks.

It can be seen that η has the largest value for orbit I, and
then decreases gradually as the initial condition v1 deviates
this point from both sides. Note that since the localized energy
EL only counts about 10 sites around the central site, and the
system has in total 4800 sites, thus if there is no DB, the value
of η will be round 0.002. Thus, all the apparent nonzero values
of η indicate the formation of DBs, e.g., −2 < v1 < −0.4 in
this figure. An apparent evidence is presented in the inset of
Fig. 6(a), which plots the trajectories of z0(t ) and z1(t ) when

the full system is excited with orbit II, and shows very similar
behavior with the one for orbit I in Fig. 4(a). This provides
direct evidence of the above conjecture. Furthermore, we have
checked the trajectories of z0(t ) and z1(t ) for various different
parameter values in the range −2 < v1 < −0.4, and they all
have the similar dynamics as that for orbit I (Appendix C).
This strongly supports the physical picture that for initial
values around orbit I, after shedding some energy into other
parts, the remaining energy reforms a DB in the form close to
orbit I.

In addition, the ratio η tends to zero with large fluctuations
as the initial velocity v1 approaches to zero. Since ET =
1
2v0(0)2 + 3

2v1(0)2, v1(0) approaches zero is the case that the
energy is injected almost only to the central site. In this case,
the energy will be soon dissipated to the whole system and
no DB will be formed. This illustrates the importance of the
nearest-neighboring sites of the central site, that although their
energy is small compared to the central site, maintaining a
proper vibration of these sites is necessary for the formation of
the DB. Figure 6(b) shows the corresponding frequency of the
highest peak of Fourier spectrum of z0(t ) for the simulations
in Fig. 6(a). The local vibration of the central site sponta-
neously has the largest frequency for initial excitations on
orbit I. The reason is that the frequency is positively dependent
on the energy of vibration in nonlinear system, and since the
remaining energy reaches maximum at orbit I, the frequency
also peaks at the same value [Fig. 6(b)].

The dynamics of the whole system with initial excitations
on orbits III and IV are quite different from that for orbits
I and II. The energy fed into the system at the beginning
spreads rapidly to the other parts of the system, resulting in
delocalization of the energy. A series of the profile snapshots
of the system when the full system is actuated with orbit IV
are shown in Appendix D. It can be seen that the energy will
flow to the other parts in a wave form, e.g., like the waves
spreading outwards from the center when a stone is dropped
into the water. We have also calculated more cases with higher
excitation energies, and DBs are never observed, even when
the frequencies of the orbits are higher than the phonon band
edge. This implies that not every periodic orbit of the RS gives
rise to a DB of the full system, e.g., in our case, only orbit I
successes to excite a DB.

B. Energy threshold

After the verification of the DB solutions, the next natural
step is to find out the parameter range where the DBs can
exist for a long time. Based on previous theories, when the
frequency of the orbit is smaller than the upper phonon band
edge, the localized vibration can be scattered by the phonons,
which results in the annihilation of the DB solutions. Thus,
there might be an energy threshold for the long-lived DBs.
Here we perform MD simulations with the initial conditions
on orbit I versus the variation of the energy, and the ratio η

is estimated. Note that, the fixed point orbit I depends on the
initial excitation energy, which can be determined from the
dynamics of the RS.

Figure 7(a) shows the dependence of η on the initial
excitation energy when orbit I is used to excite the full sys-
tem. For small energy (E < 0.49), the frequency of the local
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FIG. 7. (a) Ratio η versus initial excitation energy when the full
system is excited according to orbit I of the RS. Note that the x
axis is in the logarithmic scale. (b)–(d) The Fourier spectrum for the
trajectory of the central site. The excitation energies are 0.49, 0.61,
and 4.60, which are marked by red asterisks and correspondingly
denoted by b, c, d in panel (a). The vertical dashed line indicates the
upper phonon band edge f ′

u. The insets in panels (b, c) zoom in the
region indicated by the black dotted rectangles to demonstrate clearly
the spectral properties around f ′

u.

excitation is smaller than the phonon band edge, and the
energy flow pathway can be established via the interaction be-
tween phonons and the local vibrations. Under such condition,
nearly all the excitation energy transfers to the other part of
the system, and the initially excited sites are indistinguishable
from the other sites based on their dynamical behaviors. As
the excitation energy increases, the frequency of the vibration
becomes larger, and will pass the linear phonon band edge at
some point. It can be seen that a sharp rise of η is observed
for E > 0.49, which indicates that a large proportion of the
energy is localized in a small area near the central site, indi-
cating the formation of the DB. But since the energy will be
dissipated, the dynamics of the DB is different from that of the
orbit I in the RS. As the energy increases further, η gradually
approaches to 1, where most of the energy is localized, and the
dynamics of the orbit I approximates the DB of the full system
well. In this sense, the reasonable choice of energy threshold
for the formation of DBs is Ec = 0.49, which corresponds to
12.32 eV.

This energy threshold originates from the fact that the fre-
quency of the local vibration just passes the upper band edge
at Ec. To elucidate this point, Figs. 7(b)-7(d) show the Fourier
spectrum with three representative excitation energies marked
by red asterisks in Fig. 7(a). For case b, most of the Fourier
spectrum peaks are below the upper phonon band edge. But
as the inset of Fig. 7(b) shows, there is a peak, although
small, above the phonon band edge, indicating that the DB
starts to form at this energy. Figure 7(b) also exhibits the
energy flow pathway from the local excitation to the phonons,
i.e., the thermalization process. Due to the resonance between
phonons and the DBs, the energy initially injected into the
system spreads to the phonons whose frequencies are close

0.5 1 1.5 2 2.5 3

-1.4

-1.1

-0.8

-0.5

-0.2

FIG. 8. The fixed point (v∗
0 , v

∗
1 ) for different energies in the sub-

space [z1, v1, z0 = 0, v0 > 0] used in Fig. 7(a). The blue circles are
directly read from the Poincaré section, and the black solid line is
fitted with v∗

1 = kv∗
0 + b, where k and b are −0.3944 and −0.0744,

respectively. The initial condition for Figs. 7(b)–7(d) are marked by
black arrows.

to the upper band edge, and also to the ones which have the
same wave vectors in the acoustic branch. These phonons are
close to the � point in the first Brillouin zone. The intermodal
energy transfer between the phonons with the same wave
vectors in different branches has been investigated in detail in
Refs. [51,63]. For case c, the dominant frequency of the local
vibration is obviously larger than the band edge. Although the
component for small frequency ( f ∼ 0) is still large, those
close to but below the band edge are significantly suppressed
[Fig. 7(c)]. Comparing to Fig. 7(b), it seems that the energy for
these frequency components are absorbed by the DB whose
dominant frequency is a little bit higher than the band edge.
As the energy increases further, most of the energy becomes
localized around the central site, and there are only a few sharp
peaks in the Fourier spectrum, while all the other frequency
components are suppressed. This implies the existence of the
long-lived DBs in the full system [Fig. 7(d)]. These results
clearly reveal the dynamical behaviors of the formation of the
DBs.

It can be concluded that the DB solutions of the nonlinear
honeycomb lattice can be excited with orbit I of the RS. A
natural question is that whether we can find a simple expres-
sion for the dependence of orbit I on the excitation energy.
For now, for each initial excitation energy, we need to plot
the Poincaré section to determine the parameters for orbit I. If
a simple expression is available, then the initial condition for
generating DBs can be obtained much easier. According to the
Poincaré section, one has z1 = 0 for orbit I in the subspace
[z1, v1, z0 = 0, v0 > 0], which means that this orbit can be
determined uniquely from the velocities v0 and v1 of the sites.
Figure 8 presents (v∗

0 , v
∗
1 ) for the fixed points for orbit I, for

different initial excitation energies, where v∗
1 is directly picked

up from the Poincaré section, and v∗
0 is obtained from the

relation E = 1
2v∗

0
2 + 3

2v∗
1

2 with the condition that the sign of
v∗

0 is different from that of v∗
1 . The data can be fitted with

a linear function v∗
1 = kv∗

0 + b very well, where k and b are
−0.3944 and −0.0744, respectively. Substituting back to the
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expression for energy E , one can obtain v∗
0 directly by solving

the following equation:

E = 1
2v∗

0
2 + 3

2 (kv∗
0 + b)2. (6)

Then together with v∗
1 = kv∗

0 + b, one can yield the pair of
(v∗

0 , v
∗
1 ) as the initial conditions for DBs as z0 = 0 and z1 =

0 are already known as a precondition, when E is above
the threshold. In addition, the data points for E below the
threshold are also plotted. They follow the same relation
v∗

1 = kv∗
0 + b reasonably well. This shows the continuity of

the dependence of orbit I on the energy, but only when the en-
ergy is above the threshold, it is relevant to guide to
the DBs.

Note that in our simulations, we only consider the out-of-
plane motions. The maximum of the LO and TO branches
of the phonon band of the full VFF model is 47.6 THz [52],
which is much higher than that of the ZO branch, i.e., 26.02
THz. In this sense, the DBs in this work in general can be scat-
tered by the in-plane modes, which will lead to the reduction
of the lifetime of the DBs. We have performed preliminary
simulations when the full system is actuated with orbit I of the
RS, where both the full [Eq. (1)] and simplified [Eq. (2)] VFF
models are employed in the simulations. It is found that the
energy ratio η with the full model is always smaller than that
with the simplified one because of the scattering induced by
the in-plane phonons. When the excitation energy is relatively
small but larger than the threshold Ec = 0.49, e.g. E = 1.0,
the simulations with the full model exhibit that more than
70% of the excitation energy can be localized in the small
region surrounding the initially excited sites for a long time (at
least 104), which corroborates the survival of the DBs in the
full VFF model. This ascribes to the weak coupling between
in-plane and out-of-plane modes. However, the energy ratio
η becomes smaller as the excitation energy increases due to
the stronger scattering by the in-plane modes. As an example,
when the excitation energy is 2.5, the ratio η decreases to zero
at t � 5000, which indicates the thorough annihilation of the
DBs.

V. SUMMARY AND DISCUSSION

In summary, the DBs and their induced energy localization
have been systematically investigated in the nonlinear honey-
comb lattice with the dynamics of the two degree-of-freedom
RS and extensive MD simulations in the full system. For
the RS, the periodic orbits are obtained by calculating the
fixed points in the Poincaré sections, and four different types
of periodic orbits are identified. These orbits are possible
candidates for DBs. This indeed is true for orbit I, where
the MD simulations in the full system with initial conditions
given by this orbit I supply clear evidence for the emergence
of a stable DB solution for the nonlinear honeycomb lattice.
Furthermore, when the other orbits (including orbit II) near
this fixed point are employed as the initial condition, the
dynamics of the local vibrations will also be attracted to a
DB similar to orbit I after a transient process where part of the
excitation energy spreads out to the other part of the system.
For initial conditions on orbits III and IV, the initial excitation
energy flows to the other part of the full system quickly in
a wave propagating form, resulting in delocalization of the

vibration. Systematic MD simulations indicate that there is an
energy threshold that above which the DB can survive in the
full system for a long time. When the excitation energy is not
large enough, the energy will be dissipated, and the energy
flow pathway between the local excitation and the phonons
has also been identified.

We have provided a complete physical picture for the
dynamical behaviors of the nonlinear honeycomb lattice un-
der specific local excitations, which will be crucial to the
understanding of the local integrability of nonlinear lattices,
and to the analysis of mechanical vibrations of graphene
based nanodevices. Thanks to the advances in nanotechnol-
ogy, the atomic scale phenomena can be directly investigated
in the cutting-edge experiments [57]. For larger nano- and
microelectromechanical systems made from graphene, con-
tinuum description generally works well [61]. Nevertheless,
due to the impact on the properties of the entire system, the
atomic scale phenomenon can also be identified in larger
systems. For instance, since the DBs are mainly scattered
by the phonons near the � point in the first Brillouin zone,
the measurement of the populations [65] can be exploited to
infer the existence of the DBs. The DBs can result in the
Stone-Wales defects [66], which can be observed by scan-
ning transmission electron microscopy [67]. In addition, our
results also demonstrate the power of the reduced problem
method for searching DBs, which are expected to find broader
applications in nonlinear lattices abstracted from other 2D
materials.
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APPENDIX A: DEDUCTION FROM Eq. (1) TO Eq. (2)

The empirical potential is

Usp2 =
N∑

i=1

γ Di · Di + 1

2

N∑
i=1

∑
j

α

4a2
0

(
r2

i j − a2
0

)2

+
N∑

i=1

∑
j<k

β

a2
0

(
ri j · rik + 1

2
a2

0

)2

. (A1)

The bond vector between atom i and its nearest neighbor j can
be written as

ri j = (x j − xi )ex + (y j − yi )ey + (z j − zi )ez, (A2)

where ex, ey, and ez are the units vectors in Cartesian coordi-
nates. By fixing the motions along x and y direction, (a) it is
easily inferred that

r2
i j = a2

0 + (z j − zi )
2, (A3)
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as a2
0 = (x j − xi )2 + (y j − yi )2 gives the equilibrium bond

length; (b) the dangling bond vector is

Di =
∑

j

ri j

=
(∑

j

x j − 3xi

)
ex +

(∑
j

y j − 3yi

)
ey

+
(∑

j

z j − 3zi

)
ez

=
(∑

j

z j − 3zi

)
ez, (A4)

where the terms
∑

j x j − 3xi and
∑

j y j − 3yi are always zero
due to the special structure of honeycomb lattice; (c) the dot
product ri j · rik is

ri j · rik = (x j − xi )(xk − xi ) + (y j − yi )(yk − yi )

+ (z j − zi )(zk − zi )

= − 1
2 a2

0 + (z j − zi )(zk − zi ), (A5)

where (x j − xi )(xk − xi ) + (y j − yi )(yk − yi ) ≡ −1/2a2
0 as all

the angles are 2/3π for the graphene at their equilibrium
positions. Substituting Eqs. (A2)–(A5) into Eq. (A1), we have

Usp2 =
N∑

i=1

γ

(∑
j

z j − 3zi

)2

+ 1

2

N∑
i=1

∑
j

α

4a2
0

(z j − zi )
4

+
N∑

i=1

∑
j<k

β

a2
0

[(z j − zi )(zk − zi )]
2. (A6)

APPENDIX B: DERIVATION OF DISPERSION RELATION

The dispersion relation of Eq. (2) can be obtained with
the lattice dynamics method. The basic idea is to solve the
following equation:

ω2(k, ν)e(k, ν) = D(k) · e(k, ν), (B1)

where D = [Di j]2×2 is the stiffness matrix:

D =
[

D11 D12

D21 D22

]
. (B2)

The element Di j of the matrix is given by

D11 = 2γ

m
(12 + eik·(a1−a2 ) + e−ik·a2 + e−ik·a1

+ e−ik·(a1−a2 ) + eik·a1 + eik·a2 ),

D12 = −12γ

m
(1 + e−ik·a2 + e−ik·a1 ), (B3)

D21 = −12γ

m
(1 + eik·a2 + eik·a1 ),

D22 = D11,

where k = kxex + kyey is the wave vectors, a1 and a2 are the
unit-cell vectors as shown in Fig. 9(a). Substituting Eqs. (B2)

FIG. 9. (a) Schematic of graphene lattice. (b) Dispersion relation
of graphene derived from Eq. (2) with lattice dynamics method.

and (B3) into Eq. (B1), the frequency is

ω2 = 2γ

m
(12 + g(k)) ± 12γ

m

√
3 + g(k), (B4)

where

g(k) = 2 cos(
√

3kya) + 4 cos

(
3kxa

2

)
cos

(√
3kya

2

)
. (B5)

Figure 9(b) shows the dispersion relation given by Eq. (B4).
For the optical phonon in the Brillouin zone center, the wave
vector k is zero, i.e., kx = ky = 0, and Eq. (B5) and Eq. (B4)
become g(k) = 6 and ωmax = √

72γ /mC , respectively. The
later one is just the Eq. (3) in the paper.
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FIG. 10. (a)–(f) Time evolutions of the displacements of the cen-
tral site (blue solid line) and its nearest neighbors (red dashed line).
The initial conditions of v1(0) are chosen from Fig. 6, i.e., the system
is actuated with the same excitation energy E = 7.50, and z1(0) = 0.
Note that v1(0) = −1.30 for orbit I.
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APPENDIX C: REPRESENTATIVE
TRAJECTORIES IN FIG. 6

Here we supply more evidence for the conjecture that
the trajectories whose initial condition is close to orbit I are
attracted to orbit I of the RS. Figure 10 exhibits six represen-
tative trajectories of the central site and its nearest neighbors,
where the initial velocities v1 are shown in the upper left
corner of each panel. It can be seen that all the trajectories
are similar to that for the orbit I shown in Fig. 4(a), and the
amplitude of the oscillation is larger as v1(0) is close to that
for orbit I.

APPENDIX D: ENERGY SPREADING OF ORBIT IV

Here we show a series of snapshots of the vibration profile
of the full system based on the MD simulations to demonstrate
the energy spreading when the initial excitation is on orbit IV
of the RS.

The results are shown in Fig. 11 for the excitation energy
E = 7.50. It shows that the initial excitation energy flows
rapidly to the other parts of the system in the form of a wave
packet. The wavefront arrives at the boundaries at around

t=10 t=90

t=200

t=400

t=30

t=60

FIG. 11. The snapshots of the system when the initial condition
is given by the orbit IV of the RS, and the excitation energy is E =
7.50.

t � 90, and then due to the periodic boundary conditions, the
system gradually steps into the equilibrium state. The long-
lived DBs have not been observed during the MD simulations.
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