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Nonlinear interaction between flexural modes is critical to heat conductivity and mechanical vibration of two-
dimensional materials such as graphene. Much effort has been devoted to understand the underlying mechanism.
In this paper, we examine solely the out-of-plane flexural modes and identify their energy flow pathway during
thermalization process. The key is the development of a universal scheme that numerically characterizes the
strength of nonlinear interactions between normal modes. In particular, for our square graphene system, the
modes are grouped into four classes by their distinct symmetries. The couplings are significantly larger within
a class than between classes. As a result, the equations for the normal modes in the same class as the initially
excited one can be approximated by driven harmonic oscillators, therefore, they get energy almost instantaneously.
Because of the hierarchical organization of the mode coupling, the energy distribution among the modes will
arrive at a stable profile, where most of the energy is localized on a few modes, leading to the formation of “natural
package” and metastable states. The dynamics for modes in other symmetry classes follows a Mathieu type of
equation, thus, interclass energy flow, when the initial excitation energy is small, starts typically when there is a
mode that lies in the unstable region in the parameter space of Mathieu equation. Due to strong coupling of the
modes inside the class, the whole class will get energy and be lifted up by the unstable mode. This characterizes
the energy flow pathway of the system. These results bring fundamental understandings to the Fermi-Pasta-Ulam
problem in two-dimensional systems with complex potentials, and reveal clearly the physical picture of dynamical
interactions between the flexural modes, which will be crucial to the understanding of their abnormal contribution
to heat conduction and nonlinear mechanical vibrations.
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I. INTRODUCTION

Identifying the energy flow pathway has been the core issue
of Fermi-Pasta-Ulam (FPU) problem over the past half century.
This has been investigated intensively for one-dimensional
(1D) nonlinear lattices [1–3]. In particular, for the FPU-β
model, the energy flow pathway is obtained analytically based
on the sine form of mode functions [4], where the predicted
pathway is revealed by numerical calculations correctly. A dif-
ferent approach based on perturbation theory is also proposed
[5,6]. Another important issue in FPU problem is that in the
small initial energy (or, equivalently, weak nonlinearity) case,
there could exist metastable states where the energy can be
localized on a small number of modes for extremely long time,
hindering equipartition [7,8]. For 1D lattice, metastability is
related with Nekhoroshev instability [9], q-breather [10,11],
or Toda integrable dynamical behaviors [12,13].

Two-dimensional (2D) materials have attracted much atten-
tion due to their peculiar mechanical and transport properties
[14–16]. A key feature of 2D materials is that they bear the
flexural (out-of-plane) modes, which play an important role in
the thermal conductivity [17] and the superior performance
of mechanical vibrations [18]. Experimentally, the thermal
conductivity of suspended graphene is higher than that of
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monolayer graphene exfoliated on a substrate because of the
strong interface scattering of flexural modes [19]. The relevant
numerical calculations also confirm that the flexural phonon
modes make a dominated contribution to the thermal conduc-
tivity of graphene, which is attributed to the anomalously large
density of states of flexural phonons compared to their in-plane
counterparts and to a lattice symmetry based selection rule that
significantly restricts anharmonic phonon-phonon scattering of
the flexural modes [20].

To understand the anharmonic phonon-phonon scattering of
the flexural modes, it is critical to treat the nonlinear interaction
between these modes. This comes to the Fermi-Pasta-Ulam
(FPU) problem [1] naturally, that is, how does the energy
initially located at one mode spread to the other modes? For
2D system with only in-plane modes, it has been shown that
there are no metastable states [21,22]. For the flexural modes
in graphene, it has been found that there exist metastable
states in the relaxation process of the fundamental mode,
but the microscopic mechanism is unclear [23]. The key
problem is thus to reveal the dynamical interaction between
the flexural modes and the pathway of the energy flow, to
understand the mechanism of the metastable states. While
the previous analysis [4–6] of the energy flow pathway can
be feasible for 1D lattices and when the nonlinear potential
is simple, it is highly nontrivial to extend the method to 2D
systems, especially for those with complex potentials such as
graphene.
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In this paper, we investigate exclusively the metastable
states and energy flow pathway between the flexural modes
with the nonlinear mode coupling method, which, except heat
conduction, is also important for graphene nanomechanical
resonators as the out-of-plane motion is their most dominant
dynamics [18,24–26]. First, we have developed a numerical
procedure, the nonlinear mode coupling method, to charac-
terize the nonlinear interaction between the normal modes,
which can be used to calculate the coupling strength between
normal modes and determine the pathway of the energy flow
during the thermalization process. Second, the application to
the energy equipartition among flexural modes in graphene
unveils completely the route and microscopic dynamics of
thermalization. Interestingly, we have found that the flexural
modes are grouped into different classes based on their sym-
metry properties. The modes within each symmetry class have
strong interactions, while the modes belonging to different
symmetry classes have much weaker interactions. This hinders
energy flow between different symmetry classes. Even within
the symmetry class, the strength of the interactions exhibits a
hierarchical structure, leading to the formation of metastable
states. This confirms the existence of metastable states, and
provides a clear physical picture due to the hierarchical
organization of nonlinear interactions. For modes in different
symmetry classes, the simplified equation is of the Mathieu
type, thus, when there is a mode that resides in the unstable
region in the parameter space, it will get energy exponentially
until its energy is comparable with the initially excited mode.
In the meantime, due to the strong couplings of this mode to the
other modes in the same symmetry class, the whole class will be
lifted up. The system is not equiparticipated, as only these two
classes gain energy, while the other symmetry classes still re-
main small energies. However, when this happens, the coupling
matrix S will be modified, especially the interclass couplings,
which will expedite the equipartition procedure significantly.
Our results are of great theoretical significance to help to
understand the anharmonic phonon-phonon scattering and the
thermalization process of the flexural modes in graphene.
Furthermore, because of the symmetry barrier, phonon-phonon
scattering between different symmetry classes is significantly
suppressed, providing a similar mechanism to reduce the phase
space for allowed anharmonic phonon-phonon scattering as
observed in [20], contributing to the high thermal conductivity
of graphene.

II. MODEL AND MOLECULAR DYNAMICS
SIMULATION SETUP

A. Model of the square graphene resonator

We focus on a square graphene resonator with fixed
boundaries [Fig. 1(a)], whose interatomic carbon sp2 bond
interactions can be described by the following valence force
field (VFF) model [27–30]:
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FIG. 1. (a) Setup of the square graphene resonator. The sheet
is approximately 6.9 nm by 7.4 nm. It contains 1992 carbon sites
in total, the outmost two layers are fixed, and the 1748 inner sites
are able to move. (b) The first four normal modes with different
symmetries: symmetric-symmetric (SS), antisymmetric-symmetric
(AS), SA, and AA along x and y axes. Light gray (yellow) and black
(dark blue) indicate maximum and minimum values of the normal
modes, respectively.

where N is the system size, i is the site index, j and k are
i’s nearest neighbors, rij is the bond vector from i to j, a0 =
1.421 Å is the equilibrium bond length, Di = ∑

j rij is the
dangling bond vector. The parameters α = 155.9 J/m2, β =
25.5 J/m2, and γ = 7.4 J/m2 have the same dimension as the
coefficient of stiffness [27–30]. The first term of the potential
gives the energy cost necessary to change the angle between
pz orbitals, which are approximately normal to the graphene
surface. The last two terms represent the energy cost necessary
to change the length and angle between covalent C-C bonds.

For the VFF model, the net force acting on site i is
determined by the nearest neighbors and the next nearest
neighbors of site i. Therefore, the outmost two layers [marked
in red in Fig. 1(a)] are fixed during simulations, only the
inner sites (blue) can move in the force field according to the
Newton’s laws of motion.

To address the effect of flexural modes, we consider only
the z-direction motion. The VFF model can be simplified as

Usp2 =
N∑

i=1

γ

⎛
⎝∑

j

zj − 3zi
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2

= U (2) + U
(4)
1 + U

(4)
2 , (2)

here zi is the z displacement of site i from its equilibrium
position. It is clear that U (2) is the second order potential, which
corresponds to the linear interaction, while U

(4)
1 and U

(4)
2 are

the fourth order potentials. Therefore, the z-direction vibration
of graphene system can be effectively an FPU-β model in the
hexagonal lattice, which is given by the following potential:
V (x) = x2 + (β ′/4)x4.

The nonlinearity of the FPU-β model, given by β ′ε, depends
on both β ′ and ε, where ε = E/N is the energy per degree of
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freedom [13]. The constant β ′ can be scaled to any positive
value by a transformation of variable [31]. In this sense, the
ratio of γ to parameters α and β in Eq. (2) does not affect the
conclusion of this work. An important parameter for predicting
the performance and linearity of graphene nanoelectromechan-
ical devices is the bending rigidity [32] κ , which is related with
γ by κ = √

3a2
0γ /2 [30], and in our case, is about 0.8 eV. This

value is close to the experimental one (1.2 eV) derived from
the phonon spectrum of graphite [33] and falls in the range of
0.5–2.3 eV given by theoretical estimations [34–36]. Based on
the above discussions, the specific value of γ and therefore the
bending rigidity κ will not affect the qualitative conclusions.

B. General nonlinear mode coupling scheme

In this section, we shall develop a general mode coupling
method to analyze the nonlinear interaction between the
normal modes. For a lattice such as graphene, the motion
equation in real space can be written into the equation of normal
coordinates through a mode coupling scheme, as the normal
modes form a complete orthonormal basis. The nonlinear mode
coupling arises during this procedure due to the existence of the
nonlinear term in the potential. By expanding and collecting
the nonlinear potentials in terms with the same order of z,
we arrive at a neat matrix form for the nonlinear interactions.
We shall show that this coupling characterizes the energy flow
pathway for this system. This scheme is general and can be
applicable for arbitrary lattices with smooth potentials.

In general, for a system with N sites with displacement
z = [z1, . . . ,zN ]T and a smooth potential U (z), the potential
can be expanded in Taylor series as U (z) = U (0) + U (1) +
U (2) + · · · , where

U (n) =
∑

i1,...,in

∂nU

∂zi1 . . . ∂zin

|z=0zi1 . . . zin

is the nth order term. Note that the zeroth order term is a
constant that will not yield force and can be set to zero, and the
first order term is zero as z = 0 gives the equilibrium position.

The force acting on the ith site is given by Fi = − ∂U
∂zi

=∑
n F

(n)
i , where F

(n)
i = − ∂U (n)

∂zi
. Since U (n) is the nth order

homogeneous polynomial, F
(n)
i can be expressed as

F
(n)
i = − 1

n − 1

∑
j

∂2U (n)

∂zi∂zj

zj .

Let

V
(n)
ij ≡ − 1

n − 1

∑
j

∂2U (n)

∂zi∂zj

,

we have F
(n)
i = ∑

j V
(n)
ij zj , and the equation of motion for the

ith site is

mz̈i = Fi =
∑

j

V
(2)
ij zj +

∑
n�3

∑
j

V
(n)
ij zj ,

or in matrix form for the whole system:

mz̈ = V(2) · z + V(nl) · z, (3)

where V(2) = [V (2)
ij ]N×N and V(nl) = [

∑
n�3 V

(n)
ij ]N×N corre-

spond to linear and nonlinear force fields, respectively.

Let {λi,ϕi, i = 1, . . . ,N} be the set of eigenvalues and
eigenvectors of V(2), i.e., V(2)ϕi = λiϕi = −mω2

i ϕi , then ϕi

will be the normal mode of the system with eigenfrequency
ωi = √−λi/m. For a given configuration z such that z =∑

j cjϕj , where cj are the normal coordinates, denote c =
[c1, . . . ,cN ]T , Eq. (3) can be written as∑

j

mc̈jϕj =
∑

j

V(2)cjϕj +
∑

j

V(nl)cjϕj . (4)

Left multiplying ϕ
†
i and noting that ϕ

†
i ϕj = δij , where δij = 1

if i = j and zero otherwise, one has

mc̈i = −mω2
i ci +

∑
j

Sij cj , (5)

where

Sij = ϕ
†
i V(nl)ϕj (6)

is the nonlinear mode coupling between mode i and mode j

under the nonlinear interaction, whose absolute value can be
defined as the coupling strength between the normal modes.
Since ϕi is real, we have Sij = ϕT

i V(nl)ϕj . Denoting c =
(c1, . . . ,cN )T , Eq. (5) can be written in the matrix form

mc̈ = � · c + S · c, (7)

where � = diag[λ1, . . . ,λN ] = −m diag[ω2
1, . . . ,ω

2
N ], S =

[Sij ]N×N . Typically, V(nl) depends on the displacements of the
sites and is time varying, thus, Sij will also be time dependent,
and can actually vary significantly during the evolution.
Note that Eqs. (3) and (7) are equivalent, and each provides a
complete description to the dynamical evolution of the system.

C. Normal modes for the square graphene resonator

The normal modes {ϕi, i = 1, . . . ,N} for graphene vibra-
tion are the eigenvectors of V(2), which can be derived from the
linear term U (2) in the potential. The element of V (2) is given
by

V (2)
mn =

⎧⎪⎨
⎪⎩

−24γ, n = m

12γ, n = m’s NN
−2γ, n = m’s NNN
0, otherwise

(8)

where NN denotes nearest neighbors, and NNN denotes
next nearest neighbors. For the graphene resonator shown in
Fig. 1(a), there are 1748 normal modes in total, which is equal
to the number of movable sites.

Due to mirror symmetry of the quadratic potential of the
system, the normal modes are either symmetric (S) or anti-
symmetric (A) with respect to the x or y axes, and are grouped
into four different classes: SS, SA, AS, and AA. Figure 1(b)
shows the first four normal modes, which belong to these
four symmetry classes, respectively. In addition, we have also
derived the dispersion relation from the linear potential U (2)

of the VFF model, which is consistent with previous results
[29]. The minimum and maximum eigenfrequencies from V(2)

of the graphene resonator are 3.04×1011 rad/s (48.4 GHz)
and 1.63 × 1014 rad/s (26.0 THz), respectively.

To characterize the relative magnitude of the linear and
nonlinear potentials, we deform the graphene sheet according
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FIG. 2. The coupling strength |Sik| between the initially excited
mode k and the other modes. The initially excited modes are 1, 592,
1165, and 1746 for (a)–(d), belonging to the four different symmetry
classes, respectively. The corresponding specific energies [Eq. (2)]
are ε = 1.7524 × 10−22 J, 2.1343 × 10−22 J, 1.2134 × 10−22 J, and
3.3978 × 10−22 J. The system is 6.9 nm by 7.2 nm (1748 movable
sites). The first half modes, say i � 874, are in acoustical branch. The
last half modes (i > 874) are in optical branch. The four symmetry
classes are marked by different symbols, as shown in (a).

to the first normal mode, zi ∼ ϕ1,i , and calculate the linear
potential U (2) and the nonlinear potentials U

(4)
1 and U

(4)
2 . It is

found that they have a cross point at specific energy ε ∼ 10−23

J per each site. Thus, if the specific energy is smaller than this
value, the linear potential dominates; while if the energy is
large, then the nonlinear potential dominates.

D. Symmetry classes of the modes

In order to determine the nonlinear interaction between
flexural modes, the graphene sheet is deformed by assigning an
out-of-plane displacement profile corresponding to a particular
normal mode. The total energy can then be calculated with
Eq. (2), and the nonlinear coupling is calculated with Eq. (6).
Figure 2 shows the coupling strength between the initially
excited flexural mode and all the other modes. Modes in
different symmetry classes are plotted with different colors and
symbols. It is clear that, for a given initially excited mode, only
the couplings with modes belonging to the same symmetry
class are significant, while the values for the other modes
are about 10 orders smaller, which can be neglected in the
beginning of the equipartition process. This forms the blockade
that hinders energy flow between different symmetry classes.
Thus, the coupling between the modes is mainly determined by
the symmetry class. This has been noticed in the original FPU
paper [1] that when a symmetric quartic potential is applied
and the lattice is initially perturbed using an odd mode, the
symmetry will be kept and only a few odd modes can be
excited. Note that there are some interclass couplings that
are also discernible, such as the coupling strength between
mode 1 and the first few modes in the SA class as shown in
Fig. 2(a). These couplings play a key role in the process of
equipartition by breaking the barrier and guiding energy flow
between different symmetry classes.

Previous observations show that when the initial excitation
is on the lower modes, typically only modes close to the initially

excited mode will gain energy, and the energy gaining rate
decreases fast as it goes away from that mode [7,10,37]. As
shown in Fig. 2(a), this is the case if we only consider the
modes in the same symmetry class. Even though, it is not
monotonic, as it goes up in the end of the optical branch.
While for other cases [Figs. 2(b)–2(d)], this feature is absent,
where long range correlations are dominant. Another feature
is that the acoustical branch and the optical branch are densely
correlated. For any given initial excitation, its couplings to the
modes in the acoustical branch and modes in the optical branch
are in the same range.

In addition, Fig. 2 indicates that there are fine, hierarchical
structures of the nonlinear couplings in the same symmetry
class, where the variations change systematically when the
mode number changes. This plays an important role in the
formation of metastable states.

E. Setup for molecular dynamics simulation

In our simulations, the graphene sheet is initially deformed
in the z direction proportional to a particular normal mode. The
ineluctable thermal motion and thermal random forces existing
in real systems will expedite the thermalization process. To bet-
ter understand the role of dynamics of this initial thermalization
and equipartition process as in the FPU problem, the thermal
motion and thermal random forces are neglected during our
simulation and the initial velocities are set to zero.

The molecular dynamics (MD) simulations are performed
using the potential in Eq. (2), where the verlet algorithm is used
for integration with a time step of 0.5 fs. When z(t) is solved,
it can be projected to the normal modes to get the normal
coordinates 〈ϕj |z〉 = cj or z = ∑

j cjϕj and the harmonic
energy, i.e., the quadratic part of the energy of mode i is given
by [38,39]

Ei(t) = 1
2m

(
ċi

2 + ω2
i c

2
i

)
. (9)

III. ENERGY FLOW PATHWAY

The route to energy equipartition is mostly determined by
the coupling matrix S. Based on the symmetry properties of the
normal modes, they are grouped into four different symmetry
classes. The couplings (nonlinear interaction caused by the
nonlinear potentials) between modes in the same class are
dominantly larger than those between modes belonging to
different classes. This hinders energy flow between different
classes. As a result, the modes in the same class as the initially
excited mode follow the driven harmonic oscillator equation,
and get energy instantaneously. To break the blockade, for
modes in other symmetry classes and when the initial excitation
energy is small, the normal coordinates follow the Mathieu
type of equation. Thus, if there exists one mode that resides in
the unstable region in the parameter space, this mode will get
energy exponentially, and lift up the whole symmetry class that
it belongs to through the strong couplings. If none of the modes
reside in the unstable region, then they will remain at small
energies for a substantially long time. Due to the hierarchical
organization of the nonlinear couplings within a symmetry
class, when the energy is small, a natural packet is formed and
results in metastable states. The detailed analysis is provided
as follows.
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FIG. 3. (a)–(d) The nonlinear mode coupling |Sik| between the initially excited mode k and the other modes. The initially excited mode
k is 1, 592, 1165, and 1746 for (a)–(d), which belong to four different symmetry classes, respectively. The symbols are the same as Fig. 2,
but only the modes in the same symmetry class are plotted. The corresponding excitation specific energies are smaller than that in Fig. 2, i.e.,
ε = 7.8919 × 10−27, 2.1240 × 10−26, 1.8944 × 10−26, and 1.5085 × 10−26 J. (e)–(h) The plots of

√
Ei(t)/fi(t) versus i except mode k for the

same initial excitations as (a)–(d), respectively, at t = 12 ps.

Starting from Eq. (7), if only one mode is excited in the
beginning, say, the kth mode, then in the initial steps, only
ck has a finite value, while all other normal coordinates have
vanishing values. Therefore, the interactions between these
modes are negligible, and they can be regarded as driven
systems where the driving forces come from the kth mode:

mc̈ ≈ � · c + diag(S) · c + Skck, (10)

where Sk is the kth column of matrix S. The second term on the
right-hand side (RHS) is nonlinear self-interaction, it is kept
as it can be important in certain cases. For a mode i that is
different from k, it becomes

mc̈i ≈ −mω2
i ci + Siici + Sikck. (11)

A. Dynamics of modes in the same symmetry class

For modes belonging to the same symmetry class as the
initially excited mode k, since |Sik| is large (Fig. 2), when
|ci | 	 |ck|, the second term on the RHS of Eq. (11) can be
neglected, and we get an analytically solvable model, the driven
harmonic oscillator:

mc̈i ≈ −mω2
i ci + Sikck. (12)

Note that ck(t) ≈ C̃ cos(ωkt) and Sik(t) ≈ Sik(0) cos2(ωkt),
thus,

mc̈i ≈ −mω2
i ci + Sik(0)C̃ cos3(ωkt), (13)

which is a forced harmonic oscillator. The analytical solution
is

ci(t) = [
3
(
ω2

i − 9ω2
k

)
cos(ωkt) + (

ω2
i − ω2

k

)
cos(3ωkt)

+ 4
(
7ω2

k − ω2
i

)
cos(ωit)

]/[
4m

(
9ω4

k − 10ω2
kω

2
i

+ω4
i

)] × C̃Sik(0), (14)

the corresponding velocity is

ċi(t) = −[
3
(
ω2

i − 9ω2
k)ωk sin(ωkt)+3

(
ω2

i − ω2
k

)
ωk sin(3ωkt)

+ 4
(
7ω2

k − ω2
i

)
ωi sin(ωit)

]/[
4m

(
9ω4

k − 10ω2
kω

2
i

+ω4
i

)] × C̃Sik(0). (15)

The instantaneous energy of mode i is given by

Ei(t) = 1
2m

[
ċi

2(t) + ω2
i c

2
i (t)

] ∝ S2
ik(0). (16)

The time varying part of Ei(t) can be denoted as fi(t), thus,
Ei(t) = fi(t)S2

ik(0). Therefore, for a given initial excitation on
mode k, in the beginning of the evolution, the energy of the
modes is solely determined by the nonlinear mode coupling
Sik evaluated at the t = 0. Thus, Sik determines the energy
flow from the initial excited mode k to the other modes. On
the other hand, if one gets Ei(t) from simulation, then one can
infer Sik(0), i.e., by

√
Ei(t)/fi(t).

Figures 3(a)–3(d) show the nonlinear mode coupling
strength |Sik(0)| for four modes belonging to different sym-
metry classes. In order to check the validity of the solution
(16), the MD simulations are performed for the same initial
excitations as in Figs. 3(a)–3(d), and the energy spectrum
Ei(t) is obtained. Figures 3(e)–3(h) plot

√
Ei(t)/fi(t) versus

i at t = 12 ps (24 000 time steps). It is clear that for all the
four cases

√
Ei(t)/fi(t) recover the nonlinear mode coupling

|Sik(0)| exactly. Note that, the dynamics of the modes in the
same symmetry class, given by Eq. (13), is not resonant and
only involves the coupling between the mode i and the initially
excited mode k, which behaves as a driven harmonic oscillator.
This equation is only valid at the beginning of the simulation
when the initial excited energy is small. When the initial excited
energy increases or the time is large, the coupling between the
modes other than the initially excited one will become large,
which will result in the energy flow between them.

Figure 4 compares the energy spectra for full molecular
dynamics simulation [Eq. (3), Figs. 4(a) and 4(e)], the full
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FIG. 4. Comparison of the energy spectra obtained from full molecular dynamics simulation [Eq. (3), panels (a) and (e)], the full mode
coupling dynamics simulation [Eq. (7), panels (b) and (f)], the simplified version of the mode coupling dynamics simulation [Eq. (10), panels
(c) and (g)], and the further simplified version of the mode coupling dynamics simulation [Eq. (13), panels (d) and (h)]. The excitation is on
the first mode. The initial energy is 2.7242 × 10−23 J. The upper panels are for t = 0.027 ps, and the lower panels are for t = 23.995 ps.

mode coupling dynamics simulation [Eq. (7), Figs. 4(b) and
4(f)], the simplified version [Eq. (10), Figs. 4(c) and 4(g)], and
the further simplified version [Eq. (13), Figs. 4(d) and 4(h)].
One can see that the energies, especially those for the first
symmetry class, are the same for the full molecular dynamics
simulation and the full mode coupling dynamics simulation,
e.g., Fig. 4(a) versus 4(b) and Fig. 4(e) versus 4(f). For the
simplified version, when t is small [Figs. 4(c) and 4(d)], it
is identical to the full version. For longer time [Figs. 4(g)
and 4(h)] there appear discrepancies comparing with the full
simulation [Figs. 4(e) and 4(f)], but the main structures both
inside cluster and between clusters are kept. The discrepancy
between Figs. 4(f) and 4(g) comes from the neglect of the
couplings between the modes other than the initially excited
one in Fig. 4(g). As a result, the energy flow between these
modes is neglected, and their energies have a larger span
than those in Fig. 4(f). In other words, the energy is more
uniform in Fig. 4(f) than in Fig. 4(g). Figures 4(g) and 4(h)
are almost identical to each other. This implies that the further
simplification of removing the nonlinear self-interaction term
has no effects to the dynamical evolution of the modes.

B. Dynamics of modes in different symmetry classes

For dynamics of modes in different symmetry classes, since
|Sik| is small (Fig. 2), the second term on the RHS of Eq. (11)
is also important. To proceed, a detailed expression of Sij is
required. In particular, if the nonlinear terms are of the same
order, say, U (4), as in our graphene resonator case, then

Vpq
(4) = −1

3

∂2U (4)

∂zp∂zq

=
∑
m,n

Cpqmnzmzn, (17)

where Cpqmn are the coefficients and can be determined from
the expression of U (4). According to z = ∑

r crϕr , the mth
element of z can be written as zm = ∑

r crϕr,m, where ϕr,m is

the mth element of ϕr . Thus, we have

V (4)
pq =

∑
m,n,r,s

Cpqmnϕr,mϕs,ncrcs . (18)

As a result, the mode coupling between the j th normal mode
and ith normal mode can be written as

Sij =
∑
p,q

ϕi,pV (4)
pq ϕj,q . (19)

Substituting Eq. (18) into Eq. (19), we have

Sij =
∑

p,q,m,n,r,s

Cpqmnϕi,pϕr,mϕs,nϕj,qcrcs

=
∑
r,s

Wij,rscrcs,

(20)

where

Wij,rs =
∑

p,q,m,n

Cpqmnϕi,pϕr,mϕs,nϕj,q . (21)

Note that the above expansion for Sij is advantageous only
for analytical analysis, numerically it will require too much
computation power for summation over the six indices, e.g.,
∼N6 calculations for each Sij , and ∼N8 calculations for
the whole S matrix. This renders the expansion useless for
large systems. The numerical method that calculates Sij =
ϕT

i V(nl)ϕj directly is more efficient once V(nl) is obtained.
The two terms on the RHS of Eq. (11), neglecting the

influence from other modes, can be written as

Siici =
∑
r,s

Wii,rscrcsci � Wii,kkc
2
kci + Wii,kickc

2
i

+ Wii,ikckc
2
i + Wii,iic

3
i ,

Sikck =
∑
r,s

Wik,rscrcsck � Wik,kkc
3
k + Wik,kic

2
kci

+ Wik,ikc
2
kci + Wik,iickc

2
i . (22)
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Substituting Eq. (22) into Eq. (11), the motion equation of ci

can be written as

mc̈i = −mω2
i ci + S1c

2
kci + S2ckc

2
i + S3c

3
i + Skc

3
k, (23)

where

S1 = Wii,kk + Wik,ki + Wik,ik,

S2 = Wii,ki + Wii,ik + Wik,ii ,

S3 = Wii,ii , Sk = Wik,kk (24)

are constants. When the initial excitation energy is small, ck

can be approximated as ck(t) ≈ ck(0)cos(ωkt). Note that when
|ci | 	 |ck|, collecting the terms based on the orders of ck in
Eq. (22) and keeping only the highest order term of ck , one has
only Skc

3
k , thus Skc

3
k ≈ Sikck , returning to Eq. (12).

Let

t̃ = ωkt, Qi = S1ck(0)2

4mω2
k

,

Ai = 1

ω2
k

[
ω2

i − S1ck(0)2

2m

]
,

gi (̃t) = 1

mω2
k

(S2ckc
2
i + S3c

3
i + Skc

3
k), (25)

Eq. (23) becomes

d2ci

dt̃ 2
+ [Ai − 2Qicos(2̃t)]ci = gi (̃t). (26)

If gi (̃t) = 0, then it becomes the Mathieu equation

d2ci

dt̃ 2
+ [Ai − 2Qicos(2̃t)]ci = 0, (27)

which describes the phenomena of parametric resonance. In
particular, depending on the values of Qi and Ai , the parameter
space (Qi,Ai) is divided into stable region and unstable region.
When the parameters (Qi,Ai) reside in the unstable region,
which originates from (Qi,Ai) = (0,n2), where n is an integer,
ci diverges exponentially [40]. For nonzero but small gi (̃t), the
boundary of the unstable region is basically the same [4]. The
nonlinear terms of ci in gi (̃t) balance the divergence when
ci is large, keeping ci a finite value [41,42]. The term Skc

3
k

in gi (̃t) introduces driving from mode k. The key parameters
(Qi,Ai) depend on the initial excitation energy through ck(0).
In general, when the initial excitation goes to zero, Qi → 0
and Ai → (ωi/ωk)2. As the initial excitation energy becomes
larger, Qi increases and Ai decreases. Therefore, for a given k,
if there exists some mode i such that ωi/ωk is a little bit larger
than an integer n, then as the initial excitation energy increases,
since Qi increases and Ai decreases, it will intersect with the
unstable region originated from (Qi,Ai) = (0,n2). When this
happens, this mode will gain energy exponentially until its
energy reaches comparable value close to Ek . In the meantime,
because the strong couplings between this mode and other
modes in the same symmetry class, the whole class will be
lifted up, expediting energy equipartition.

Figure 5(a) shows the unstable region for the Mathieu equa-
tion. In the case when the first mode is excited initially with spe-
cific energy ε = 1.1148 × 10−24 J, we have calculated (Qi,Ai)
for the first four modes, and plotted in Fig. 5(a) as crosses.
It is found that (Q3,A3) resides in the unstable region, thus,

FIG. 5. (a) The stable (white) and unstable (blue or gray) regions
of Mathieu equation. Initially, mode 1 is excited with specific energy
ε = 1.1148 × 10−24 J. The crosses mark the parameters (Qi,Ai)
calculated from Eqs. (24) and (25) for the first four modes. (b)
The time evolution of the harmonic energy for the first four modes.
(c)–(f) The energy spectrum at different time instances as marked by
blue arrows in (b), the corresponding time is 0.02, 4.18, 8.90, and
300 ns, respectively. Inset of (e): zoom-in of the energy spectrum for
the lower modes.

mode 3 (Q3,A3) is unstable. Figure 5(b) plots the harmonic
energy for the first four modes from the MD simulation. The
energy of mode 3 increases exponentially. At around t = 9 ns,
the energy of mode 3 becomes comparable to mode 1, the
initially excited mode. In the meantime, the energies of modes
2 and 4 are basically unchanged. Note that as mode 3 gains
energy, the whole class that has the same symmetry is lifted
up through couplings with mode 3 [Figs. 5(d) and 5(e)]. At
this time, the energy of the modes close to mode 1 decreases
exponentially as the mode number increases, which can be
regarded as a “natural package” [Fig. 5(e)]. However, this
“package” is not stable, as the excitation of the two different
classes of modes changes the coupling matrix S substantially,
especially the interclass couplings, which expedites the energy
equipartition process. As Fig. 5(b) shows, for a longer time,
when t > 100 ns, the energy of modes 2 and 4 also increases
gradually. This can be seen in Fig. 5(f), that not only classes
2 and 4 gain energy, but the fine structure in classes 1 and 3
is also diminished. Modes in classes 2 and 4 will gain energy
gradually, keeping the energy spectrum in the same profile,
until arrive comparable energy with the classes 1 and 3. This
profile with different behaviors in the acoustic branch and
the optical branch will become flattened afterwards, reaching
equipartition. The procedure from Fig. 5(f) to equipartition is
the same as the cases with a much larger initial energy, but is
much slower, or with a much larger time scale.

However, when the initial energy is a little bit larger
(1.4428 × 10−24 J), mode 3 moves out of the unstable region,
and none of the modes except those in class 1 gain energy,
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FIG. 6. The same plots as Fig. 5 except that the initial excitation
energy is a little bit larger: ε = 1.4428 × 10−24 J. The time instances
for the energy spectrum (c)–(f) are 0.03, 14.97, 167.90, and 300 ns,
respectively. Inset of (f): zoom-in of the energy spectrum for the lower
modes.

as shown in Fig. 6. Furthermore, the energies for the first
few modes in class 1 decrease exponentially as the mode
number increases, as shown in Fig. 6(f). Note that the plot is
in logarithmic scale, thus, the first few modes occupy most of
the energy of the system, leading to the formation of “natural
packets,” where a few modes gain energy quickly and form
a stable combination in a substantially long period [8]. This
provides concrete evidence for the metastability when the
energy is small, that the system can be stable for an extremely
long period, e.g., 300 ns, before equipartition might occur.

IV. DISCUSSIONS AND CONCLUSION

To conclude, we have developed a numerical procedure
to characterize the nonlinear interaction between the nor-
mal modes. Based on this method, the coupling strength
between normal modes can be estimated, which can predict
the formation of “natural packets” in the normal coordinates’

profile, and determine the pathway of the energy flow during
the thermalization process. Note that our method is general and
is applicable to arbitrary nonlinear lattices with smooth poten-
tials.

For the graphene lattice, the flexural modes are divided into
different classes owing to their symmetries, where intraclass
interactions are significantly stronger than interclass interac-
tions. Therefore, in the case of small initial excitation energy,
only the modes belonging to the same class can be excited,
forming a natural packet based on the hierarchical structure
in Sik , leading to metastable states. Interclass barrier can be
broken if there is a mode that falls in the Mathieu instability
region, that it gains energy exponentially with time, lifting
the whole class of modes with the same symmetry. Although a
natural packet seems to form in the beginning, Sij could change
substantially during the evolution. As a result, the modes in
the other symmetry classes will also gain energy, leading to
expedited equipartition.

Note that the above picture about energy flow pathway is
general, as our analysis, e.g., Eqs. (10)–(27), are independent
to the particular mode that is initially excited. For different
initial modes, the energy flow rates and the detailed pathways
should be different, but the phenomena are qualitatively the
same. These results reveal the dynamical organization and the
route to equipartition of the flexural modes, which are crucial
to the understandings of thermalization of the flexural modes
and their peculiar contributions to the high heat conductivity
and nonlinear vibrations.
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APPENDIX: FORCE FIELD FOR THE NONLINEAR
POTENTIALS

The force fields V(4)
1 and V(4)

2 for the nonlinear potentials
U

(4)
1 and U

(4)
2 can be derived as

V
(4)

1,mn =

⎧⎪⎨
⎪⎩

−∑
j=m’s NN

α

a2
0
(zj − zm)2, n = m

α

a2
0
(zn − zm)2, n = m’s NN

0, otherwise
and

V
(4)

2,mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∑
j,k = m’s NN
j 
= k

2β

3a2
0

[(zk − zm)(2zj+zk − 3zm)+(zj − zm)(2zk+zj−3zm)]

−∑
j=m’s NN

∑
l = j ’s NN

l 
= m

2β

3a2
0
(zl − zj )2, n = m

−∑
k = m’s NN

k 
= n

2β

3a2
0
[(zk − zm)(3zm − 2zn − zk)]

+∑
l = n’s NN

l 
= m

2β

3a2
0
[(zl − zn)(zl + 2zm − 3zn)], n = m’s NN

− 4β

3a2
0
(zm − zj )(zn − zj ), n = m’s NNN, j = m and n’s NN

0, otherwise.
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