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Infima statistics of entropy production in an underdamped Brownian motor
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The second law of thermodynamics states that the entropy never decreases for isolated macroscopical systems,
which defines the arrow of time. For small systems, although the entropy increases on average, due to strong
fluctuation, it may encounter a temporary decrease. The probability of negative entropy production follows the
fluctuation theorem. Recently, it has been demonstrated theoretically the infima law that there exists a lower
bound for the average values of the minima of the negative entropy production, which is −kB. In this paper,
we have constructed a horizontal Brownian motor immersed in a granular gas, whose dynamics is governed
by the underdamped stochastic process. By recording the angular motion of the motor and measuring the key
parameters of the system, we experimentally demonstrate that, despite the nonideal elements in the experiments
and that the complex underlying dynamics, the average value of the minima of the negative entropy production
is still bounded by −kB, which may invoke further theoretical investigations of the applicability of the infima law
in nonideal realistic small systems.
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I. INTRODUCTION

The second law of thermodynamics infers the irreversibil-
ity of natural processes in isolated macroscopic systems,
where in general the total entropy of the system is a nonde-
creasing quantity. For mesoscopic and microscopic systems,
or equivalently macroscopic but small systems [1] such as the
granular gases, the scale of fluctuation can be large and results
in temporarily decrease of the total entropy or a negative
entropy production. It has been found that such negative en-
tropy productions follow the fluctuation theorem [2–7], which
can be regarded as a microscopic description of the second
law of thermodynamics. It states that the ratio between the
probability of a positive total entropy production �Stot and
that for a negative one but with the same amplitude will be an
exponential function of �Stot in a finite time duration,

P(�Stot )

P(−�Stot )
= e�Stot/kB , (1)

where kB is the Boltzmann constant. There are numerous
experimental or numerical tests that verified the fluctuation
theorem, including granular matter [8–13], harmonic oscil-
lator [14,15], optical trap [16,17], circuit systems [18–21],
RNA folding experiment [22], and optomechanical systems
[23], etc.

Fluctuations of entropy production lead to a fundamental
question: Will there be a minimum value of negative entropy
production? A recent work [24] by Neri et al. provided an
affirmative answer for nonequilibrium steady processes. They
defined the infimum entropy production in a time duration
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tL as Sinf(tL ) = inf0�t ′�tL Stot(t ′), and by assuming that the en-
tropy production in a nonequilibrium state is martingale, they
found that the distribution of the negative entropy production
is exponential when tL is large and the average value of this
negative infimum satisfies

〈Sinf(tL )〉 � −kB, (2)

where the condition of equality is tL → ∞. This infima law
circumscribes the variation of entropy: No matter how fast
the entropy production rate is, the mean value of the global
infimum is always larger than −kB.

Very recently, Singh et al. investigated the infima law of
the negative fluctuations of stochastic entropy production in
an electronic double-dot system [25], verified that for dif-
ferent parameter values, the average value of the minima
of the negative entropy production always lie above −kB.
The double dot structure enables the measurement of the
direction of single-electron currents, which is key to mea-
sure the entropy production. Though the apparatus in the
experiment is sophisticated enough to measure the single-
electron charging effect, the dynamics is rather simple that
the system contains only four allowable states and the dy-
namics is governed by the master equation describing the
hopping processes between these states. Theoretically, Neri
et al. examined a simple overdamped drift-diffusion model
with periodic boundary condition. Due to the simplicity of the
dynamics, the extreme value problem of the entropy produc-
tion was obtained analytically, and the infima law has been
corroborated [24]. In addition, the extreme value problem
of the entropy production has also been obtained analyti-
cally for general, multidimensional, overdamped Langevin
processes [26]. The overdamped model is popular in exploring
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dynamical and thermodynamic properties of nonequilibrium
small systems [24,27–30].

However, realistic systems may be far from the over-
damped limit. For example, the electronic circuit system
[19–21], the diffusion of drugs [31], and the Brownian mo-
tor immersed in a granular gas [9] are all described by
the underdamped equation. For underdamped systems, the
most significant difference from the overdamped system is
the impact of inertia, resulting in nontrivial exponential ve-
locity correlations, leading to distinct diffusion dynamics.
In contrast, for overdamped Langevin systems, the motion
is completely dominated by the white noise, hence it is
delta correlated. Our interest is thus in such realistic systems
with underdamped stochastic processes and nonideal situa-
tions presented in the experiment, will this infima law still
hold? Our results using the underdamped granular Brown-
ian motor provide an affirmative answer. Therefore, despite
the remarkable inherent difference between underdamped and
overdamped dynamics and in the presence of all kinds of
nonidealities, they seem to follow the same infima law [24].
This may invoke further investigations of the applicable range
of theories in realistic nonideal small systems.

The rest of this paper is organized as follows. In Sec. II,
the experimental setup of the Brownian motor in a granular
gas is articulated, and the Langevin equation is adopted to
describe the dynamics of the motor. Section III calculates the
total entropy production �S using two different procedures to
cross-validate the results and demonstrates that the total en-
tropy production satisfies the fluctuation theorem reasonably
well, with deviations when |�S| is large. Section IV shows
the infima statistics of the total entropy, that for the parameter
range where the calculations and statistics are valid, the infima
law is well satisfied. Discussions and conclusion are provided
in Sec. V.

II. THE BROWNIAN MOTOR

A. Experimental setup

Following the pioneering experimental setups for granular
Brownian motor [11,32–38], we have carried out a system-
atic experimental investigation of the infima law of the total
entropy production in a granular Brownian motor. Figure 1
shows the schematic diagram of the experiment. A Brownian
motor made of resin is immersed in a driven granular gas
[9,35] in a circular container with a height of 2.5 cm and
diameter d = 18.0 cm. The granular materials are plastic balls
with a 6 mm diameter, and there are N = 224 particles in
the container. The resulting filling rate, i.e., the ratio of the
area occupied by the granular particles and the area of the
container, is 0.2489. The container is fixed on a vibration table
(V.T.) that can vibrate vertically in the frequency range from
2 to 1000 Hz. In the experiment, the frequency of vibration
is fixed at 100 Hz and the amplitude is set to 0.15 mm. Note
that although the V.T. is set to vibrate vertically, it may have
nonnegligible horizontal vibration motion. To be concrete, we
have measured the horizontal motion via a laser rangefinder,
and found that the amplitude of the horizontal vibration is
about 1.5 μm, which is only about 1% of the vertical vibra-
tion. Thus the horizontal motion of the V.T. can almost be

FIG. 1. The experimental setup. The Brownian motor with a
circular tracking mark (the black point on the motor) is fixed on the
floating cover. The vibration table (V.T.) supplies vertical sinusoidal
vibration and maintains the steady granular gas state. The vibration
amplitude is 0.15 mm, and the frequency is 100 Hz. The distance
between the center of the motor and the center of the mark point is
lm = 6.0 cm, and the diameter of the container is d = 18.0 cm.

neglected and is not likely to introduce observable effects to
the motor system. In addition, here the exact values of the
vibrator parameters such as the vibration frequency and the
amplitude are irrelevant to our main findings insofar as the
granular gas state is maintained steadily. The motor has two
paddles with 1.0 cm in both width and height. Its center is
connected by a ball-bearing and a shaft to the cover of the
container which is isolated from the V.T. and is static during
the experiment. Two opposite-side surfaces of the paddles are
attached with rubber tapes to break the symmetry, as shown in
Fig. 1. The collision coefficient is different, which is smaller
for the side with the rubber tape. Due to the conservation
of momentum, the collision of the particles to the side with
rubber tapes transfers a smaller momentum to the motor than
that to the other side, leading to a net force on average from the
other side to the side with the rubber tape. Therefore, under
the collision from the particles, this asymmetry results in a
fluctuated drift motion of the motor.

There is a black point with a diameter of 8.2 mm at the end
of one paddle to mark the angular position of the motor, which
is larger than the plastic balls and can be easily recognized.
The length between the center of the motor and the center of
the mark is lm = 6.0 cm. A high-speed complementary metal
oxide semiconductor camera (Basler, acA2040-180 km) on
the top of the vibration table is used to capture the state of
the motor, and we use the ImageJ software [39] to acquire the
position of the black mark for each frame. Then we can obtain
the trajectory of the black mark, and henceforth the angle θ (t )
of the motor at each time instance t . This method can avoid
touching the motor when measuring the motor’s position,
which could prevent additional friction. The angular veloc-
ity ω(t ) can thus be approximated as [θ (t + t f ) − θ (t )]/t f ,
where t f is the time elapsed between two adjacent frames.
To be specific, after tracking the position (x(t ), y(t )) of the
center of the black mark on the Brownian motor relative to
the motor’s center, after some algebra, the angular velocity is
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FIG. 2. (a) The distributions of angular velocity. The red circles
are the distribution for 0 < t � 3 × 106 frames, the green pluses for
t = 3 × 106 < t � 6 × 106, and the blue crosses for 6 × 106 < t �
9 × 106. All of the three distributions are Gaussian and coincide with
each other well. The curve is Eq. (9) with parameter values derived
from the experiments. Inset shows the distribution for all the data
in the linear scale, where the asymmetry for ω to −ω is clear. The
mean and the standard deviation of ω is −0.087 rad/s and 0.356
rad/s, respectively. (b) The autocorrelation function for ω(t ). The
slope of the red line indicates the characteristic time of the Brownian
motor: τ = |1/slope| = 0.112 s. (c) The sampling method for this
experiment. The yellow blocks indicate discretization of ω. The time
duration between two adjacent ωis (i = 1, 2) is �t .

approximately

ω(t ) ≈ 1

t f
arcsin

1

l2
m

[x(t )y(t + t f ) − x(t + t f )y(t )].

Note that the angular velocity should be the instantaneous
value. To approximate the instantaneous angular velocity, the
frame rate of the camera should be as high as possible. In
our experiment, the frame rate is 500 fps, leading to a time
duration between two frames t f = 2 ms. The exposure time
of a single frame is te = 0.5 ms to ensure that the camera
can record the position of the mark with a high precision. We
have recorded 5 h of data in the experiment, which has in total
9 × 106 frames. Figure 2(a) plots the distribution of the values
of ω in three different time segments: 0 → 3 × 106 frames,
3 × 106 → 6 × 106 frames, and 6 × 106 → 9 × 106 frames.
It is clear that they all follow the same Gaussian distribution,
thus the system is stationary and the results are stable during
the time of recording.

B. The Langevin equation and the key parameters

The motion of the asymmetric Brownian motor can be
described with the underdamped Langevin equation:

d

dt
ω(t ) = −γ

I
ω(t ) + M

I
+ η(t ), (3)

where I is the moment of inertia, γ is the coefficient of
viscosity, and ω(t ) is the angular velocity. Note that here the
trajectory is the time series of the angular velocity. M stands
for the constant torque of the averaging effect of the collisions
from the granular particles to the asymmetric motor. η(t ) is a
Gaussian white noise due to the fluctuation of the collision,
which follows the fluctuation-dissipation theorem [40,41],

〈η(t )η(t ′)〉 = 2Dδ(t − t ′), (4)

where D = kBT γ /I2 and T is the motor’s effective ki-
netic temperature which can be obtained as T = I (〈ω2〉 −
〈ω〉2)/kB. Note that although the results are insensitive to
the detailed parameter values, the vibration frequency, am-
plitude, and the number of granular particles should be in
a proper range that the granular particles are maintained in
a gaseous state and the collisions with the motor are fre-
quent, to guarantee that η(t ) can be approximated well by
the Gaussian white noise (see Appendix A). The moment
of inertia I is measured by a torsional pendulum, which is
I = (3.505 ± 0.008) × 10−5 kg m2. Our experimental mea-
surement yields 〈ω2〉 = 0.134 rad2/s2, and the mean drift
speed 〈ω〉 = −0.087 rad/s, as the motor rotates in a counter-
clockwise direction. The temperature of the Brownian motor
is thus T = 4.45 × 10−3 mJ/kB. The granular temperature is
measured as well with a tracer particle that is painted with
a different color. The mass of the particle is m = 1.284 ±
0.003 g, and the measured mean square velocity is 〈v2〉 =
7.36 × 10−3 m2/s2, yielding a temperature of the granular
environment Tg = 4.72 × 10−3 mJ/kB. The motor’s effective
temperature T is a little bit lower than that of the granular
gas Tg as the collision between the granular particle and the
motor is not ideally elastic. Note that T and Tg are the effective
kinetic temperature of the Brownian motor and the granular
gases, respectively. They are not related with the actual room
temperature. Since the motor’s effective temperature T is ac-
companied with the entropy, the precision of its value will
be critical for determining the entropy. This requires that in
measuring the angular velocity ω(t ), the time interval should
be minimum. In our case, it is t f , which is only 2 ms.

If the Gaussian white noise is ignored, then Eq. (1) has an
analytical solution: ω(t ) = 〈ω〉 + ω0exp[−t/τ ], where 〈ω〉 =
M/γ , 〈ω〉 + ω0 is the initial angular velocity, which is typi-
cally zero as the system starts from the static state, and τ =
I/γ is the characteristic time of the system. To determine τ ,
it is noted that the autocorrelation time of a Brownian motion
has the form [41]:

Cω(t1, t2) = 〈ω(t1)ω(t2)〉 = kBT

I
e−|t1−t2|/τ . (5)

It is convenient to normalize the function Cω and plot in the
logarithmic scale, then the slope of the fitting to the data yields
±1/τ . To be specific, the red fitting line in Fig. 2(b) indicates
that the characteristic time of the system is τ = 0.112 s [42].

III. THE TOTAL ENTROPY PRODUCTION
AND THE FLUCTUATION THEOREM

A. The total entropy production

In the experiment, the asymmetric motor is immersed in the
granular bath, which provides an external torque M (exerting
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work into the motor), noise η(t ), and also the friction due
to the random collisions. Note that for the motor system the
ball-bearing introduces an additional friction force, small but
finite. Although it can be neglected in our case as it is one
order smaller than that from the collision with the granular
particle, it could be crucial when the granular particles are
less dense.

Since the motor only has a rotational degree of freedom,
it is equivalent to a one-dimensional particle with a biased
random driven force, providing external work and energy
fluctuations to the particle, which then flows to the thermal
bath. As the whole system is composed of the motor and
the granular environment, the total entropy production �Stot

equals to a sum of the entropy production of the motor �Ssys

and the entropy production of the environment �Senv due to
the motor [28], that is,

�Stot = �Senv + �Ssys, (6)

where

�Ssys = kB ln [P(ω0)/P(ω1)] (7)

is the Gibbs entropy change of the motor and ω0 and ω1 are
the states of the system at given two time instances, t0 and t1.

The distribution of the angular velocity in the system en-
tropy production �Ssys can be counted from the measured
data. Alternatively, it can be obtained analytically, as follows.
The corresponding Fokker-Planck equation of the Langevin
equation (3) is

∂P(ω, t )

∂t
= − ∂

∂ω

[(
−γ

I
ω + M

I

)
P(ω, t )

]

+ D
∂2

∂ω2
P(ω, t ), (8)

whose stable solution at t0 is

P(ω0) = C exp
[( − 1

2 Iω2
0 + Mτω0

)
/(kBT )

]
, (9)

where ω0 = ω(t0), τ = I/γ , and C is a normalization con-
stant. At t1, the probability distribution of ω1 = ω(t1) has the
same form

P(ω1) = C exp
[( − 1

2 Iω2
1 + Mτω1

)
/(kBT )

]
. (10)

Employing Eqs. (9) and (10), we obtain the system entropy

�Ssys =
I
2

[
ω2

1 − ω2
0

] − Mτ [ω1 − ω0]

T
. (11)

For the motor, from t0 to t1, one has the first law of
thermodynamics �Ek = �W + �Q, where �Ek = 1

2 I (ω2
1 −

ω2
0 ) is the increased kinetic energy of the motor, �W =

M
∫ t1

t0
ω(t )dt = M(θ2 − θ1) is the injected work to the motor

by the granular gas, �Q is the heat from the environment to
the motor. Therefore −�Q is the heat flow from the motor
into the granular environment. Thus the environment entropy
change due to the motor is given by [9]

�Senv = −�Q/T = (�W − �Ek )/T

= [
M(θ1 − θ0) − 1

2 I
(
ω2

1 − ω2
0

)]
/T, (12)

where T is the effective kinetic temperature of the granular
environment felt by the motor. From this equation, �Senv can

be obtained directly from the measured time series of θ (t )
and the derived ω(t ), where the values of the parameters M,
I , and the effective temperature T can be deducted from the
experimental data. Combining Eqs. (12) and (11), the total
entropy production can be written as

�Stot = M
θ1 − θ0 − τ (ω1 − ω0)

T
≡ �S(I)

tot . (13)

Here we denote the total entropy production as �S(I)
tot , since in

the following, we will introduce a different procedure to cal-
culate the total entropy production that only based on counting
the angular velocity trajectories.

B. The trajectory-based total entropy production

From Eq. (12), in the calculation of �Senv, the values of the
parameters M, I , and T need to be acquired from the exper-
imental data in advance. Any inaccuracy in evaluating these
parameters will cause uncertainty in the estimation of �Senv.
An alternative method is to calculate the trajectory entropy
�Straj [28], which only needs to count the trajectory of the
angular velocity in Eq. (3) and can be a good approximation to
the environment entropy �Senv. This has been demonstrated in
a circuit system [21]. In addition, the system entropy [Eq. (7)]
can also be counted from the trajectory time series. Thus the
total entropy production can be expressed in terms of the
angular velocity trajectory only, eliminating possible uncer-
tainties occurred in estimating intermediate parameters.

Concretely, the trajectory entropy is related to the ratio of
the probability to observe a forward trajectory −→ω and the
probability to observe its time-reversed counterpart ←−ω [28]:

�Straj = kB ln
P(−→ω )

P(←−ω )
. (14)

Practically, it is convenient to approximate the trajectory in
phase space by a sequence of jumps, i.e., ω0, ω1, . . . , ωn,
described by Markov processes in discrete time t j = j�t ,
where j runs from 0 to n with n�t = tn [43]. The correspond-
ing reverse trajectory is ω̃ j = T̂ ωn− j = −ωn− j . Then Eq. (14)
becomes

�Straj = kB ln
P(ωn|ωn−1) · · · P(ω1|ω0)

P(ω̃n|ω̃n−1) · · · P(ω̃1|ω̃0)
. (15)

Furthermore, the angular velocity of the Brownian motor
is in principle a continuous real number. Strictly speaking, it
is almost impossible to acquire a trajectory that is precisely
the time-reversed counterpart for a given forward continuous
trajectory. Thus, we take a coarse-graining process on angu-
lar velocity, i.e., discretize ω using small bins, as shown in
Fig. 2(c). The size of the bin should be chosen properly as it
will lose much of the details of the angular velocities if the
bin is too large, and if the bin is too small, it will decrease
the number of corresponding reverse trajectories or even lead
to no reverse trajectories for a considerable amount of forward
trajectories, rendering unreliable statistics. Both limiting cases
will lead to inaccurate results. In the following, the size of the
bin is chosen as ωbin 
 0.1 rad/s, which is about 1/20 of the
range from the minimum value to the maximum value of the
angular velocity.
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In Appendix B, following a similar procedure of Ref. [21]
and using the analytic solutions of the Fokker-Planck equa-
tion (8), for the Brownian motor, we have demonstrated
theoretically the equivalence of the two-step trajectory
entropy production �S(2)

traj = kB ln[P(ω0 → ω1)/P(−ω1 →
−ω0)] and the environment entropy production �Senv in the
small time interval limit. This has also been corroborated
directly from the experimental measurements. In addition,
we have demonstrated that for multistep trajectory entropy
production �S(n)

traj, theoretically, it will agree with the envi-
ronment entropy production even better (see Appendix C).
Indeed, the mean values of the two entropy production agree
in a larger range of the time interval when the number of
steps is larger. But due to the limited data, the statistics for
multistep trajectory entropy production is not so sufficient,
resulting in a degraded agreement between the specific time
series of the trajectory and environment entropy productions.
In the following, we choose two-step trajectories, i.e., each
trajectory contains only two elements, [ω0, ω1], where t1 =
t0 + �t [see Fig. 2(c)], to ensure that there are many enough
reverse trajectories for statistics. With these conditions, the
fraction of forward trajectories with no reverse counterparts
is less than one percents. Note that the transition from ω0 to
ω1 should be Markovian, which cannot be entirely fulfilled in
the experiments. However, when �t is much larger than the
time interval t f between two adjacent frames, it is still a good
approximation (Appendix D). In dealing with the data, �t is
selected from 0.01 s to 0.40 s, while t f = 0.002 s, and the
process is approximately Markovian.

Based on the trajectory statistics only, we define

�S(II)
tot = �Straj + �Ssys

= kB ln
P(ω1|ω0)

P(−ω0| − ω1)
+ kB ln

P(ω0)

P(ω1)
. (16)

Here we have employed the two-step trajectory entropy. In
calculating the trajectory entropy and the system entropy, the
probability function can be obtained directly by counting the
angular velocity trajectories, thus all quantities in this expres-
sion can be obtained by counting the trajectories of the angular
velocity only.

Figure 3 shows the time series of �Stot for the two cases,
with �t taking three representative values. For �t = 0.01 s
[Fig. 3(a)], the range of �Stot is small, and the two en-
tropy definitions agree with each other well. For �t = 0.04 s
[Fig. 3(b)], the range of �Stot becomes larger, and the two
entropy definitions still agree well, just occasionally, one can
see the deviation between the two. For �t = 0.11 s ≈ τ

[Fig. 3(c)], the agreement is reasonably well, where the de-
viation between �S(I)

tot and �S(II)
tot is noticeable, which can

be attributed to the systematic deviation between the tra-
jectory entropy and the environment entropy when �t � τ .
Comparing �Stot for different �t , Figs. 3(a) and 3(b) share
many common features regarding the most dominant peaks or
dips, although the timescale in Fig. 3(b) is four times larger.
Figure 3(c) is further coarse grained, that despite the slow
varying trend, the sharp fluctuations in Figs. 3(a) and 3(b) are
no longer noticeable.

(a)

(b)

(c)

t (s)
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/
k

B
Δ

S
to

t
/
k

B
Δ

S
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B

FIG. 3. [(a)–(c)] The time series of the total entropy production
for different �t . (a) �t = 0.01 s, (b) �t = 0.04 s, and (c) �t = 0.11
s. The red dashed curve is �S(I)

tot [Eq. (13)]; the blue solid curve is
�S(II)

tot [Eq. (16)].

C. The fluctuation theorem

The fluctuation theorem is a necessary condition for the
statistics of infima [24]. Here we examine the fluctuation
theorem Eq. (1) using the experimental data. The symmetry
function Sym(�S) = ln P(�S)

P(−�S) for the total entropy produc-
tions is shown in Fig. 4. It is apparent that when �Stot is
small, the symmetry function Sym(�Stot ) equals to �Stot/kB

for both the entropy production expressions, validating the
fluctuation theorem for the asymmetric Brownian motor. This
is in consistent with previous results in granular medium for
the injected work [8], a vertically placed asymmetric rotor
in a granular gas [9], and a frictional granular motor [12].
When |�Stot| is large, the case for �t = 0.04 s follows the
diagonal line best. But in general, due to the deviation of
the distribution of �S(II)

tot from the Gaussian form, the data
points for �S(II)

tot deviates from the diagonal line (the formula).
Since �S(I)

tot uses the solutions of the Fokker-Planck equation,
its symmetry function follows the formula better than �S(II)

tot ,
especially for large �t values.

ΔStot/kB ΔStot/kBΔStot/kB

Sy
m

(Δ
S

to
t
)

(a) (b) (c)

Δt = 0.01 s Δt = 0.04 s Δt = 0.11 s

FIG. 4. The symmetry functions of the total entropy production
for the asymmetric Brownian motor. From (a) to (c), �t = 0.01 s,
0.04 s, and 0.11 s, respectively. Red crosses are for �S(I)

tot , and blue
pluses are for �S(II)

tot .
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FIG. 5. The time dependence of the total entropy, with (a) for
S(I)

tot (t ) and (b) for S(II)
tot (t ). For each case, three trajectories are shown:

for �t = 0.01 s (red solid curve), 0.04 s (green dashed curve), and
0.11 s (blue dotted curve).

The deviation of the data from the fluctuation theorem
may be resulted from the limited data, nonidealities such as
additional friction due to the ball-bearing, the effect of discon-
tinuous collisions between the granular particle and the motor,
etc. Since the fluctuation theorem is a necessary condition for
the statistics of infima, the deviation may pose a question mark
to the infima law, that for such nonideal small systems, will the
infima law still hold?

IV. INFIMA STATISTICS OF THE TOTAL ENTROPY

In Ref. [24], by defining a minimum entropy in a time
interval tL, Sinf(tL ) = inf0�t�tL [Stot(t ) − Stot(0)], it has been
found that the negative values of Sinf(tL ) satisfy an exponential
distribution in the tL → ∞ limit, i.e.,

P
(
S∞

inf

) = 1

kB
eS∞

inf/kB , (17)

as a result, the average value of this negative entropy infimum
over a large number of ensembles will be −kB, 〈S∞

inf〉 = −kB.
In general, for a finite time interval tL, 〈Sinf(tL )〉 > −kB. Thus
−kB gives the lower bound of the average entropy infimum
value.

In our case, the total entropy Stot is an integration (summa-
tion) of the total entropy production �Stot, e.g., Eq. (13) for
�S(I)

tot and Eq. (16) for �S(II)
tot . Figure 5 shows three segments

of the time series Stot(t ) with �t = 0.01 s, 0.04 s, and 0.11 s,
respectively. Although �S(II)

tot and thus S(II)
tot is valid as far

as �t � τ ∼ 0.112 s (see Appendix B), it is clear that with
a larger �t , Stot(t ) is coarse grained and loses the detailed
fluctuations in the finer timescale, therefore may miss some of
the dips in Stot(t ) and yield a higher value of Sinf. Therefore,
to identify the true infimum value, �t should be as small
as possible to avoid missing possible sharp dips in Stot(t ).
However, another condition requires �t � t f = 0.002 s, such
that the observed transition between the angular velocities

P
(−

S
in

f)

tL(s)−Sinf/kB

(a)

S
(I)
tot S

(II)
tot

tL(s)−Sinf/kB

(b)

FIG. 6. The distribution of Sinf(tL ) versus different tL at �t =
0.01 s. The distribution is window averaged with the width of the
window in tL being 0.5 s. The straight line is Eq. (17).

ωi is a Markov process. Taking these considerations, we set
�t = 0.01 s in doing the statistics of infima (Appendix D).

For a given tL that tL � �t , we can segregate the total five
hours data of S(I)

tot (t ) and S(II)
tot (t ) into segments with length tL,

then for each segment, shift Stot(0) to 0, and count Sinf(tL ) =
inf0�t�tL Stot(t ). Therefore there will be (5 h/tL) data points for
each given tL. Figure 6 shows the distribution of Sinf(tL ) versus
the variation of tL. The distribution has an abrupt change
around tL ∼ 5 s. For tL > 5 s, the distribution of Sinf(tL ) fol-
lows the exponential distribution well, i.e., in the log-linear
scale it approximates a straight line, as indicated in Fig. 6.
Furthermore, for a given tL, the accumulative distribution of
Sinf(tL ) is bounded by 1 − eSinf/kB [24], which has also been
corroborated by the data.

The average value of Sinf(tL ) versus tL is plotted in Fig. 7 as
the data points, and the solid curve is the window averaged re-
sult. It is clear that for most of the data, especially the window
averaged value, 〈Sinf(tL )〉 � −kB. Another observation is that
〈Sinf(tL )〉 decreases fast for 0 < tL < 5 s, while it approaches
a constant value around tL = 10 s. This is consistent with the
distribution plots shown in Fig. 6. To be concrete, we calculate
the mean value of Sinf(tL ) for tL up to 20 s to get stable results,

FIG. 7. The mean value of the infima 〈Sinf〉 versus tL . The red
crosses are for S(I)

tot , and the blue pluses are for S(II)
tot . The solid curves

over the symbols are the window averaged value, with the width of
the window in tL being 0.5 s. The inset shows the distribution of
〈Sinf(tL )〉 for S(II)

tot for tL ∈ [15, 20], where the mean value is −0.97kB,
and the standard deviation is 0.031kB.
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yet tL is not so large so the statistics are still reliable. Since
〈Sinf(tL )〉 for S(II)

tot has a lower value, and there are some data
points fall below −kB, it is necessary to do further statistics to
examine whether −kB is a safe lower bound for 〈Sinf(tL )〉. The
inset shows the distribution of the data points of 〈Sinf(tL )〉 for
S(II)

tot in the interval tL ∈ [15, 20]. The mean value is −0.97kB,
and the standard deviation is 0.031kB, thus the infima law is
in general satisfied. Furthermore, we have calculated 〈Sinf(tL )〉
for a few points with much larger tL, e.g., tL ∼ 40 s, which
has almost the same mean values as that for tL = 20 s. The
results for a larger �t , i.e., �t = 0.02, 0.04 s are shown in
Appendix E, which are consistent with the above analysis.

V. CONCLUSION

To conclude, we have experimentally investigated the en-
tropy production in an underdamped Brownian motor. The
equivalence of the trajectory entropy and the environment
entropy have been demonstrated both theoretically and ex-
perimentally for two-step and multistep trajectories, where,
in principal if the data is not limited, better agreement can be
achieved for more steps. However, in realistic cases, due to the
limitation of the amount of data, multistep trajectories lead to
a reduced number of segments and thus less reliable statistics.
Since in our case, only short time interval is needed, two-
step trajectory entropy production is sufficient for obtaining
concrete statistical results.

With both the environment entropy and the trajectory
entropy, we have calculated the total entropy production
using two expressions, one exploits the solutions of the
Fokker-Plank equation with key parameters derived from the
experiment, and the other counts only the trajectories of the
angular velocity. By plotting the time series of the total en-
tropy production �Stot and the symmetry functions, we have
demonstrated that the total entropy production calculated in
these two ways agree with each other if the time interval �t is
small, and they both follow the fluctuation theorem reasonably
well. But due to the nonidealities in the experiments, there
are deviations from the fluctuation theorem when |�Stot| is
large. Since the fluctuation theorem is the condition for the
process to be martingale, which further yields the infima
law of the total entropy, it would be interesting to examine
whether the infima law is still hold with the nonidealities
in the experiments and the presence of deviations from the
fluctuation theorem, in addition of the more complex under
damped stochastic dynamics.

The time series of the total entropy Stot(t ) is obtained by
integrating the total entropy production �Stot, then the infi-
mum of the total entropy Sinf in a finite time interval tL can
be counted. For a given tL, we have examined the distribution
of Sinf, and found that when tL is large, e.g., for tL typically
larger than 5 s, the data are well described by the exponential
distribution P(S∞

inf ) = eS∞
inf/kB/kB, which has been proved to be

valid when tL → ∞ [24]. The mean value of Sinf, in most
cases, is larger than −kB. The lowest value of 〈Sinf〉 occurs
for S(II)

tot when �t = 0.01 s, where it fluctuates around −kB.
Further statistics for 〈Sinf〉 in the range tL ∈ [15, 20] s, where
the value of 〈Sinf〉 is stabilized around −kB, indicates a mean
value of −0.97kB with standard deviation 0.031kB, which in

FIG. 8. The statistics of the effective noise η(t ) felt by the motor.
(a) The distribution and (b) the power spectrum density (PSD).

principle stays inside the boundary set by the infima law of
the total entropy [24].

As an experimentally tractable macroscopic system, the
granular Brownian motor has been exploited specifically for
the investigation of the nonequilibrium thermodynamics, par-
ticularly for the fluctuation theorem. Here using this system,
we have verified the equivalence of the environment entropy
and the trajectory entropy. By deriving the total entropy from
the experimental data, we have verified the infima theorem
about the infimum value of the entropy curve. Our results
indicate that, although simple, the system can be a powerful
apparatus in examining the theories developed in the nonequi-
librium thermodynamics, especially for small systems.
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APPENDIX A: STATISTICS OF THE EFFECTIVE NOISE

From the underdamped Langevin equation (3), the noise
η(t ) can be solved out as

η(t ) = − d

dt
ω(t ) + γ

I
ω(t ) − M

I
.

After obtaining ω(t ), dω/dt can be approximated by [ω(t +
t f ) − ω(t )]/t f , then the noise η(t ) can be derived with the
above equation from the measurements. Figure 8 plots the
statistics of η(t ), which shows clearly that it is Gaussian white
noise.

APPENDIX B: TWO-STEP TRAJECTORY ENTROPY

From the corresponding Fokker-Planck equation (8) of the
Langevin equation (3), the forward and backward transition
probability within the time duration �t is given by

P(ωi−1 → ωi,�t )

∝ exp

{
− I[(ωi − 〈ω〉) − (ωi−1 − 〈ω〉)e−�t/τ ]2

2kBT (1 − e−2�t/τ )

}
, (B1)
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FIG. 9. [(a)–(c)] The entropy change versus time. Blue curves
are for �Straj and red curves are for �Senv. From (a) to (c) the
sampling time interval �t = 0.01 s, 0.11 s, and 0.40 s, respectively.
(d) The mean environment and trajectory entropy as a function of
sampling time interval �t . The blue diamonds are for the mean tra-
jectory entropy 〈�Straj〉, and the red circles are for the entropy change
of the environment 〈�Senv〉. The curves are the formula Eqs. (B4)
and (B5).

P(−ωi → −ωi−1,�t )

∝ exp

{
− I[(−ωi−1 − 〈ω〉) + (ωi + 〈ω〉)e−�t/τ ]2

2kBT (1 − e−2�t/τ )

}
.

(B2)

Substituting back to Eq. (15), and after some algebra, one gets:

�S(2)
traj = −I

(
ω2

i − ω2
i−1

)
2T

+ M(ωi + ωi−1)τ

T

1 − e−�t/τ

1 + e−�t/τ
.

(B3)
For �t → 0, the factor (1 − e−�t/τ )/(1 + e−�t/τ ) can be
approximated by �t/(2τ ), then the second term becomes
M(ωi + ωi−1)�t/(2T ) = M�θ , which is the approximated
work injected into the Brownian motor. Therefore, in this
limit, and given that Eqs. (B1) and (B2) are still valid for the
data, we have �S(2)

traj ≈ �Senv [21].

Figures 9(a)–9(c) show �S(2)
traj and �Senv together ver-

sus time t for �t = 0.01, 0.11, and 0.4 s, respectively.
Note that the characteristic correlation time of the system is

τ = 0.112 s. It is clear that when �t is large, e.g., 0.4 s,
the deviation between �S(2)

traj and �Senv is obvious due to

the factor (1 − e−�t/τ )/(1 + e−�t/τ ), which is approximately
0.53�t/(2τ ). As �t becomes smaller, the effect of the factor
(1 − e−�t/τ )/(1 + e−�t/τ ) becomes smaller, as it approxi-
mates �t/(2τ ) better. For example, it equals to 0.914�t/(2τ )
and 0.999�t/(2τ ) for �t = 0.11 s and 0.01 s, respectively. In
these cases, the two curves agree well.

Figure 9(d) plots the average value of �S(2)
traj and �Senv

versus �t . 〈�Senv〉 increases with �t linearly. This is because
as the system is in a steady state, 〈�Ek〉 = 0, thus

〈�Senv〉 = 〈�W 〉/T = M〈ω〉�t/T . (B4)

While for 〈�S(2)
traj〉, from Eq. (B3), since 〈ω2

i 〉 = 〈ω2
i−1〉, and

〈ωi + ωi−1〉 = 2〈ω〉, we have〈
�S(2)

traj

〉 = M〈ω〉
[

2τ
1 − e−�t/τ

1 + e−�t/τ

]
/T . (B5)

Therefore when �t � τ , 〈�S(2)
traj〉 ≈ 〈�Senv〉. When �t � τ ,

their difference will be significant. These equations are shown
in Fig. 9(d) as the curves.

Similar results have been found in circuit experiments
[21], where �S(2)

traj ≈ �Senv was observed in the �t → 0 case.
The circuit system in a constant heat reservoir follows the
Langevin equation. However, the granular Brownian motor
experiment does not strictly follow the ideal Langevin dy-
namics due to the friction of the ball-bearing (although it
is small). In addition, the Gaussian noise η(t ) in the ideal
Langevin dynamics is continuous. But in granular systems,
the noise is generated from the collisions of the granular
particles to the Brownian motor, which can be regarded as a
continuous process only when the coarse-graining time unit is
large enough. Nevertheless, our experimental results provide
direct evidence for the equivalence of the environment entropy
and the two-step trajectory entropy for a Brownian motor in
granular gases under certain conditions.

APPENDIX C: MULTISTEP TRAJECTORY ENTROPY

The above subsection has considered the trajectory entropy
production for two-step trajectories (including only one �t
in every trajectory), and measured the trajectory entropy with
different time interval �t . Here we shall calculate multistep
trajectory entropy, and demonstrate that how the trajectory
entropy �S(n)

traj and the environmental entropy �Senv are equiv-
alent in the short time limit.

According to Eq. (15), the three-step trajectory entropy can
be expressed as:

�S(3)
traj = kB ln

P(ω2|ω1)P(ω1|ω0)

P(−ω0| − ω1)P(−ω1| − ω2)

= kB ln
P(ω2|ω1)

P(−ω1| − ω2)
+ kB ln

P(ω1|ω0)

P(−ω0| − ω1)
, (C1)

where ωi is the ith step angular velocity in a trajectory, and the
time interval between two adjacent steps is �t . The (n + 1)-
step trajectory contains n time intervals. Equation (C1) also
gives the relation of the multistep trajectory entropy and
the two-step trajectory entropy: �S(3)

traj = �S(2)
traj(t0 → t1) +

�S(2)
traj(t1 → t2), which is natural as the total entropy produc-
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tion is an additive quantity. Substituting Eq. (B3) to Eq. (C1),
we can obtain:

�S(3)
traj = − I

2T

(
ω2

i − ω2
i−2

)
+ M(ωi + 2ωi−1 + ωi−2)τ

T

1 − e−�t/τ

1 + e−�t/τ
, (C2)

and the (n + 1)-step trajectory entropy change is

�S(n+1)
traj = − I

2T

(
ω2

i − ω2
i−n

) + 1 − e−�t ′/nτ

1 + e−�t ′/nτ

×M[ωi + 2(ωi−1 + · · · + ωi−n+1) + ωi−n]τ

T
.

(C3)

The new time interval �t ′ = n�t is used in this equation,
which is the total length of the trajectory, i.e., �t ′ = 2�t in
the case of three-step trajectory. Taking average of Eq. (C3)
and using 〈ωi + ωi−1〉 = 2〈ω〉, the average entropy produc-
tion of multistep trajectories can be obtained as

〈
�S(n+1)

traj

〉 = −
〈
�Q

T

〉
+ M

T
2n〈ω〉τ 1 − e−�t ′/(nτ )

1 + e−�t ′/(nτ )
. (C4)

Note that 〈−�Q/T 〉 = 0. The Taylor expansion of the second
part in Eq. (C4) yields:

〈
�S(n+1)

traj

〉 = M

T
2n〈ω〉τ

[
�t ′
nτ

− (�t ′ )2

2(nτ )2 + O(�t ′3)

1 + 1 − �t ′
nτ

+ (�t ′ )2

2(nτ )2 + O(�t ′3)

]

≈ M

T
〈ω〉�t ′

(
1 − �t ′

2nτ

)
. (C5)

Equation (C5) gives the ensemble average of the mul-
tistep trajectory entropy production 〈�S(n+1)

traj 〉. Comparing

with the environmental thermal entropy production M
T 〈ω〉�t ′

[Eq. (B4)] with trajectory length �t ′, the difference is given
by − �t ′

2nτ
. Therefore for a fixed total time interval �t ′, the

difference between the trajectory entropy and the environ-
mental entropy productions decreases as the number of steps
in the trajectory becomes larger. In particular, in the large n
limit, �t ′ � 2nτ , the two should coincide with each other.
Therefore, theoretically the trajectory entropy would be equal
to the environmental thermal entropy in the continuous-time
(large n) limit.

This relation can be verified experimentally. Limited by the
total number of samples, when we use multistep trajectories,
we need to make ωbin larger to ensure that most trajectories
have corresponding reverse trajectories. To be practical, we
set ωbin = 0.15 rad/s for three-step trajectories, and ωbin =
0.2 rad/s for four-step trajectories. After enlarging ωbin, more
than 95% of the reverse trajectories can be found for the three-
and four-step trajectories.

The multistep trajectory entropy productions are plotted
in Fig. 10. In principle, with the increase of the number of
steps n, counting trajectories would become a more accurate
way of measuring entropy production [see Eq. (C5)]. This is
indeed the case for the average entropy production, as can be
seen clearly from Figs. 10(g) and 10(h), especially comparing
with Fig. 9(d). To be specific, in Fig. 9(d), for n = 2, the
deviation occurs around �t or �t ′ equals to τ = 0.112 s. In

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Δ
S

tr
a
j/
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e
n
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k

B
Δ

S
/
k

B

Δt = 0.01 s

Δt = 0.11 s

Δt = 0.40 s

Δt = 0.01 s

Δt = 0.11 s

Δt = 0.40 s

t (s) t (s)

Δt (s) Δt (s)

ΔStraj /kB

ΔSenv /kB ΔSenv /kB

ΔStraj /kB

FIG. 10. [(a)–(f)] The time series of �Straj and �Senv. The red
curves are �Senv(t ) and the blue curves are �Straj. [(g) and (h)] The
mean trajectory and environment entropy change as a function of �t ′.
Red circles are 〈�Senv〉 and blue diamonds are �Straj. The left panels
are for three-step trajectory entropy production, where �t ′ = 2�t ,
and the right panels are for four-step trajectory entropy production
with �t ′ = 3�t .

Fig. 10(g), for n = 3, the deviation starts around �t ′ ∼ 0.3
s, while in Fig. 10(h) for n = 4, the deviation starts around
�t ′ ∼ 0.4 s. But for the entropy production versus time, as
the number of steps n increases, even by increasing the value
of �ω, due to the limited data, the statistics of the reverse
trajectories deteriorates. Thus Straj deviates from Senv, and
the deviation becomes more obvious as �t gets larger or n
is larger, as demonstrated in Figs. 10(a)–10(f). Therefore to
obtain reliable results, a trade-off due to different effects needs
to be considered in dealing with the experimental data.

APPENDIX D: VERIFICATION AND CONDITION
OF MARKOV PROCESS

To verify that the motion of the motor is a Markov process
and to examine its condition, we plot the joint probabil-
ity distribution of P(ωi+2|ωi+1, ωi ) and P(ωi+2|ωi+1) for the
measured angular velocity time series in Fig. 11. If {ωi} is
a Markov process, then the probability of P(ωi+2|ωi+1, ωi )
will be the same as P(ωi+2|ωi+1), i.e., the current state only
depends on the previous one-step state. This will result in a
distribution along the diagonal line in the plot. Note that the
time interval between two adjacent frames is t f = 0.002 s.
From the results shown in Fig. 11, when �t is too small, e.g.,
�t = 0.004 s, although the joint probability takes high values
along the diagonal line, the distribution is broad, indicating the
influence of ωi to ωi+2. As �t becomes larger, the distribution
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FIG. 11. The joint probability distribution of P(ωi+2|ωi+1, ωi )
and P(ωi+2|ωi+1). [(a)–(d)] are for �t = 0.004 s, 0.006 s, 0.008 s,
and 0.01 s, respectively. t f = 0.002 s.

becomes narrower, and for �t = 0.01 s, the distribution is
mostly focused on the diagonal line, verifying the Markov
process. Thus in our calculation, we will choose �t � 0.01
s to guarantee that the Markov process condition is fulfilled.

APPENDIX E: STATISTICS OF INFIMA FOR �t > 0.01 s
AND THE EFFECT OF DIFFERENT

COARSE-GRAINING BINS

For �t = 0.04 s, especially for large tL, the distribution
is not so smooth and deviates slightly from the exponential
distribution (Fig. 12). For tL < 5 s, for all the �t values, the
deviation of the distribution of Sinf(tL ) from the exponential
distribution is apparent.

For the average value of the infimum, a general trend
is that as �t becomes larger, 〈Sinf(tL )〉 also gets larger, as
demonstrated in Fig. 13, due to the coarse-graining effect as
discussed in the main text. Furthermore, as the total length
of the data is fixed, for larger tL, the number of segments
becomes smaller, resulting in deteriorated statistics.

S
(I)
tot

tL(s)−Sinf/kB

(a)

S
(II)
tot

tL(s)−Sinf/kB

(b)

P
(−

S
in

f)

FIG. 12. The distribution of Sinf(tL ) versus different tL for �t =
0.04 s. The distribution is window averaged with the width of the
window in tL being 0.5 s. The straight line is Eq. (17).
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S
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)
/
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FIG. 13. The mean value of the infimum 〈Sinf〉 versus (tL ). The
red crosses are for S(I)

tot , and the blue pluses are for S(II)
tot . The solid

curves over the symbols are the window averaged value, with the
width of the window in tL being 0.5 s. Panels (a) and (b) are
for �t = 0.02 s, and 0.04 s, respectively. The step in tL is the
corresponding �t .

Another technical detail is to choose the size of the bin in
the coarse-graining process of the angular velocity ω properly.
This is because if the bin is too small, it will decrease the
number of corresponding reverse trajectories or even lead to
no reverse trajectories for a considerable amount of forward
trajectories, rendering unreliable statistics. While if the bin

FIG. 14. The infimum of S(II )
tot for �t = 0.01 s. Red circles are

for ωbin = 0.05 rad/s, yellow pluses for ωbin = 0.1 rad/s, green dia-
monds for ωbin = 0.15 rad/s, and blue crosses for ωbin = 0.2 rad/s.
The solid curves are the window averaged value with a window
size of 0.5 s in tL . For tL around 15 s, the four curves from top
to down are for ωbin = 0.05, 0.1, 0.15, and 0.2 rad/s, respectively.
While for tL around 3 s, the order is reversed. For every selected ωbin,
there is a small fraction ( f ) of the forward trajectories that have no
corresponding backward trajectories: f = 2.0%, 0.9%, 0.02%, and
0.01% for ωbin = 0.05, 0.1, 0.15, and 0.2 rad/s, respectively.
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is too large, it will lose much of the details of the angular
velocities and may result in inaccurate results. However, the
results should be not so sensitive, that there should be a range
for the size of the bin where the results are stable. To be

specific, we have in addition checked different sizes of the
bin, e.g., with ωbin = 0.05, 0.15, and 0.2 rad/s. The results,
together with that ωbin = 0.1 rad/s, are shown in Fig. 14. It is
clear that within this range, the results are relatively stable.
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