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Recently, solid state materials hosting pseudospin-1 quasiparticles have attracted a great deal of attention. In
these materials, the energy band contains a pair of Dirac cones and a flatband through the connecting point of the
cones. As the “caging” of carriers with a zero group velocity, the flatband itself has zero conductivity. However,
in a nonequilibrium situation where a constant electric field is suddenly switched on, the flatband can enhance
the resulting current in both the linear and nonlinear response regimes through distinct physical mechanisms.
Using the (2 + 1)-dimensional pseudospin-1 Dirac-Weyl system as a concrete setting, we demonstrate that, in
the weak field regime, the interband current is about twice larger than that for pseudospin- 1

2 system due to the
interplay between the flatband and the negative band, with the scaling behavior determined by the Kubo formula.
In the strong field regime, the intraband current is

√
2 times larger than that in the pseudospin- 1

2 system, due to
the additional contribution from particles residing in the flatband. In this case, the current and field follow the
scaling law associated with Landau-Zener tunneling. These results provide a better understanding of the role of
the flatband in nonequilibrium transport and are experimentally testable using electronic or photonic systems.

DOI: 10.1103/PhysRevB.96.115440

I. INTRODUCTION

Solid state materials, due to the rich variety of their lattice
structures and intrinsic symmetries [1,2], can accommodate
quasiparticles that lead to quite unconventional and interesting
physical phenomena. The materials and the resulting exotic
quasiparticles constitute the so-called “material universe.”
Such materials range from graphene that hosts Dirac fermions
[3] to three-dimensional (3D) topological insulators [4,5] and
3D Dirac and Weyl semimetals [6,7], in which the quasiparti-
cles are relativistic pseudospin- 1

2 fermions. Recently, Dirac-
like pseudospin-1 particles have attracted much attention
[8–27], which are associated with a unique type of energy
band structure: a pair of Dirac cones with a flatband through the
conical connecting point. Materials that can host pseudospin-1
particles include particularly engineered photonic crystals
[13,16,17,19,22], optical dice or Lieb lattices with loaded
ultracold atoms [8–10,12,28], and certain electronic materials
[14,15,20,21]. In contrast to the Dirac cone system with
massless pseudospin- 1

2 particles that exhibit conventional
relativistic quantum phenomena, in pseudospin-1 systems an
array of quite unusual physical phenomena can arise, such as
super-Klein tunneling associated with one-dimensional bar-
rier transmission [9,11,22], diffraction-free wave propagation
and novel conical diffraction [13,16,17,19], unconventional
Anderson localization [27,29,30], flatband ferromagnetism
[18], unconventional Landau-Zener Bloch oscillations [31],
and peculiar topological phases under external gauge fields
or spin-orbit coupling [12,32–34]. The aim of this paper is to
present the phenomenon of enhanced nonequilibrium quantum
transport of pseudospin-1 particles.

Quantum transport beyond the linear response and equi-
librium regime is of great practical importance, especially
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in device research and development. There have been works
on the nonlinear and nonequilibrium transport of relativistic
pseudospin- 1

2 particles in Dirac and Weyl materials. For
example, when graphene is subject to a constant electric
field, the dynamical evolution of the current after the field is
turned on exhibits remarkable minimal conductivity behavior
[35]. The scaling behavior of nonlinear electric transport
in graphene due to the dynamical Landau-Zener tunneling
or the Schwinger pair creation mechanism has also been
investigated [36,37]. Under a strong electrical field, due to the
Landau-Zener transition, a topological insulator or graphene
can exhibit a quantization breakdown phenomenon in the
spin Hall conductivity [38]. More recently, nonequilibrium
electric transport beyond the linear response regime in 3D
Weyl semimetals has been studied [39]. In these works, the
quasiparticles are relativistic pseudospin- 1

2 fermions arising
from the Dirac or Weyl system with a conical type of dispersion
in their energy momentum spectrum.

In this paper, we study the transport dynamics of
pseudospin-1 quasiparticles that arise in material systems
with a pair of Dirac cones and a flatband through their
connecting point. Under the equilibrium condition and in the
absence of disorders, the flatband acts as a perfect “caging”
of carriers with zero group velocity and hence it contributes
little to the conductivity [40–42]. However, as we will show
in this paper, the flatband can have a significant effect on the
nonequilibrium transport dynamics. Through numerical and
analytic calculation of the current evolution for both weak
and strong electric fields, we find the general phenomenon of
current enhancement as compared with that associated with
the nonequilibrium transport of pseudospin- 1

2 particles. In
particular, for a weak field, the interband current is twice as
large as that for pseudospin- 1

2 systems due to the interference
between particles from the flatband and from the negative band,
the scaling behavior of which agrees with that determined by
the Kubo formula. For a strong field, the intraband current is
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√
2 times larger than that in the pseudospin- 1

2 system, as a
result of the additional contribution from the particles residing
in the flatband. In this case, the physical origin of the scaling
behavior of the current-field relation can be attributed to
Landau-Zener tunneling. Our findings suggest that, in general,
the conductivity of pseudospin-1 materials can be higher than
that of pseudospin- 1

2 materials in the nonequilibrium transport
regime.

II. PSEUDOSPIN-1 HAMILTONIAN AND CURRENT

We consider a system of two-dimensional (2D) noninter-
acting, Dirac-like pseudospin-1 particles subject to a uniform,
constant electric field applied in the x direction. The system is
described by the generalized Dirac-Weyl Hamiltonian [10,24].
The electric field, switched on at t = 0, can be incorporated
into the Hamiltonian through a time-dependent vector potential
[35–39,43–45] A(t) = [A(t),0,0], where A(t) = −Et�(t).
The resulting Hamiltonian is

H = vF {Sx[px − qA(t)] + Sypy}, (1)

where vF is the Fermi velocity of the pseudospin-1 particle
from the Dirac cones, q = −e (e > 0) is the electronic charge,
and S = (Sx,Sy,Sz) is a vector of matrices with components

Sx = 1√
2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦, Sy = 1√

2

⎡
⎣0 −i 0

i 0 −i

0 i 0

⎤
⎦,

and

Sz =
⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦.

The three matrices form a complete representation of
pseudospin-1 particles, which satisfy the angular momentum
commutation relations [Sl,Sm] = iεlmnSn with three eigenval-
ues, s = ±1,0, where εlmn is the Levi-Civita symbol. However,
the matrices do not follow the Clifford algebra underlying
spin- 1

2 particles. The corresponding time-dependent wave
equation is

ih̄∂t�p(t) = H�p(t). (2)

Under the unitary transformation

U =

⎡
⎢⎣

1
2e−iθ − 1√

2
e−iθ 1

2e−iθ

√
2

2 0 −
√

2
2

1
2eiθ 1√

2
eiθ 1

2eiθ

⎤
⎥⎦,

with tan θ = py/[px − qA(t)], we can rewrite Eq. (2) in the
basis of adiabatic energy as

ih̄∂t�p(t) = [Szεp(t) + Sx

√
2C0(t)]�p(t), (3)

where �p(t) = U †�p(t) = [αp(t),γp(t),βp(t)]T , C0(t) =
h̄v2

F pyeE/
√

2ε2
p(t), and εp = vF

√
(px − eEt)2 + p2

y . Ini-
tially at t = 0, the negative band is assumed to be fully
filled, �p(t = 0) = [0,0,1]T . From the equation of motion,
we obtain the current operator in the original basis as Jx =
−e ∂H

∂px
= −evF Sx . In the transformed adiabatic energy base,

the current operator is

Jx = −evF (Sz cos θ − Sy sin θ ). (4)

We thus have the current density for a certain state as

〈Jx〉p(t) = −evF

{
cos θ

[|αp(t)|2 − |βp(t)|2]
−

√
2 sin θ Re

[
iαp(t)γ ∗

p (t) + iγp(t)β∗
p(t)

]}
. (5)

In Eq. (5), the first term is related to the particle number
distribution associated with the positive and negative bands,
which is the intraband or conduction current. The second term
in Eq. (5) characterizes the interference between particles
from distinct bands, which is related to the phenomenon of
relativistic zitterbewegung and can be appropriately called the
interband or polarization current.

To assess the contribution of a band (i.e., positive, flat, or
negative) to the interband current, we seek to simplify the cur-
rent expression. Through some algebraic substitutions, we get

∂t |αp(t)|2 = 2 Re[αp(t)∂tα
∗
p(t)],

∂t |γp(t)|2 = 2 Re[γp(t)∂tγ
∗
p (t)].

From the Dirac equation (3), we have

h̄αp(t)∂tα
∗
p(t) = iεpαp(t)α∗

p(t) + iC0αp(t)γ ∗
p (t),

h̄γp(t)∂tγ
∗
p (t) = iC0γp(t)α∗

p(t) + iC0γp(t)β∗
p(t),

which gives

Re[iαp(t)γ ∗
p (t)] = h̄

2C0
∂t |αp(t)|2,

Re[iγp(t)β∗
p(t)] = h̄

2C0
[∂t |αp(t)|2 + ∂t |γp(t)|2]. (6)

Using the total probability conservation |αp|2 + |γp|2 +
|βp|2 = 1, we finally arrive at the following current expression,

〈Jx〉p(t) = −evF

{
vF (px − eEt)

εp(t)
[2|αp(t)|2 + |γp(t)|2 − 1]

− εp(t)

vF eE
(2∂t |αp|2 + ∂t |γp|2)

}
, (7)

where the third term in the first part that is independent of
the particle distribution vanishes after an integration over
momentum space.

For convenience, in our numerical calculations we use
dimensionless quantities, which we obtain by introducing
the scale �, the characteristic energy of the system. The
dimensionless time, electric field, momentum, energy, and
coefficient are

t̃ = �t/h̄,

Ẽ = evF h̄E/�2,

p̃ = vF p/�,

ε̃ =
√

(p̃x − Ẽt̃)2 + p̃2
y,

C̃0 = Ẽp̃y

/√
2
[
(p̃x − Ẽt̃)2 + p̃2

y

]
,
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respectively. The dimensionless current density J̃ can be
expressed in units of e�2/vF h̄2π2. For simplicity, the spatial
part of the electron wavefunction is taken into account only
when we calculate total current density.

III. WEAK FIELD REGIME:
ENHANCEMENT OF INTERBAND CURRENT

In the weak field regime, the intraband current is negligible
as compared to the interband current due to the fewer
number of conducting particles [36,37] (see Appendix B for
an explanation and representative results). In particular, the
interband current for a certain state can be expressed as

J inter
p = εp(t)

E

[
2∂t |αp|2 + ∂t |γp|2].

For pseudospin- 1
2 particles, the interband current has only the

first term [37]. The additional term [εp(t)/E]∂t |γp|2 is unique
for pseudospin-1 particles. To reveal the scaling behavior of the
interband current and to assess the role of the positive bands
and the flatbands in the current, we impose the weak field
approximation |p| =

√
p2

x + p2
y � eEt everywhere except

in close proximity to the Dirac point, which allows us to
obtain an analytic expression for the interband current. Under
the approximation, the coefficients εp and C0 become εp ≈
vF p and C0 ≈ h̄pyeE/(

√
2p2), which are time independent.

Substituting these approximations into Eq. (3), we obtain the
three components of the time-dependent state �p(t) as

αp(t) = 1
2

[
cos ωt + m2

0(cos ωt − 1) − 1
]
, (8)

βp(t) = 1
2

[
cos ωt − 2m0 sin ωt − m2

0[cos ωt − 1] + 1
]
, (9)

γp(t) = 1 + m2
0

2C0

[−ih̄ω sin ωt − εp(cos ωt − 1)
]
. (10)

The interband current contains two parts,

J α
p = 2

εpC4
0ω

E
(
ε2
p + 2C2

0

)2 (2 sin ωt − sin 2ωt), (11)

and

J γ
p = 2

εpC2
0ω

E
(
ε2
p + 2C2

0

)2

(
ε2
p sin ωt + C2

0 sin 2ωt
)
, (12)

which correspond to contributions from the positive band

and the flatband, respectively, where ω =
√

ε2
p + 2C2

0/h̄. For

a sufficiently weak field such that the off-diagonal term is
small compared with the diagonal term in Eq. (3), we have
ε2
p � 2C2

0 , i.e.,

v2
F p2 � p2

y

p2

h̄2e2E2

p2
.

In this case, the contribution from the positive band is nearly
zero and the flatband contribution is

J γ
p ≈ 2

ε3
pC2

0ω

E
(
ε2
p + 2C2

0

)2 sin (ωt) ≈ e2h̄E
sin2 θ

p2
sin

(
vF pt

h̄

)
.

(13)

0 2 4 6 8 10
t̃

0

2
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6

J̃
/
Ẽ

(a)

spin-1
spin-1/2

-9 -8 -7 -6
ln Ẽ

-9
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-4

ln
J̃

(b)

spin-1
spin-1/2

Slope: 0.997

Slope: 0.998

FIG. 1. Interband current in pseudospin-1 and pseudospin-
1
2 systems. (a) Evolution of the total current to electric field ratio J̃ /Ẽ

with time t̃ for pseudospin-1 and 1
2 systems for a fixed electric field

Ẽ = 0.0004, where the dashed lines denote the theoretical values
π 2/2 and π 2/4 for the pseudospin-1 and pseudospin- 1

2 systems,
respectively. The yellow and green lines represent the respective
numerical results. (b) The total current J̃ vs the electric field Ẽ at time
t̃ = 2 for the two systems. Comparing with the pseudospin- 1

2 system,
the interband current in the pseudospin-1 system is greatly enhanced.

The total positive-band contribution over momentum space is
negligibly small, so the flatband contributes dominantly to the
total interband current density,

Jinter = 1

π2h̄2

∫∫
e2h̄E

sin2 θ

p
sin

(
vF pt

h̄

)
dθdp

= e2

2h̄
E = e�2

vF h̄2π2

π2

2
Ẽ. (14)

The dimensionless current density is given by

J̃ = π2

2
Ẽ. (15)

To verify the analytical prediction Eq. (14), we calculate the
interband current by numerically solving the time-dependent
Dirac equation (3). For comparison, we also calculate the
current for the pseudospin- 1

2 system both numerically and
analytically. The results are shown in Fig. 1. For the numerical
results in Fig. 1(a), momentum space is defined as p̃x ∈ [−8,8]
and p̃y ∈ [−8,8] and the integration grid has a spacing 0.0002.
In Fig. 1(b), we use the same momentum space grid for Ẽ =
0.0001, 0.0002, 0.0004, but for Ẽ = 0.0008, 0.0016, 0.0032,
the ranges of momentum space are doubled. From Fig. 1(a),
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FIG. 2. Origin of interband current in the pseudospin-1 system.
(a) Ratio between interband currents from the pseudospin-1 and
pseudospin- 1

2 systems as a function of time for electric field strength
Ẽ = 0.0004, and (b) current ratio vs Ẽ for fixed time t̃ = 2. The black
dashed lines are theoretical results, and the red and blue lines are for
flatband and positive band, respectively. These results indicate that,
for the pseudospin-1 system, the flatband is the sole contributor to
the interband current.

we see that the interband currents for both pseudospin-1 and
pseudospin- 1

2 cases are independent of time. That is, after a
short transient, the interband current approaches a constant.
From Fig. 1(b), we see that the current is proportional to
the electric field E for both pseudospin-1 and pseudospin- 1

2
particles (with unity slope on a double logarithmic scale), but
the proportional constant is larger in the pseudospin-1 case.
While in the weak field regime, the scaling relation between
the interband current and the electric field is the same for
pseudospin-1 and pseudospin- 1

2 particles, there is a striking
difference in the current magnitude. In particular, the interband
current for the pseudospin-1 system is about twice that for the
pseudospin- 1

2 counterpart, as revealed by both the theoretical
approximation Eq. (14) and the numerical result [correspond-
ing to the dashed and solid lines in Fig. 1(a), respectively]. The
interband current in the pseudospin-1 system is thus greatly
enhanced as compared to that in the pseudospin- 1

2 system.
Intuitively, the phenomenon of current enhancement can

be attributed to the extra flatband in the pseudospin-1 system:
While the band itself does not carry any current, it can con-
tribute to the interband current. Indeed, the theoretical results
in Eqs. (11) and (12) indicate that the flatband contributes to
the total interband current, while the positive band contributes

FIG. 3. Interband current distribution in momentum space: (a)
pseudospin-1 and (b) pseudospin- 1

2 systems. The time and electric
field strength are t̃ = 2 and Ẽ = 0.0128, respectively.

little to the current. To gain physical insights, we numeri-
cally calculate three currents: the positive-band and flatband
currents from the pseudospin-1 system, and the current from
the pseudospin- 1

2 system. Figure 2 shows that the ratio of the
flatband current to the pseudospin- 1

2 current is 2, while the
ratio between the positive-band and pseudospin- 1

2 currents is
nearly zero, indicating that in the pseudospin-1 system, almost
all the interband current originates from the flatband.

To better understand the phenomenon of interband current
enhancement in the pseudospin-1 system, we calculate the
current distribution for both pseudospin-1 and pseudospin- 1

2
systems in momentum space, as shown in Fig. 3. We see that
the area in momentum space with significant current is larger
for the pseudospin-1 case, although the current magnitude is
almost the same near the Dirac point for both systems. This
is an indication that the flatband can contribute substantially
more current because the Landau-Zener transition “gap” p̃y

for the pseudospin-1 system is small compared to that for
the pseudospin- 1

2 system. Mathematically, with respect to
the single-state current expression (13) for the pseudospin-1
system, the corresponding one-state contribution to the current
for the pseudospin- 1

2 system is

J half
p ≈ e2h̄E

2

sin2 θ

p2
sin

(
2vF pt

h̄

)
. (16)

The integration of current over the entire momentum space
gives a factor of 2 enhancement for the pseudospin-1 system
as compared with the pseudospin- 1

2 system. This implies that
quantum interference occurs mainly between particles from the
negative band and flatband due to the small gap between them.
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IV. STRONG FIELD REGIME:
ENHANCEMENT OF INTRABAND CURRENT

In the strong field regime, the intraband current [the first
term in Eq. (7)] dominates (see Appendix B). The transition
probabilities for the positive band, flatband and negative band
are given, respectively, by [46]

n+
p = �(px)�(eEt − px) exp

(
−πvF p2

y

h̄eE

)
, (17)

n0
p = �(px)�(eEt − px)

× 2

[
1 − exp

(
−πvF p2

y

2h̄eE

)][
exp

(
−πvF p2

y

2h̄eE

)]
,

(18)

n−
p = �(px)�(eEt − px)

[
1 − exp

(
− πvF p2

y

2h̄eE

)]2

, (19)

subject to the momentum constraint (px,eEt − px) � |py |.
The transition probabilities are essentially the pair produc-
tion or transition probabilities in the generalized three-level
Landau-Zener model. Substituting Eqs. (17) and (19) into
Eq. (5) [or equivalently Eq. (7)] and integrating its first
term over momentum space, we obtain the positive-band
contribution to the intraband current with conducting electrons
(or partially filled electrons) populated from the filled bands

J+ = evF

h̄2π2

∫∫
vF (eEt − px)

εp(t)
|αp(t)|2dpxdpy

≈ evF

h̄2π2

∫ eEt

0
dpx

∫ px

−px

|αp(t)|2dpy

≈ evF

h̄2π2

∫ eEt

0
dpx

∫ +∞

−∞
n+

p (t)dpy

= e2

h̄π2

√
evF

h̄
E3/2t (20)

= e�2

vF h̄2π2
Ẽ3/2 t̃ . (21)

The contribution to the current from the initially filled negative
band with holes left by the electrons driven into the positive
band and flatband, the conducting hole-based intraband current
J− is given by

J− = (2
√

2 − 1)
e2

h̄π2

√
evF

h̄
E3/2t (22)

= e�2

vF h̄2π2
(2

√
2 − 1)Ẽ3/2 t̃ , (23)

which can be written as

J− = J−
positive + J−

flat, (24)

where the first term accounts for the contribution by the holes
left by electrons finally driven into the positive band only while
the second term represents the current contribution associated
with the hole concentration induced by the flatband. We
have J−

positive = J+. The flatband-induced current results from
the hole concentration in the dispersive band, which can be

0 2 4 6 8 10
t̃

0

1

2

3

J̃
/(

Ẽ
1.

5 t̃
)

(a)

Total
Positive band
Flat band
spin-1/2

-2 -1 0 1
ln Ẽ

0

2

4

ln
J̃

(b)

Total
Positive band
Flat band
spin-1/2

Slope: 1.521
(Positive band)

Slope: 1.509

Slope: 1.512

Slope: 1.492

FIG. 4. Enhancement of intraband current in the strong electric
field regime. Intraband current and contributions from distinct bands
(a) vs time for Ẽ = 0.8192, where the black dashed lines represent the
analytical values 2(

√
2 − 1), 2, 2

√
2 (from bottom) and (b) vs electric

field at time t̃ = 10 (for six values of the electric field: Ẽ = 0.2048,
0.4096, 0.8192, 1.6384, 3.2768).

written as

J−
flat = J− − J+ = e�2

vF h̄2π2
2(

√
2 − 1)Ẽ3/2 t̃ . (25)

Taking into account both the conducting electrons and the
corresponding holes, we obtain the following expression for
the dispersive positive-band-based current,

Jpositive = J+ + J−
positive = 2

e2

h̄π2

√
evF

h̄
E3/2t (26)

= 2
e�2

vF h̄2π2
Ẽ3/2 t̃ . (27)

Note that, for the pseudospin- 1
2 system, this is the total current

in the strong field regime [37]. The total intraband current
density in the presence of the flatband in the pseudospin-1
system is

J intra = J+ + J− = Jpositive + J−
flat

= 2
√

2
e2

h̄π2

√
evF

h̄
E3/2t (28)

= e�2

vF h̄2π2
2
√

2Ẽ3/2 t̃ . (29)
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FIG. 5. Further evidence of enhancement of intraband current in
the pseudospin-1 system. (a) The ratio of the intraband currents in the
pseudospin-1 and pseudospin- 1

2 systems vs time t̃ for Ẽ = 0.8192.
(b) The current ratio vs Ẽ for t̃ = 10.

Comparing with the pseudospin- 1
2 case, we see that the current

enhancement is due to the enhanced hole concentration as a
result of the additional flatband.

The intraband current scales with the electrical field as E3/2

and scales linearly with time, which are the same as those for
the pseudospin- 1

2 system [37]. However, for the pseudospin-1
system, the magnitude of the intraband current is larger: There
is an enhancement factor of

√
2 as compared to the pseudospin-

1
2 system. Since the positive-band contribution is the same as
for the pseudospin- 1

2 system, the enhancement is due entirely
to the flatband contribution.

We now provide numerical evidence for the predicted phe-
nomenon of intraband current enhancement in the pseudospin-
1 system. Figures 4(a) and 4(b) show the intraband current J̃

(dimensionless) versus time t̃ and the electric field strength
Ẽ, respectively, where the momentum space grid is p̃x ∈
[−16,16] and p̃y ∈ [−16,16] with spacing 0.002 in Fig. 4(a)
and the momentum space range is increased according to the
increase in the electric field strength in Fig. 4(b). We see that
the intraband current scales with E as E3/2t—the same as for
the pseudospin- 1

2 system [36,37]. There is a good agreement
between the numerical results and the theoretical predictions
Eqs. (21)–(29).

To provide further confirmation of the enhancement of the
intraband current, we calculate the ratio between the currents
from the pseudospin-1 and pseudospin- 1

2 systems versus time

0 2 4 6 8 10
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ln Ẽ
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FIG. 6. Numerical evidence of pair creation mechanism for the
intraband current. The ratio of particle number distribution for
pseudospin-1 and pseudospin- 1

2 systems (a) vs time t̃ for Ẽ = 0.8192
and (b) vs Ẽ for t̃ = 10.

for certain electric fields, as shown in Fig. 5(a). The ratio
versus the electric field for a given time is shown in Fig. 5(b).
We see that, in the long time regime, under a strong electric
field, the total intraband current for the pseudospin-1 system
is about

√
2 times the current of the pseudospin- 1

2 system.
However, the positive-band currents are approximately the
same for both systems. The extra current in the pseudospin-1
system, which is about 0.4 times the contribution from the
positive band, originates from the flatband. These numerical
results agree well with the theoretical predictions. The physical
mechanism underlying the intraband current enhancement
is the Schwinger mechanism or Landau-Zener tunneling
[37]. Note that, in Fig. 5, the transition of an electron
from the negative band to the flatband does not contribute
to the intraband current, as the process leaves behind a hole in
the negative band that contributes to the net current.

If the intraband current is generated by pair creation through
Landau-Zener tunneling, the number of created particles
should be consistent with the current behaviors. To test this,
we numerically calculate the particle number distribution in
different bands and plot the ratio between the numbers of
particles for pseudospin-1 and pseudospin- 1

2 systems versus
time and the electric field, as shown in Fig. 6. For the
pseudospin-1 system, the number of particles created in the
positive band is approximately the same as that created in
the upper band in the pseudospin- 1

2 system, and the number of
particles in the flatband is about half of that in the positive band.
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FIG. 7. Current density distribution in momentum space. (a),
(b) For pseudospin-1 and pseudospin- 1

2 systems, respectively, the
distributions of the current density in momentum space for t̃ = 20
and Ẽ = 0.0512. When the momentum gap value p̃y is large, the
flatband can enhance the current.

Note that, for the positive band, it is necessary to count the
particle number twice as both electrons and holes contribute
to the transport current. However, for the flatband, only holes
contribute to the current. We see that, for each band, the particle
number distribution is consistent with the current distribution,
providing strong evidence that the intraband current results
from pair creation in the negative band. In fact, under the strong
field approximation, the intraband current is the particle dis-
tributions in the positive band and flatband multiplying by the
constant evF , as current is due to electron and hole transport.

We also calculate the current density distribution in mo-
mentum space for a fixed time and electric field strength, as
shown in Fig. 7. We see that the current distribution range in the
p̃y direction is wider for the pseudospin-1 system than for the
pseudospin- 1

2 system. However, the current distribution near
p̃y = 0 is approximately the same for the two systems, and the
current decays in the p̃y direction. In addition, there is a current
cutoff about p̃x = Ẽt̃ along the p̃x axis. All these features of
the current density distribution can be fully explained by the
theoretical formulas (17)–(19). The general result is that the
flatband can enhance the current when the “gap” p̃y is large.

V. CONCLUSION AND DISCUSSION

We investigate the nonequilibrium transport of quasiparti-
cles subject to an external electric field in the pseudospin-1
system arising from solid state materials whose energy band
structure constitutes a pair of Dirac cones and a flatband

through the conical connecting point. Since the group velocity
for carriers associated with the flatband is zero, one may
naively think that the flatband would have no contribution
to the current. However, we find that the current in the
pseudospin-1 system is generally enhanced as compared with
that in the counterpart (pseudospin- 1

2 ) system. In particular, in
the weak field regime, for both systems the interband current
dominates, is proportional to the electric field strength, and
is independent of time. However, the interference between
quasiparticles associated with the flatbands and the negative
bands in the pseudospin-1 system leads to an interband current
whose magnitude is twice the current in the pseudospin- 1

2
system. In the strong field regime, for both systems the
intraband current dominates and scales with the electric field
strength as E3/2 and linearly with time. We find that the current
associated with carrier transition from the negative to the
positive bands is identical for both systems, but the flatband
in the pseudospin-1 system contributes an additional term to
the current, leading to an enhancement of the total intraband
current. The general conclusion is that, from the standpoint
of generating large current, the presence of the flatband in
the pseudospin-1 system can be quite beneficial. Indeed, the
interplay between the flatband and the Dirac cones can lead to
interesting physics that has just begun to be understood and
exploited.

We discuss a few pertinent issues.
Time scale of validity of effective Dirac Hamiltonian. For

a real material, the effective Dirac Hamiltonian description
is valid about the degeneracy (Dirac) point only, imposing an
intrinsic upper bound on time in its applicability. Similar to the
situation of using the two-band Dirac Hamiltonian to describe
graphene [36], such a time bound can be approximately
estimated as the Bloch oscillation period, i.e., the time required
for the electric field to shift momentum across the Brillouin
zone, �px = eEt ≈ h̄/a, with a being the lattice constant. We
obtain tB ∼ h̄/(eEa). Since the aim of our work is to investi-
gate the physics near the Dirac point, the effective Hamiltonian
description is sufficient. For clarity and convenience, all the
calculations are done in terms of dimensionless quantities
through the introduction of an auxiliary energy scale � whose
value can be properly set to make the calculations under the
restriction relevant to the real materials hosting pseudospin-1
quasiparticles. More specifically, the estimated time restriction
t < tB gives rise to the following condition in terms of the
dimensionless quantities,

Ẽt̃ <
h̄vF

�a
.

For the given values of t̃ and the range of Ẽ in all figures,
the condition is fulfilled by setting � = h̄vF /50a, based
on which the actual physical units can be assigned to the
dimensionless quantities. It is possible to test the results of
this paper experimentally through tuning the characteristic
energy � of the underlying system. While our work uses
a model Hamiltonian to probe into the essential physics of
pseudospin-1 systems in a relatively rigorous manner, the issue
of dissipation (in momentum or energy) is beyond the intended
scope of this paper.

Bloch oscillations. If the whole band structure is taken
into account, Bloch oscillations will occur under an external
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electric field for t � tB , i.e., the electron distribution will
oscillate over a certain range of the lattice sites. In this case,
the Dirac Hamiltonian description will no longer be valid.
Instead, a full tight-binding Hamiltonian HTB( p) characteriz-
ing the multiband structure associated with a particular lattice
configuration should be used. For the dice or T3 lattice with
intersite distance a and hopping integral t , the tight-binding
Hamiltonian is [28]

H
(dice)
TB ( p) =

⎡
⎣ 0 h p 0

h∗
p 0 h p

0 h∗
p 0

⎤
⎦,

h p = −t[1 + 2 exp (3ipya/2) cos(
√

3pxa/2)].

A previous work [36] showed that, for the honeycomb lattice,
the corresponding two-band tight-binding model can indeed
give rise to Bloch oscillations for t > tB . To investigate Bloch
oscillations in the large time regime for pseudospin-1 systems
with an extra flatband is certainly an interesting issue that
warrants further efforts.

We note that, in a recent paper [31], the striking phe-
nomenon of tunable Bloch oscillations was reported for a
quasi-one-dimensional diamond lattice system with a flatband
under perturbation. It would be interesting to extend this work
to two-dimensional lattices. The main purpose of our work is to
uncover different phenomena in physical situations where the
Dirac Hamiltonian description is valid (first-order expansion
of the tight-binding Hamiltonian about the Dirac points).

Effect of band anisotropy. For a particular lattice configura-
tion associated with a real material, band anisotropy, e.g., the
trigonal warping, will generally arise when entering the energy
range relatively far from the Dirac points at a later time. In
this case, direction-dependent transport behavior can arise.
Insights into the phenomena of driving direction-resolved
Bloch oscillations and Zener tunneling can be gained from
existing studies of the two-band systems with the so-called
“semi-Dirac” spectrum (a hybrid of the linear and quadratic
dispersion) [47,48]. At present, the interplay between an
additional flatband and dispersion anisotropy remains largely
unknown, which is beyond the applicable scope of the
idealized Dirac Hamiltonian framework.
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APPENDIX A: ANALYTIC CALCULATION OF THE
INTERBAND CURRENT

In the weak field regime, we can expand Eq. (3) as

ih̄∂tαp(t) = εpαp(t) + C0γp(t), (A1)

ih̄∂tγp(t) = C0[αp(t) + βp(t)], (A2)

ih̄∂tβp(t) = −εpβp(t) + C0γp(t). (A3)

Applying the time differential operator ih̄∂t to Eqs. (A1) and
(A3), we get

ih̄∂t [ih̄∂tαp(t)] = εpih̄∂tαp(t) + C0ih̄∂tγp(t), (A4)

ih̄∂t [ih̄∂tβp(t)] = −εpih̄∂tβp(t) + C0ih̄∂tγp(t), (A5)

and, hence,

− h̄2∂2
t αp(t) − h̄2∂2

t βp(t) = [αp(t) + βp(t)]
[
ε2
p + 2C2

0

]
.

(A6)

From Eqs. (A1) and (A3), we have

ih̄∂tαp(t) − ih̄∂tβp(t) = εp[αp(t) + βp(t)]. (A7)

Defining xp(t) = αp(t) + βp(t), and yp(t) = αp(t) − βp(t),
we get, from Eqs. (A6) and (A7), respectively, the following
relations,

d2xp

dt2
+ ε2

p + 2C2
0

h̄2 xp = 0, (A8)

dyp

dt
= εp

ih̄
xp. (A9)

Solving Eq. (A8), we get

xp(t) = A cos ωt + B sin ωt,

where A and B are constant, and ω =
√

(ε2
p + 2C2

0 )/h̄2. Using
the initial condition that the negative band is fully filled
[�p(t = 0) = [0,0,1]T ], we have xp(t = 0) = A = 1. From
Eq. (A9), we have

yp(t) = εp

ih̄ω
[sin ωt − B cos ωt] + d.

Using the initial condition, we get yp(t = 0) = −m0B + d =
−1, where m0 = εp/(ih̄ω), d = m0B − 1, which leads to

αp(t) = 1
2 (x + y)

= 1
2 [cos ωt + B sin ωt

+m0(sin ωt − B cos ωt + B) − 1],

βp(t) = 1
2 (x − y)

= 1
2 [cos ωt + B sin ωt

−m0(sin ωt − B cos ωt + B) + 1].

Substituting the expressions of αp(t) and βp(t) into Eqs. (A1)
and (A3), we obtain an expression for γp(t). Using γp(t =
0) = 0, we have B = −m0 and, hence,

αp(t) = 1
2

[
cos ωt + m2

0(cos ωt − 1) − 1
]
, (A10)

βp(t) = 1
2

[
cos ωt − 2m0 sin ωt − m2

0[cos ωt − 1] + 1
]
,

(A11)

γp(t) = 1 + m2
0

2C0
[−ih̄ω sin ωt − εp(cos ωt − 1)]. (A12)
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FIG. 8. Current vs electric field of pseudospin-1 system for t̃ = 5.
As the magnitude of the external electrical field is increased, the
dominant contribution to the total current changes from interband
to intraband, and the algebraic scaling exponent of the current-field
relation changes from 1 to 1.5.

APPENDIX B: DOMINANT CURRENT SOURCE IN THE
WEAK AND STRONG FIELD REGIMES

For the three-band dispersion profile investigated in this
work, there are two distinct current sources, the intraband
and interband currents, where the former is proportional to
the number of electrons (holes) within an unfilled (occupied)
band while the latter depends on the rate of change in the
particle number—a characteristic of interband interference.
From Eq. (7), we see that the intraband current is determined by
the transition amplitudes while the interband current depends
on the rate of change of the amplitudes. For a weak driving
field, the transition amplitudes between the occupied and the
empty bands are negligibly small, and so is the number of
electron-hole generation, resulting in a weak intraband current.
However, the rate of change in the transition amplitudes
may not be small, and neither is the interband current. Our
calculations reveal that, indeed, in the weak (strong) driving
regime, the interband (intraband) current dominates. As the
field is increased from the weak to the strong regime, the
algebraic scaling exponent of the current-field relation changes
from 1 to 1.5, as shown in Fig. 8.
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