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Geometric valley Hall effect and valley filtering through a singular Berry flux
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Conventionally, a basic requirement to generate valley Hall effect (VHE) is that the Berry curvature for
conducting carriers in the momentum space be finite so as to generate anomalous deflections of the carriers
originated from distinct valleys into different directions. We uncover a geometric valley Hall effect (gVHE) in
which the valley-contrasting Berry curvature for carriers vanishes completely except for the singular points. The
underlying physics is a singular non-π fractional Berry flux located at each conical intersection point in the
momentum space, analogous to the classic Aharonov-Bohm effect of a confined magnetic flux in real space. We
demonstrate that, associated with gVHE, exceptional skew scattering of valley-contrasting quasiparticles from a
valley-independent, scalar type of impurities can generate charge-neutral, transverse valley currents. As a result,
the massless nature of the quasiparticles and their high mobility are retained. We further demonstrate that, for
the particular Berry flux of π/2, gVHE is considerably enhanced about the skew scattering resonance, which
is electrically controllable. A remarkable phenomenon of significant practical interest is that, associated with
gVHE, highly efficient valley filtering can arise. These phenomena are robust against thermal fluctuations and
disorders, making them promising for valleytronics applications.
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I. INTRODUCTION

In electronics and spintronics, information is encoded
through charge and electronic spin, respectively. In addition
to charge and spin, valley quantum numbers provide an
alternative way to distinguish and designate quantum states,
leading to the concept of valleytronics [1,2], an area that
has attracted much recent interest [3–11]. Take graphene
as an example, where the crystalline structure stipulates
that uncharged degrees of freedom such as valley isospin
can arise [12]. In the first Brillouin zone, there are two
nonequivalent Dirac points K and K′, which are associated
with distinct momenta or valley quantum numbers. The two
nonequivalent valleys act as an ideal two-state system, which
have a large momentum separation and are robust against
external perturbations [2,13]. Electrons affiliated with the
distinct valleys can be exploited for applications, e.g., in
quantum information processing [14]. Appealing binary valley
characteristics can also arise in other materials such as silicene
and MoS2 [6], graphene-inspired artificial crystals such as
photonic graphene [15] that exhibits valley-polarized beams
and sonic (phononic) crystals [9] in which valley vortex states
can emerge, and valley photonic crystals [16].

In valleytronics, a fundamental issue is to separate the
electrons with distinct valley quantum numbers, i.e., to create
the so-called valley filters [1]. In graphene, due to its synthetic
nature, the valley isospin can be manipulated for various valley
filtering designs via strategies such as perfect zigzag edge
confinements [1], staggered sublattice potentials [2], trigonal
warping effect of the band structures [15], line defects [17],
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and strain engineering [10,11,18–20]. A viable mechanism
to realize valley filtering is through the valley Hall effect
(VHE) [2,5,7,21–28], where electrons with different valley
quantum numbers are separated and move in spatially distinct
regions. Indeed, the Hall effect is one of the most fundamental
phenomena in physics, and of particular relevance to VHE
are the anomalous Hall effect (AHE) [29] and the spin Hall
effect (SHE) [30–35]. There exist two types of mechanisms
for AHE/SHE: intrinsic or extrinsic. The former in general
has a topological origin, where finite momentum-space Berry
curvatures (Berry flux densities) characterizing the topological
invariants of the band structure of the material are linked, while
the latter is typically caused by the skew (Mott) scattering or
side-jump effect from the external impurities involving spin-
dependent perturbations, e.g., spin-orbit coupling. SHE opens
up an avenue for the conversion between electrical (charge)
currents and spin (uncharged) currents, which played a key
role in spintronics development for spin-current generators
and detectors. Similar to SHE, associated with VHE, electrical
currents can generate transverse valley currents and vice versa.
In recent years, there have been theoretical [2,7,21–24] and
experimental [5,25–28] studies of VHE. Due to the similarity
between SHE and VHE, most existing theoretical proposals for
VHE are based on essentially the same physical mechanism
as for SHE [13,36], where either bulk or local valley-resolved
perturbations are required.

For the honeycomb lattice system, the semiclassical picture
based on finite valley-contrasting Berry curvatures stipulates
that valley-resolved gap opening perturbations are necessary
for VHE and valley filtering [2,23]. Alternative mechanisms
for VHE require external magnetic fields, strain-induced
pseudomagnetic fields, or magnetic materials that have an
opposite effect on the two valleys [10,11,18–20]. We ask
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the following question: When Berry curvatures vanish, does
nontrivial valley-contrasting physics exist without any valley-
resolved perturbation? The purpose of this paper is to provide
an affirmative answer. Our success in uncovering a valley-free
perturbation mechanism for VHE, and valley filtering relies
on two basic observations: (i) the classic Aharonov-Bohm
effect can be induced by a singular line of magnetic flux
with vanishing magnetic field away from it, and (ii) the
Berry curvature (Berry flux density) can be regarded as the
geometric analog of the magnetic field (magnetic flux density)
in the momentum space [37,38]. Specifically, analogous to
a confined magnetic flux generated by an infinitely narrow
solenoid, the Berry flux arising from a conical intersection
(singularity) in the energy-momentum spectrum is perfectly
localized at the diabolical point with a specific valley quantum
number. The Berry phase acquired along a loop enclosing
the point can then be defined but, away from the point, the
Berry curvature vanishes everywhere. Due to time-reversal
symmetry, the singular Berry fluxes associated with the
nonequivalent valleys carry opposite signs. As a result, if
two valleys possess a singular non-π fractional Berry flux
with opposite signs, different Berry phases can be acquired
along the closed loop induced by, e.g., a scattering process,
leading to valley-resolved interference patterns. We stress that
such valley-contrasting effects are originated from the singular
nature of the underlying band structure in the absence of any
finite Berry curvature away from the singular points without
imposing any constraint on the type of the scattering that can
be completely valley independent.

Here, we present a VHE with which an efficient valley
filtering effect can arise via spatially valley-contrasting in-
terference. Due to the geometric nature of the underlying
mechanism, we name the phenomenon gVHE where, when
the momentum-space singular Berry flux is non-π fractional,
charge-neutral valley currents are generated from exceptional
skew scattering from a valley-independent, scalar type of
impurities. The gVHE is neither purely intrinsic nor purely
extrinsic, but of a mixed type. As such, our result is beyond
existing knowledge and represents a fundamentally different
phenomenon. To be concrete, we focus on α-T3 lattices that
host massless Dirac-type particles with a variable singular
Berry flux and show that there is a nonlinear dependence
of the valley Hall angle on the Berry flux with asymmet-
rically resonant features. For the particular singular Berry
flux of π/2, gVHE is considerably enhanced, which occurs
near a resonance associated with skew scattering and can
be electrically controlled by varying the Fermi energy or
the scatterer strength. We develop a physical understanding
of the resonant skew scattering, which is nonperturbative
and much stronger than the conventional skew scattering
predicted by a third- or higher-order perturbation theory.
We further show that gVHE is robust against thermal fluc-
tuations and disorders, making it promising for valleytronic
applications.

II. HAMILTONIAN AND METHODS

Effective Hamiltonian. We consider a generalized lattice
system (i.e., α-T3) interpolating between a graphene and
a dice lattice. The effective low-energy Hamiltonian is

given by [39]

H0 = h̄vF

(
τ3 ⊗ Sα

x kx + τ0 ⊗ Sα
y ky

)
, (1)

where vF is the Fermi velocity, k = (kx,ky) denotes the
two-dimensional (2D) wave vector measured about one of
the two nonequivalent valleys (K or K′) at a corner of the
hexagonal Brillouin zone, and the Pauli matrices τ1,2,3,τ0 =
I2×2 act on the valley degree of freedom representing an
emergent isospin. The matrices Sα

x and Sα
y (explicit forms in

Appendix A) parametrized by α = tan φ identify the nonequiv-
alent crystalline sublattices. The Hamiltonian H0 acts on the
six-component spinor � = [�τ

A,�τ
B,�τ

C,�τ ′
A ,�τ ′

B ,�τ ′
C ]T . The

energy spectrum consists of three bands: a dispersionless flat
band E0(k) = 0 and two linearly dispersive bands Es(k) =
sh̄vF |k| with s = ±1 being the band index, where the latter
are identical to the low-energy bands of graphene that give rise
to massless excitations.

Due to the α → 1/α (or φ → π/2 − φ) duality of the
model, we restrict our study to the regime α ∈ [0,1]. Note that
the resulting zero-field spectrum is α independent and features
isotropic linear band crossings, while H0 describes different
low-energy excitations characterized by an α-dependent Berry
phase upon winding of the band-touching point K or K′.
In the momentum space, the Berry phase underlying the
nth energy band belonging to one of the valleys with a
valley index τ = ±1 is defined as �τ

n = ∮ dk · Aτ
n with

Aτ
n = 〈�τ

n,k|i∇k|�τ
n,k〉 being the Berry connection (acting

as a vector potential in momentum space). Quantitatively,
we obtain �τ

s = τ (1 − α2)/(1 + α2)π for the conical bands
and �τ

0 = −2τ (1 − α2)/(1 + α2)π for the flat band (see
Appendix B). Two particular cases arise for α = 0 (φ = 0)
and α = 1 (φ = π/4). In the former, the system corresponds
to a graphene system with an extra inert flat band effectively
governed by a reduced Hamiltonian in the block-diagonal
form H0 = h̄vF (τ3 ⊗ σxkx + τ0 ⊗ σyky) ⊕ 0, with the Pauli
matrices σx,y accounting for the effective sublattice degrees
of freedom. In the latter case, the system is a dice lattice
hosting massless pseudospin-1 quasiparticles with a vanishing
Berry phase, where the matrices Sα=1

x,y satisfy the spin-1
algebra. From the point of view of symmetry, the two cases
belong, respectively, to the classes SU(2) ⊗ [SU(2) ⊕ SU(1)]
and SU(2)⊗SO(3). In the intermediate regime 0 < α < 1,
the matrices Sα

x,y in H0 do not obey the algebra of angular
momentum, nor any other closed algebra. As such, with more
than a single pseudospin operator in general, H0 cannot be
reduced to any known case of relativistic particles (spin-1
or spin- 1

2 ) but is an admixture (hybrid) of them with a
non-π fractional Berry phase. Remarkably, the Berry phases
associated with the two nonequivalent valleys are different
except for the particular cases of α = 0,1. In addition, we
note that the Berry curvature �τ

k = ∇k × Aτ
k (acting as a

“magnetic” field in the momentum space) is always zero away
from the gapless point K or K′. Specifically, as derived in
Appendix B, it takes on a singular form as

�τ
s,k = τ

1 − α2

1 + α2
πδ(k)k̂z ≡ τ�πδ(k)k̂z, (2)

where s is the index of the conical bands, τ is the valley index
of K (τ = 1) and K′ (τ = −1). The quantity � denotes the flux
magnitude in units of π , and a singular non-π fractional Berry
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flux means 0 < � < 1, where a valley-contrasting Berry phase
of τ�π can be acquired along any circuit enclosing a single
Dirac point belonging to one of the valleys. Analogously,
the resulting Berry curvature given in Eq. (2) acts as a
tunable “Aharonov-Bohm flux line” of magnitude � applied
perpendicular to the 2D momentum space, which will not
exert the local “deflecting force” away from it but will result
in a nontrivial Berry phase depending on the circuit about the
“flux line”. In this regard, the typical Dirac cones emerging
from the hexagonal lattice are effectively a singular π Berry
flux localized at the Dirac point [38], while those in the α-T3

lattice can give rise to a singular non-π fractional Berry flux in
general. Since the underlying Berry curvature vanishes except
at the Dirac points that form a set of measure zero in the 2D
momentum space, we can rule out an anomalous Hall effect of
the intrinsic type as argued in existing works [2,29,35].

Semiclassical transport. To investigate the charge and
valley transport properties, we analyze the semiclassical
Boltzmann transport equation (BTE) which, in the presence of
an applied uniform electric field E = Eex , takes the form [40]

−eE · vk
∂n0

∂E
=
∑
k′,τ ′

[nτ (k) − nτ ′(k′)]Wτ ′τ (k′,k), (3)

where −e < 0 is the electron charge, vk = (1/h̄)∇kEk is
the band velocity, n0 = 1/[exp(E − μ)/kBT + 1] denotes
the equilibrium Fermi-Dirac distribution, and nτ (k) is the
distribution function for carriers with momentum k and
valley index τ . Impurities distributed at random positions
of scattering centers ri with a dilute concentration (areal
density) nimp are described by the disordered potential V (r) =∑

i V
(i)(r − ri), and the quantum scattering rate off the

potential from the state |k,τ 〉 to the state |k′,τ ′〉 is Wτ ′τ (k′,k) =
(4π2h̄v2

gnimp/k)|fττ ′(θ )|2δ(Ek − Ek′), where fττ ′(θ ) is the
scattering amplitude at the angle θ = arccos (k · k′/k2). Skew
scattering means an asymmetry in the scattering amplitude
fττ ′(θ ) 
= fττ ′(−θ ), which leads to Wττ ′(k′,k) 
= Wττ ′(k,k′).
Defining δnτ (k) = nτ (k) − n0 as the deviation of the valley-
dependent distribution function from its equilibrium value, in
the linear response regime we impose the following ansatz for
isotropic Fermi surfaces in the conduction (valence) band s =
1 (s = −1): δnτ (k) = svF [Aτ cos ϕ(k) + Bτ sin ϕ(k)], where
ϕ(k) is the angle that the momentum vector k makes with
the direction of the external electric field E , Aτ and Bτ are
coefficients. Substituting this ansatz into Eq. (3) and setting
ϕ(k) = 0 [ϕ(k) = π/2] for the longitudinal (transverse) re-
sponse, we obtain a closed-form solution of the linearized
BTE. The current due to the external driving electric field can
be calculated explicitly as jτ = −egS/(2π )2

∫
d2k′δnτ (k)vk

with g = 2 and S being the spin degeneracy and the given
sample area, respectively. The steady-state charge (longitudi-
nal) and valley Hall (transverse) currents are then given by
jx =∑τ jτ · ex ≡ σxx |E | and jvH =∑τ τ jτ · ey ≡ σ

yx

vH |E |,
where the valley Hall and the longitudinal conductivities are
given by

σ
yx

vH = −e2 g

2h̄

∑
τ=±

∫
dE|E|∂n0

∂E

τξτ
sk

1 + (ξ τ
sk/ξ

τ
tr

)2 (4)

and

σxx = −e2 g

2h̄

∑
τ=±

∫
dE|E|∂n0

∂E

ξτ
tr

1 + (ξ τ
tr/ξ

τ
sk

)2 , (5)

respectively, with the usual transport (longitudinal) relax-
ation time ξ τ

tr and the skew (transverse) relaxation time
ξ τ
sk determined by 1/ξτ

tr = (2π )−2
∫

d2k′(1 − cos θ )Wττ (k′,k)
and 1/ξτ

sk = (2π )−2
∫

d2k′ sin θWττ (k′,k), respectively. The
valley Hall angle characterizing the efficiency of the charge
current to valley current conversion is given by

γ ≡ jvH

jx

= σ
yx

vH

σ xx
, (6)

which at zero temperature reduces to the ratio ξ τ
tr/ξ

τ
sk and

can be expressed in terms of the pertinent scattering cross
sections with respect to a single scattering event: γ |T =0 =
�τ

sk/�τ
tr , where the skew and transport cross sections are

given, respectively, by �τ
sk = ∫ dθ sin θ |fττ (θ )|2 and �τ

tr =∫
dθ |fττ (θ )|2(1 − cos θ ).

III. RESULTS

We model the impurities as an ensemble of dilute disk
scatterers of radius R described by the scalar potential

V (i)(r) = τ0 ⊗ IV0�(R − |r − ri |) (7)

located at random positions ri , where V0 is the potential
height and I is an identity matrix acting on the sublattice
space. Note that the impurities are neither valley nor sublattice
dependent and they do not affect the massless nature of the
carriers associated with the conical bands. As a result, high
mobility of the carriers is retained. Scattering properties from
a single impurity can be treated without the need to use
perturbation theory, as presented in Appendix C. A quantitative
understanding of underlying transport can be obtained through
the Boltzmann transport formalism described in Sec. II. Based
on quantitative analyses and calculations, we demonstrate in a
concrete manner the main findings stated in the last paragraph
of Sec. I.

A. Exceptional valley skew-scattering-induced
geometric valley Hall effect

We first show that a surprising valley skew scattering effect
can arise for the case of singular non-π fractional Berry flux.
Quantitatively, such a valley-resolved asymmetric scattering
process from the state |k,τ 〉 to the state |k′,τ ′〉 can be char-
acterized by the skew cross section �τ

sk = ∫ dθ sin θ |fττ (θ )|2
with fττ (θ ) being the scattering amplitude at the angle θ =
arccos (k · k′/k2). The skew cross section turns out to be
finite for the flux magnitude in the range 0 < � < 1 and
attains significant values about the resonant scattering point
[cf. Eq. (D5) in Appendix D]. This is striking because the
scattering asymmetry in the valley-coded binary channels
emerges from an isotropic, valley-free electrostatic scatterer in
the absence of any valley-dependent perturbation. Moreover,
the physical effect is not of any perturbative type, which is
remarkable considering that a previous third-order perturba-
tion theory predicted [29] only small values for the skew
scattering cross section. In our case, the resulting sizable
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FIG. 1. Exceptional valley skew scattering from a valley-
independent scalar-type scatterer. The two valleys are K′ and K
in (a) and (b), respectively, which are distinguished in terms of
the spatially resolved phases of the second component of the
corresponding wave functions. The red (blue) arrow and streamlines
denote the propagation direction of quasiparticles from the valley
K′ (K). The scalar scatterer is represented as the gray shaded disk.
(c) Spatially valley-resolved intensity distribution of the resulting
interference/diffraction pattern. Panels (a)–(c) are for a singular Berry
flux of ±π/2 with the following scattering parameters: relative
incident energy E/V0 = 0.7268 and effective scatterer strength
V0R = 1.

valley skew scattering behavior has a different physical origin
that is associated with the valley-dependent Berry phase
caused by the singular Berry flux in terms of any trajectory
enclosing a single conical intersection point with one of the
valleys centered. As a result, for a given scattering process
with specific momenta, carriers from the two nonequivalent
valleys can acquire different nontrivial phases, with which a
spatially valley-resolved wave scattering pattern emerges. A
representative physical picture of the exceptional valley skew
scattering process is demonstrated in Fig. 1 for a singular
non-π fractional Berry flux case (i.e., � = 1

2 ).
Associated with the exceptional valley skew scattering, a

VHE can arise. In particular, as the hallmark of any skew
scattering, a finite value of �τ

sk means a kind of asymmetry
characterized by |fττ (θ )| 
= |fττ (−θ )| for carriers belonging
to a given valley τ (τ = ±). In addition, the preservation
of the time-reversal symmetry imposes a mirror symmetry
|fττ (θ )| = |fτ̄ τ̄ (−θ )| on different valleys. Both factors con-
tribute to the spatial separation of the valley degree of freedom
of carriers and lead to the emergence of a transverse valley
current with zero net charge. The VHE can be quantified
by the valley Hall angle (VHA) γ , the ratio of the valley
Hall conductivity to the longitudinal conductivity [cf. Eqs. (4)
and (5) in Sec. II]. Effectively, γ is a figure of merit
characterizing the efficiency of net transverse valley current
conversion. A better understanding of the skew scattering
mechanism can be obtained from the closed form of VHA
at zero temperature given by

γ |T =0 = �τ
sk/�τ

tr .

It follows from the expression that a finite VHA and hence
VHE arise from effective valley skew scattering from a scalar
type of impurities in the absence of any valley-dependent per-

FIG. 2. A schematic illustration of geometric valley Hall effect
(gVHE) induced by skew scattering from impurities (gray shaded
disks). This type of Hall effect is mixed that is mediated by the inherent
singular Berry flux and manifests itself with exceptional valley skew
scattering from valley-independent scalar-type impurities.

turbations, as shown schematically in Fig. 2, where a singular
non-π fractional Berry flux is located at each center of the two
nonequivalent valleys in the momentum space. We note that
the origin of the proposed VHE can be attributed to the singular
Berry flux leading to valley-resolved quasiparticle scattering
with distinct Berry phase accumulations but vanishing Berry
curvature. This is analogous to the Aharonov-Bohm effect
induced by a confined real magnetic flux without any magnetic
field exerted outside (hence the name gVHE).

B. Dependence of VHA on singular Berry flux

Quantitatively, the emergence of gVHE can be ascertained
through the dependence of the characteristic VHA γ on the
singular Berry flux magnitude �. We calculate VHA at zero
temperature and show its contour map versus the relative
carrier energy E/V0 and � in Fig. 3(a). There are finite VHAs

FIG. 3. Singular Berry flux defined valley Hall angle. (a) Contour
map of valley Hall angle γ versus the singular Berry flux magnitude
� and the relative energy E/V0 for scatterer strength V0R = 1.
(b) Average valley Hall angle γ̃ over the Fermi energy versus the
Berry phase for different values of the scatterer strength as represented
by the solid line (V0R = 1), the dashed line (V0R = 10), and the
dotted-dashed line (V0R = 100). (c) Enhancement of VHA due to
resonant valley skew scattering occurring within the energy range
indicated by the thick black line in (a) for � = 1

2 and V0R = 1.
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(γ 
= 0) within the range 0 < � < 1, which correspond to
a non-π fractional Berry flux leading to a non-π fractional
Berry phase but a zero Berry curvature away from the Dirac
point, say for E/V0 > 0. In addition, in the two limiting
cases with singular Berry fluxes of 0 and π (i.e., � →
0,1), we have γ → 0. Note that the former and latter cases
correspond, respectively, to a dice lattice system with massless
pseudospin-1 low-energy excitations and a graphene system
hosting massless pseudospin- 1

2 quasiparticles. By definition,
γ = 0 means that the Hall effect vanishes, and a large value of
|γ | indicates a strong VHE. In addition, at zero temperature,
γ |T =0 is effectively the transport skewness that characterizes
the degree of asymmetry in the associated scattering event. As
such, we have that the gVHE emerges due to the singular non-π
fractional Berry flux that permits exceptional valley skew
scattering from valley-independent, scalar type of scatterers.
At low energies, i.e., kR � 1, for E/V0 � 1, we obtain an
analytic formula for the VHA versus the flux magnitude (see
Appendix D for the derivations and its validation):

γ (�) � πx2 �(1−�)
1+�

(1 + η)2[� − (1 − 2η)]2 + 4η�(1−�)
1+�

, (8)

where η = E/V0 and x = kR. We see that the VHA exhibits
a nonlinear dependence on the Berry flux and an asymmetric
resonance profile. In particular, as � is increased from 0 to 1
monotonously, the VHA reaches maximum at �∗ � (1 − 2η),
followed by a decrease to zero. Asymptotic behaviors at the
opposite limits of � → 1 and � → 0 derived from Eq. (8)
are γ (�) ∼ (1 − �) for � → 1 and γ ∼ � for � → 0. We
see that the VHA vanishes linearly as � → 0,1, i.e., when
the π -quantized Berry flux is recovered. Away from these
limiting cases, gVHE emerges following an asymmetrically
resonant behavior that has a nonlinear dependence on the
singular Berry flux. Relaxing the assumption of E/V0 � 1,
we obtain an estimation of the other resonance position
for E/V0 > 1

2 as �∗ � (2η − 1) (see Appendix D). Both
theoretical predications are marked by the green dashed line
in Fig. 3(a), where, on the other hand, the linear dependence
of the resonance position on the Berry flux can be utilized
to demarcate the unusual Berry phase associated with the
quasiparticles through Hall transport measurements.

Figure 3(b) reveals the effect of the scatterer strength
V0R on gVHE, where the averaged absolute VHA γ̃ ≡∫ |γ |dE/

∫
dE versus � for three different values of V0R (1,

10, 100) is shown, as indicated by the solid, dashed, and dotted-
dashed lines, respectively. We see that, on average, weak scat-
terers favor sizable VHAs, giving rise to a pronounced gVHE,
while strong scatterers do not. An intuitive picture behind this
can be obtained by resorting to the general summation form
of the skew cross section in terms of the scattering phase
shift δl : �τ

sk = 4/k
∑

sin δl sin δl+τ sin(δl − δl+τ ) where, for a
given carrier energy value E/V0, the larger V0R is, the more
scattering channels with different phase shifts are excited. As
a result, there are many sign changes in δl or (δl − δl+τ ),
reducing significantly the summation and hence VHA. This
phenomenon is essentially due to the phase effect and is
dominant in the long-wavelength limit. In particular, from
Fig. 3(c), we see that the VHA can be enhanced significantly
due to the emergent resonant valley skew scattering in the

FIG. 4. Illustration of resonant skew-scattering-assisted valley
filtering. For � = 1

2 with the resonance position indicated by the
small red circle in Fig. 3(c), (a) polar plot of normalized differential
cross section as a function of the scattering angle for different valleys:
K (solid blue line) and K′ (red dashed line), (b) associated near-field
patterns of the local probability density belonging to different valleys
(top two panels) and the corresponding current density plots (bottom
ones), and (c) a schematic illustration of gVHE associated with
resonant valley skew scattering.

energy domain, which can be achieved by controlling the Fermi
energy.

C. Enhanced valley filtering through resonant skew scattering

Accompanying the enhancement in the VHA at skew
scattering resonances, a sizable valley filtering effect will
be anticipated. Insights into resonant skew-scattering-assisted
valley filtering can be gained by investigating both the far-field
and near-field behaviors in terms of the differential cross
section (DCS) d�τ/dθ = |fττ (θ )|2 and the associated near-
field patterns for different valleys, as illustrated in Figs. 4(a)
and 4(b), respectively. There is an exact mirror symmetry
with respect to the horizontal axis between the patterns
associated with different valleys: an exact manifestation of
the time-reversal symmetry. From the formula for γ |T =0, we
note that a large VHA implies a left-right asymmetry in the
DCS and hence gives rise to a strong valley polarization along
the azimuthal direction, and vice versa. Demonstration using a
polar plot of DCS is displayed in Fig. 4(a) with resonance
parameters indicated by the red circle in Fig. 3(c). As a
result, a remarkable valley filtering/polarization effect emerges
together with VHA enhancement and gVHE. Furthermore,
it can be seen from Fig. 4(b) that, at the given resonance,
valley-contrasting spatial skew (asymmetric) trappings occur
via the formation of unusual fusiform vortices on one side
of the boundary. Consequently, the scatterer only blocks one
of the valleys effectively at one side via valley-dependent
skew trapping, making the system an effective valley filter near
the resonance. Figure 4(c) illustrates schematically the valley
filtering mechanism due to resonant skew-scattering-enhanced
gVHE. We also find that exceptionally large VHAs and strong
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FIG. 5. Exceptionally large VHAs and the effect of thermal
fluctuations and disorder averaging. For � = 1

2 , (a) a contour plot
of the VHA γ versus E/V0 and the scatterer strength V0R at zero
temperature, and (b) ensemble-averaged VHA over scatterers with
randomly distributed strength V0R ∈ (0,10] versus the reduced Fermi
energy for different values of the normalized thermal temperature
kBT /V0 = 0,0.01,0.025.

valley filtering can occur for intermediate scatterer strength
[cf. Fig. 7(a) in Appendix D].

D. Robustness against disorder averaging
and thermal fluctuations

A further analysis of the effect of scatterer strength reveals
that gVHE enhancement induced by resonant skew scattering
is significant for intermediate scatterer strength, say V0R ∼ 2,
where large VHAs with the maximum absolute value |γ |max ∼
0.8 can arise, as shown in Fig. 5(a). The Hall angle values are
much larger than those for metals [41–45] (|γ | ∼ 0.01–0.1)
and for graphene [46–48] (|γ | ∼ 0.2). This remarkable result
holds in the presence of thermal fluctuations and disorder
averaging, as shown in Fig. 5(b), rendering the phenomenon
uncovered here promising for valleytronics applications.

IV. DISCUSSION

We uncover a singular momentum-space Berry flux me-
diated mechanism for VHE and show that it can lead to
efficient, electrically controllable valley filtering without com-
promising the high mobility of the carriers, which is far more
advantageous than the conventional approach of introducing a
finite quasiparticle mass or deforming the underlying energy
dispersion. In particular, for fractional Berry fluxes charge
neutral transverse valley currents can be generated from
exceptional skew scattering from a valley-independent, scalar
type of impurities. Analogous to the Aharonov-Bohm effect
mediated by a singular magnetic flux in the physical space, the
VHE has a geometric origin associated with the underlying
momentum-space Berry phase but vanishing Berry curvature.
We develop an analytic understanding of the phenomena
of gVHE and valley filtering, for which further physical
insights can be gained by resorting to symmetry considerations
(Appendix E). We demonstrate that gVHE and the resulting

valley filtering are robust against thermal fluctuations and
disorders while preserving the high mobility of the carriers,
potentially opening a door to developing faster and more
efficient valleytronics.

It is worth emphasizing that the phenomenon of gVHE
uncovered in this work belongs to the mixed type and emerges
in the absence of any valley-resolved perturbation. To our
best knowledge, this differs from any of the previous cases
(Appendix F). We also remark that intervalley scattering can
be neglected in our analysis, for the following two reasons:
(1) a relatively large momentum transfer on the order of the
inverse lattice spacing is needed to scatter an carrier from the
K valley to the K ′ valley and (2) it is physically reasonable to
assume that the impurity potentials are smooth on the lattice
scale but sharp in comparison with the carriers’ wavelength
(Appendix G).

While we have used the α-T3 lattice to demonstrate our
findings, we expect them to arise generally in physical
systems hosting massless Dirac-type particles with a singular
non-π fractional Berry flux in the momentum space. For
instance, there exists a correspondence between our model and
massless Kane fermion systems [49,50] that can arise in three-
dimensional (3D) zinc-blende crystals, i.e., Hg1−xCdxTe, at
some critical doping concentration [51–53]. In particular, for
singular Berry flux � = 1

2 (α = 1/
√

3), we have H0(α =
1/

√
3) ≡ HKane(k,kz = 0) (see Appendix H). In this sense,

the phenomenon of gVHE uncovered here manifests itself as
the geometric SHE in a massless Kane fermion system, which
can be experimentally validated in the 3D zinc-blende crystals
in the presence of spin-independent (scalar-type) cylindrical
symmetric impurities (e.g., charged dislocation line defects
along the [001] direction).
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APPENDIX A: EXPLICIT FORM OF MATRICES Sα
x AND Sα

y

The matrices Sα
x and Sα

y are given by

Sα
x =

⎛
⎝ 0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎞
⎠ (A1)

and

Sα
y =

⎛
⎝ 0 −i cos φ 0

i cos φ 0 −i sin φ

0 i sin φ 0

⎞
⎠, (A2)

which are parametrized by α = tan φ. They identify the
nonequivalent crystalline sublattices in the α-T3 lattice.
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APPENDIX B: BERRY PHASE AND CURVATURE

We follow the recent works [39,49,50] to carry out calcu-
lations to show that, in our α-T3 system, the Berry curvature
and phase are not conventional in the sense that the phase can
be a fraction of π . The effective Hamiltonian in the main text
is

H0(k) = α̃ · k, (B1)

where k = (kx,ky,0) and α̃ = (τ3 ⊗ Sα
x ,τ0 ⊗ Sα

y ,τ1 ⊗ S̃z) with
S̃z = 0 ⊕ σx . The Hamiltonian H0 has eigenvalues E = n|k|
with n = 0,± denoting the band index, and the associated
eigenstates are given by

|k,s〉|τ 〉 = 1√
2

⎛
⎝τ cos φe−iτθ

s

τ sin φeiτθ

⎞
⎠|τ 〉 (B2a)

for E = s|k| with s = ±, and

|k,0〉|τ 〉 =
⎛
⎝ τ sin φe−iτθ

0
−τ cos φeiτθ

⎞
⎠|τ 〉 (B2b)

for E = 0, where tan θ ≡ ky/kx and τ = ± denotes the valley
index. The Berry connection (field) of each band can be
calculated from the definition Aτ

n,k = 〈τ |〈k,n|∇k|k,n〉|τ 〉. We
have

Aτ
0,k = −τ

1 − α2

1 + α2
∇kθ, Aτ

s,k = −1

2
Aτ

0,k. (B3)

Consequently, the Berry curvature �τ
n,k = ∇k × Aτ

n,k is read-
ily obtained as

�τ
s,k = τ

2

1 − α2

1 + α2
∇k ×

(
− ky

k2
x + k2

y

,
kx

k2
x + k2

y

,0

)

= τ
1 − α2

1 + α2
πδ(k)k̂z (B4)

for the conical bands and �τ
0,k = −2�τ

s,k for the flat band,
while the Berry phase �τ

n = ∮ dk · Aτ
n,k for any closed path

Cτ
n,kd

encircling a degeneracy point kd (i.e., a single valley
center) in the momentum space is given by

�τ
s = τ

1 − α2

1 + α2
π and �τ

0 = −2�τ
s . (B5)

From Eqs. (B4) and (B5), we see that our α-T3 system
possesses a vanishing Berry curvature except at the band-
touching point (or Dirac point) and valley-contrasting Berry
phases except for α = 0 or 1, which makes the emerging
Dirac-type cone an effective singular Berry flux applied
perpendicular to the 2D momentum space with a tunable
magnitude of � = (1 − α2)/(1 + α2). It should be noted that
this argument holds for scalar type of perturbation assumed in
our work, and since the transport process we investigate occurs
away from the Dirac point, the contributing carriers experience
vanishing Berry curvatures throughout the process.

APPENDIX C: SCATTERING AMPLITUDE FORMULAS

Minimal model and partial wave expansion. As indicated
in the main text, we use the following perturbed Hamiltonian,

H = H0 + V (r), (C1)

to model the quantum scattering processes from the extrin-
sically controllable impurities such as randomly positioned
antidots due to circularly symmetric vertical gates. The
impurities are treated as an ensemble of finite-size scattering
centers of radius R described by the disordered scalar potential
V (r) =∑i τ0 ⊗ IV0�(R − |r − r i |), which are distributed at
random positions r i with V0 being the potential height. The
characteristic size R of each individual scatterer is assumed to
be much larger than the lattice constant so that intervalley
scattering is negligible. If the scatterers are sufficiently
dilute so that multiple scattering effects can be ruled out,
i.e., the density satisfies nimp � 1/R2, we can impose the
single-scattering-event approximation to obtain physically
meaningful solutions for the far-field scattering amplitude
fττ ′(θ ) using the standard partial wave decomposition (PWD)
scheme. In the following, we shall derive its expression in
terms of such a single-disk scatterer.

Far away from the scattering center (i.e., r � R), for
an incoming flux along the x direction, the spinor wave
function belonging to the valley τ with band index s takes
the asymptotic form

|��
s,τ (r)〉 = eikx |k0,s〉|τ 〉 + fττ ′(θ )√−ir

eikr |kθ ,s〉|τ ′〉, (C2)

where the Einstein summation convention is applied for
the valley index τ ′, the ket |τ 〉 represents the valley state
(analogous to the orientation of the isospin along the z axis),
and the vector |k,s〉 is the spinor plane wave amplitude
with wave vectors k0 = (k,0) and kθ = k(cos θ, sin θ ) that
define the directions of the incident and scattering waves,
respectively. In our system, for the conical dispersion bands
s = ±, we have

|k,s〉|τ 〉 = 1√
2

⎛
⎝τ cos φe−iτθ

s

τ sin φeiτθ

⎞
⎠|τ 〉. (C3)

The current operator is defined as Ĵ = (1/h̄)∇kH (k) =
vF (τ3 ⊗ S

φ
x ,τ0 ⊗ S

φ
y ). We thus obtain the scattered current as

Jsc = 1

r
〈τ ′|〈kθ ,s|f ∗

ττ ′ Ĵ · kθ

k
fττ ′ |kθ ,s〉|τ ′〉

= τvF

r
[|fττ (θ )|2 + |fττ (θ )|2], (C4)

while the incident current is

Jin = 〈τ |〈k0,s| Ĵ · k0/k|k0,s〉|τ 〉 = τvF . (C5)

The differential cross section can be calculated from the
scattering amplitudes fττ ′(θ ) as

d�τ

dθ
= rJsc

Jin

= |fττ (θ )|2 + |fττ (θ )|2, (C6)

where τ ≡ −τ , and fττ (θ ) denotes the scattering amplitudes
in the valley-flip channels, which vanishes in the absence
of intervalley-coupling perturbations. Other relevant cross
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sections can be calculated in a similar manner. In particular,
the total cross section (TCS) is

�τ =
∫ 2π

0
dθ

d�τ

dθ
, (C7)

the transport cross section (TrCS) is

�τ
tr =

∫ 2π

0
dθ (1 − ττ ′ cos θ )|fττ ′(θ )|2, (C8)

and the skew cross section (SkCS) is given by

�τ
sk =

∫ 2π

0
dθ ττ ′ sin θ |fττ ′(θ )|2. (C9)

To obtain an exact expression for fττ ′(θ ), we expand the wave
functions inside and outside the scatterer as a superposition of
partial waves. In particular, for r > R (outside the scatterer)
and r < R (inside the scatterer), we have

|�>
s,τ (r)〉 =

∑
l

ψ>
l,s(r)|τ 〉 (C10a)

and

|�<
s,τ (r)〉 =

∑
l

ψ<
l,s(r)|τ 〉, (C10b)

respectively, where ψ>
l,s |τ 〉 and ψ<

l,s |τ 〉 are the partial waves
defined in terms of the cylindrical wave eigenfunctions of
the reduced Hamiltonian H, which in the polar coordinates
r = (r,θ ) reads as

H = h̄vF τ

⎛
⎝ 0 cos φL̂τ̄ 0

cos φL̂τ 0 sin φL̂τ̄

0 sin φL̂τ 0

⎞
⎠+ V(r),

(C11)
with the compact operator

L̂τ = −ieiτθ

(
∂r + iτ

∂θ

r

)
,

and V(r) = τ0 ⊗ IV0�(R − r) being the circularly symmet-
ric scalar type of scattering potential. Since the isotropic
perturbation V is both valley and sublattice independent, it
does not break any discrete symmetries and in fact preserves
the rotational symmetry of the system. As a result, we
have [H,Ĵz] = 0 with Ĵz ≡ −ih̄∂θ + τ3 ⊗ h̄Sz, analogous to
the z component of the total “(pseudo)angular momentum”.
In addition, we have [τ3 ⊗ I,H] = 0 (i.e., conservation of

valley isospin) due to the absence of intervalley coupling.
Consequently, H acts on the spinor eigenfunctions of Ĵz,
which yields

Hϕl,s |τ 〉 = Eϕl,s |τ 〉, (C12)

where the wave functions ϕl|τ 〉 simultaneously satisfy
Ĵzϕl|τ 〉 = h̄τ lϕl|τ 〉 with l being an integer. After some
algebra, we obtain, for the conical bands (i.e., s = ±),

ϕ
(0,1)
l,s (r)|τ 〉 = 1√

2π

⎛
⎜⎜⎝

cos φh
(0,1)
l−τ (qr)e−iτθ

ish
(0,1)
l (qr)

− sin φh
(0,1)
l+τ (qr)eiτθ

⎞
⎟⎟⎠eilθ |τ 〉, (C13)

where q = |E − V|/h̄vF and s = sign(E − V). The radial
function h

(0)
l = Jl is the Bessel function and h

(1)
l = H

(1)
l is

the Hankel function of the first kind. The partial waves outside
(r > R) and inside (r < R) the scatterer are given by

ψ>
l,s(r)|τ 〉 = √

πil−1
[
ϕ

(0)
l,s |τ 〉 + Aττ

l ϕ
(1)
l,s |τ 〉 + Aττ

l ϕ
(1)
l,s |τ 〉]

(C14a)

and

ψ<
l,s(r)|τ 〉 = √

πil−1
[
Bττ

l ϕ
(0)
l,s ′ |τ 〉 + Bττ

l ϕ
(0)
l,s ′ |τ 〉], (C14b)

respectively, where Aττ
l (Aττ

l ) and Bττ
l (Bττ

l ) denote the
elastic (valley-flip) partial wave reflection and transmission
coefficients in the angular channel τ l, respectively. To obtain
explicit expressions of the partial wave coefficients, proper
boundary conditions (BCs) are needed.

Boundary conditions. Recalling the commutation relations
[Ĵz,H] = 0 and [τ3 ⊗ I,H] = 0, we define a spinor wave
function in the polar coordinates as

ψ(r,θ )|τ 〉 = [ψ1,ψ2,ψ3]T |τ 〉 =

⎛
⎜⎝
R1(r)e−iτθ

R2(r)

R3(r)eiτθ

⎞
⎟⎠eilθ |τ 〉,

(C15)
which satisfies

Hψ |τ 〉 = Eψ |τ 〉. (C16)

Substituting Eq. (C15) into Eq. (C16) and eliminating the an-
gular components, we obtain the following one-dimensional,
first-order ordinary differential equation for the radial compo-
nent:

− iτ

⎛
⎜⎝

0 cos φ
[

d
dr

+ τ l
r

]
0

cos φ
[

d
dr

− τ l−τ
r

]
0 sin φ

[
d
dr

+ τ l+τ
r

]
0 sin φ

[
d
dr

− τ l
r

]
0

⎞
⎟⎠
⎛
⎜⎝
R1(r)

R2(r)

R3(r)

⎞
⎟⎠ = E − V (r)

h̄vF

⎛
⎜⎝
R1(r)

R2(r)

R3(r)

⎞
⎟⎠. (C17)

Directly integrating the radial equation over a small interval r ∈ [R − η,R + η] defined about the interface at r = R and then
taking the limit η → 0, we obtain

R2(R − η) = R2(R + η),

cos φR1(R − η) + sin φR3(R − η) = cos φR1(R + η) + sin φR3(R + η), (C18a)
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provided that the potential V (r) and the radial function components R1,2,3(r) are all finite. Reformulating such continuity
conditions in terms of the corresponding wave function yields the desired BCs:

ψ<
2 (R,θ ) = ψ>

2 (R,θ ),

cos φψ<
1 (R,θ )eiτθ + sin φψ<

3 (R,θ )e−iτθ = cos φψ>
1 (R,θ )eiτθ + sin φψ>

3 (R,θ )e−iτθ . (C18b)

Far-field solutions. Using the asymptotic form of the Hankel
function

H
(1)
l (kr) ∼

√
2/πkrei(kr−lπ/2−π/4),

and evaluating the outside wave function given in Eq. (C10a)
in the far-field region (r � R), we arrive at

|��
s,τ (r)〉 = eikx |k0,s〉|τ 〉

+ −i
√

2/πk
∑

l A
ττ ′
l eilθ

√−ir
eikr |kθ ,s〉|τ ′〉. (C19)

From Eqs. (C19) and (C2), we obtain

fττ ′(θ ) = −i

√
2

πk

∑
l

Aττ ′
l eilθ . (C20)

In our system, the valley-flip amplitudes Aττ
l and Bττ

l vanish
due to the absence of intervalley coupling. Consequently, we
have fττ = 0.

Imposing the BCs [Eq. (C18b)] on the total wave functions
of both sides at the interface r = R, we have

Bττ
l Jl(qR) = ss ′[Jl(kR) + Aττ

l H
(1)
l (kR)

]
,

Bττ
l X

(0)
l,τ (qR) = X

(0)
l,τ (kR) + Aττ

l X
(1)
l,τ (kR), (C21)

where X
(0,1)
l,τ = h

(0,1)
l−τ cos2 φ − h

(0,1)
l+τ sin2 φ. Solving Eq. (C21),

we obtain the unknown coefficients as

Aττ
l = − Jl(qR)X(0)

l,τ (kR) − ss ′X(0)
l,τ (qR)Jl(kR)

Jl(qR)X(1)
l,τ (kR) − ss ′X(0)

l,τ (qR)H (1)
l (kR)

(C22)

and

Bττ
l = H

(1)
l (kR)X(0)

l,τ (kR) − X
(1)
l,τ (kR)Jl(kR)

H
(1)
l (kR)X(0)

l,τ (qR) − ss ′X(1)
l,τ (kR)Jl(qR)

. (C23)

Using the basic relations J−l = (−)lJl and H
(1)
−l =

(−)lH (1)
l , we obtain the following relations characterizing the

intervalley symmetries:

Aττ
−l = Aτ̄τ̄

l ; Bττ
−l = Bτ̄τ̄

l . (C24)

However, there are no such symmetries for the coefficients
belonging to the same valley, except for the particular cases of
α = 0 and 1, where

Aττ
−l = Aττ

l ; Bττ
−l = Bττ

l (C25a)

for α = 1 (dice lattice), and

Aττ
−l = Aττ

l+1; Bττ
−l = Bττ

l+1 (C25b)

for α = 0 (graphene). The resulting probability density
ρ = 〈�s,τ (r)|�s,τ (r)〉 and the local current density j =
〈�s,τ (r)| Ĵ |�s,τ (r)〉 can be calculated accordingly. Particu-
larly, the exact scattering amplitude fττ (θ ) can be obtained
according to Eq. (C20).

APPENDIX D: DERIVATION OF EQ. (8), ITS VALIDATION,
AND RESONANCE FEATURE

It follows from Eqs. (C7)–(C9) and (C20) that the scattering
cross sections have their summation forms given by

�τ = 4

k

∞∑
l=−∞

∣∣Aττ
l

∣∣2, (D1a)

�τ
tr = �τ − 4

k

∞∑
l=−∞

Re
[
Aττ

l

(
Aττ

l+τ

)∗]
, (D1b)

and

�τ
sk = 4

k

∞∑
l=−∞

Im
[
Aττ

l

(
Aττ

l+τ

)∗]
. (D1c)

Here, we analyze the low-energy scattering of the 2D massless
Dirac-type particles governed by the Hamiltonian given in
Eq. (C1). At low energies, i.e., kR � 1, the scattering is
dominated by the lowest channels l = 0, ± τ . Defining x ≡
kR and ρ ≡ V0R and adopting the convention h̄vF = 1, under
the assumption of x < ρ � 1 (i.e., under-barrier scattering for
weak scatterer/barrier), we obtain the coefficients as

Aττ
0 = − P0

P0 + iQ0
, Aττ

τ = − P1

P1 + i(4α2 + Q1)
,

Aττ
−τ = − P1α

2

P1 + i(4 + Q1α2)
,

(D2)

where P0 = πx and

Q0 = 2

(
x ln

γEx

2
− τJ0(ρ − x)

Jτ (ρ − x)

)
, (D3)

with ln γE ≈ 0.577 . . . being the Euler’s constant and P1,Q1

given by [P1,Q1] = x[P0,Q0]. Substituting these coefficients
into Eq. (D1), we obtain

�τ
tr/R = 4P 2

0

x
(
P 2

0 + Q2
0

){1 − 4Q1α
2

[
1

P 2
1 + (4α2 + Q1)

+ 1

P 2
1 α4 + (4 + Q1α2)2

]}
(D4)

and

�τ
sk/R = 16P 2

0 P1α
2

x
(
P 2

0 + Q2
0

){ 1

P 2
1 + (4α2 + Q1)

− 1

P 2
1 α4 + (4 + Q1α2)2

}
. (D5)

For the particular cases of α = 0 (graphene) and α = 1 (dice
lattice), we have �τ

sk/R = 0, indicating absence of valley skew
scattering and thus Hall effect associated with it. In the weak
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scattering regime (ρ � 1), the prefactor

P 2
0

x
(
P 2

0 + Q2
0

) ≈ π2J 2
1 (ρ − x)

4J 2
0 (ρ − x)

x ∝ x � 1

is off resonance, while the other factors generally (except
for α = 0,1) contain a dual resonance profile in the energy
domain. From Eq. (D5), we obtain the resonance condition as

Q1 + 4α2 = 0 ⇒ x

ρ
= α2

1 + α2
(D6a)

or

Q1α
2 + 4 = 0 ⇒ x

ρ
= 1

1 + α2
. (D6b)

Letting η = x/ρ ≡ E/V0 and using the relation � = (1 −
α2)/(1 + α2), we reformulate the dual resonance condition in
terms of the reduced Berry phase � explicitly given by

η∗ = 1 − �∗
2

(D7a)

and

η∗∗ = 1 + �∗
2

≡ 1 − η∗. (D7b)

It can be seen that the first resonance occurs at η ∈ (0,1/2),
while the second one lies within η ∈ [1/2,1).

From Eqs. (D4) and (D5), we obtain the valley skewness
(i.e., the valley Hall angle at zero temperature described in the
main text) as

γ |T =0 ≡ �τ
sk

�τ
tr

≈ 4P1
(
16 − P 2

1 − Q2
1

)
α2(1 − α2)(1 + α2)(

162 + Q4
1

)
α4 + 16Q2

1(1 + α8) + 4Q1α2(1 + α4)
(
16 + Q2

1

) . (D8)

In the limit η � 1, Eq. (D8) can be further simplified as (the
subscript T = 0 is omitted hereafter for clarity)

γ (�) ≈ 4P1α
2(1 − α2)(1 + α2)

Q2
1 + 4Q1α2(1 + α4) + 16α4

� πx2 �(1−�)
1+�

(1 + η)2[� − (1 − 2η)]2 + 4η�(1−�)
1+�

. (D9)

From Eq. (D9), we obtain the asymptotic behaviors in
the opposite limits of � → 1 (massless spin- 1

2 particles
occurring in, e.g., graphene or topological insulators) and
� → 0 (massless spin-1 particles excited in dice lattices and
various type synthetic photonic structures) as

γ (�) →
{

πx2

8η2+4η(1−�) (1 − �) for � → 1,

πx2

(1−η)2+4η�
� for � → 0.

(D10)

To validate these analytical results on resonance and the
valley Hall angle quantitatively, we compare them with those
from direct numerical calculations. As shown in Fig. 6, there
is an excellent agreement between the analytical results for
the dual resonance condition given in Eqs. (D6) and (D7) and
the corresponding numerical results [cf. Figs. 6(a)–6(d)], and
a similar agreement has been obtained for the singular Berry-
flux-resolved valley Hall angle in Eq. (D9) [cf. Fig. 6(e)].

For a particular value of the Berry flux, say � = 1
2 (i.e.,

α = 1/
√

3) that can be related to the massless Kane fermions
observed in recent experiments (see Appendix H below),
we can infer from Eq. (D5) that skew scattering will be
enhanced due to the emergent dual resonances positioned
at/around η = (1 ± �)/2, which can be reached by controlling
the carrier energy E. Exact calculations show that such
enhancements induced by the dual resonant skew scattering are
significant and can lead to considerable valley Hall angles with
the maximum absolute values |γ |max ∼ 0.8 for intermediate
scatterer strength, e.g., ρ = 2, as depicted in Fig. 7(a). From the
near-field patterns as illustrated in Figs. 7(b)–7(e) for the valley
K (the patterns for the other valley K ′ are merely mirror images

of those for K with respect to the horizontal axis), we see
that remarkable valley-contrasting spatial skew (asymmetric)
trappings occur through the formation of unusual fusiform
vortices around one side of the boundary. Consequently, the
scattering effectively blocks one of the valleys at one side
via the skew trapping, generating efficient valley filtering
near/at the resonances. This is consistent with the (far-field)
valley-contrasting angular distributions of the corresponding
DCS as displayed in the insets of Fig. 7(a).

APPENDIX E: SYMMETRY CONSIDERATIONS

The concept of symmetry breaking is fundamental and
played an important role in the development of modern con-
densed matter physics. Various physical effects or phenomena
can be attributed to the lack of certain discrete symmetries,
e.g., the time-reversal symmetry. Insights about our scattering
system can be obtained from a symmetry analysis. To be
general, we focus on the following perturbed Dirac-type
Hamiltonian in two dimensions:

H(k) = α̃xkx + α̃yky + V, (E1)

where (α̃x,α̃y) = (τ3 ⊗ Sα
x ,τ0 ⊗ Sα

y ) and V denotes the ex-
ternal perturbed potential. The Hamiltonian H acts on the
spinor wave function � = [�τ

A,�τ
B,�τ

C,�τ̄
A,�τ̄

B,�τ̄
C]T with

τ̄ ≡ −τ and satisfies H� = E�. As done in the work by
Beenakker [54], we figure out an explicit representation of the
true time-reversal operator given by

T = τ1 ⊗ IK|k→−k, (E2)

where I is the 3 × 3 identity operator acting on the sub-
lattice space and K denotes the complex-conjugation op-
erator. Note that the true time-reversal operation is of the
orthogonal type, which leads to the transformations T � =
[�τ̄∗

A ,�τ̄∗
B ,�τ̄∗

C ,�τ∗
A ,�τ∗

B , �τ∗
C ]T ,T α̃x,yT −1 = −α̃x,y in the

basis adopted and thus interchanges the valleys, consequently
reversing the sign of the current j = �†(α̃x,α̃y)�. For the
Dirac-type Hamiltonian (E1), there is another antiunitary
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FIG. 6. Validity of analytic results in the low-energy scattering regime. For x � 1, (a), (b) color-coded natural logarithm of the transport
cross section in the coordinates of (α,η) and (�,η), respectively, for scatterer strength ρ = 0.1. (c), (d) Color-coded ln (�τ

tr ) and zero-temperature
valley Hall angle γ as a function of the Berry flux � and η for ρ = 1. (e) Valley Hall angle γ versus the Berry flux � for different values of
the reduced carrier energy η = 0.06,0.1,0.3 (along the red arrow). In all panels, the blue curves are calculated from the analytic formulas (D6)
and (D7) for the dual resonance condition [cf. (a)–(d)] and Eq. (D9) for the Berry flux dependence of the valley Hall angle [cf. (e)], with the
conventions {h̄vF = 1, x = kR, ρ = V0R, η = E/V0} (as in the main text).

FIG. 7. Enhanced valley Hall angle and valley filtering by
resonant skew scattering. (a) Valley Hall angle as a function
of carrier energy normalized by the scattering potential height.
(b), (c) The near-field patterns of local probability and current density,
respectively, associated with the valley K at the resonance indicated
by the R1 pink circle in (a). (d), (e) The corresponding near-field
patterns associated with another resonance as indicated by the R2
pink circle for the same valley. Insets of (a) are polar plots of the
differential cross section for different valleys at two prominent valley
Hall angles marked by the pink circles R1 and R2. For all panels, we
set ρ = 2.

operator defined independently for each valley:

Te =

⎧⎪⎪⎨
⎪⎪⎩

τ0 ⊗ (iσy ⊕ 0)K|k→−k for α = 0,

τ0 ⊗
⎛
⎜⎜⎝

0 0 −α

0 1 0
−1/α 0 0

⎞
⎟⎟⎠K|k→−k for α ∈ (0,1],

(E3)

which by definition does not interchange the valleys but
reverses the sign of the current associated with each valley.
It thus acts as an effective time-reversal operator for a single
valley.

Distinct from the T symmetry, the Te symmetry can be bro-
ken without a magnetic field. Conventionally, this occurs when
sublattice/valley-dependent perturbations are present [54].
Remarkably, in our system, we encounter a scenario in which
the Te symmetry can be broken inherently in the absence of
any such sublattice or valley-dependent perturbation, while
the T symmetry is preserved. In particular, for the scalar type
of perturbation, i.e., V = τ0 ⊗ IV0 considered in our work,
we have T VT −1 = V, TeVT −1

e = V , and thus T HT −1 = H
while TeVT −1

e 
= H for 0 < α < 1, indicating that there is no
T symmetry breaking as it should be, but Te is in general
broken except for the particular cases of α = 0 (graphene) and
α = 1 (dice lattice). The breaking of the Te symmetry imposes
the following constraints on the scattering coefficients

Aττ
l 
= Aττ

−l , Aτ̄ τ̄
l 
= Aτ̄τ̄

−l , Aττ
l = Aτ̄τ̄

−l . (E4)

Two relations then follow from Eq. (C20): |fττ (θ )| 
=
|fττ (−θ )| and |fττ (θ )| = |fτ̄ τ̄ (−θ )|, where the former
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accounts for the breaking of the Te symmetry and the latter
signifies the preservation of the T symmetry. Consequently,
the skew cross section defined in Eq. (C9) is finite and has
opposite signs for different valleys, leading to the emergence
of a net charge-neutrality valley Hall current. We note that
when such an inherent Te breaking (i.e., 0 < α < 1) occurs,
the corresponding singular Berry flux is non-π fractional and
continuously tunable as a function of α. Therefore, the basic
symmetry property analysis provides a consistent and more
general physical insight on the singular Berry-flux-mediated
exceptional valley skew scattering and hence gVHE uncovered
in our work.

APPENDIX F: EXTRINSIC VERSUS INTRINSIC
VALLEY HALL EFFECT

Hall effect due to asymmetric transport associated with
the spin degree of freedom has been studied extensively, with
two types of mechanisms: intrinsic or extrinsic [29,35]. In
analogy to the intrinsic spin Hall effect, VHE of the intrinsic
type was subsequently proposed through the introduction
of a staggered sublattice potential to generate finite valley-
contrasting Berry curvatures [2,13]. Extrinsic VHE requires
external valley-resolved perturbations such as magnetic fields,
strain-induced pseudomagnetic fields, or magnetic materials
that have opposite effect on the two valleys [10,11,18–20].

However, our gVHE is distinct and can arise in the
absence of nontrivial Berry curvatures and any external valley-
dependent perturbation. Unlike the conventional types, the
gVHE uncovered here is mediated by inherent singular Berry
fluxes in the momentum space with vanishing Berry curvatures
and manifests itself through exceptional skew scattering from
valley-independent impurities. Our gVHE is thus neither
purely intrinsic nor extrinsic but of a hybrid/mixed type of
Hall effect.

APPENDIX G: INTERVALLEY SCATTERING

Intervalley scattering can be justifiably neglected in our
work, for the following reasons. First, the perturbations in
our study are of the scalar type, which is both valley and
sublattice independent. That is, the perturbations respect all
discrete symmetries of the original Hamiltonian, making the
valley degree of freedom (isospin) conserved throughout the
scattering process. Second, the valleys separated by a long
distance in the momentum space (i.e., 8π/3a with a being
the lattice constant) are robust against perturbations since
intervalley scattering occurs only when a large momentum on
the order of the inverse lattice spacing for scattering from K ′
to K ′ is transferred. Last but not least, the impurity potentials
adopted in our work are assumed to be smooth on the lattice
scale but sharp in comparison with the carriers’ wavelength.

As a matter of fact, in valleytronic applications such
as valley current generators (valley “battery”) or a valley
carrier of information, a weak intervalley scattering or a long
valley relaxation time is needed to generate a robust valley
current and preserve coherence. For the honeycomb lattice,
it turns out that intervalley scattering is strongly suppressed
because of the large separation in the momentum space,
offering the possibility of exploiting the valley index in a way

similar to the role of spin in spintronics applications. This
makes graphene attractive and competitive for valleytronics
applications [2,55]. We note that, in a more recent experiment
for the graphene system with sharp, circular scalar-type (elec-
trostatic) potentials as adopted here [56], intervalley scattering
is generally not observed and a single valley continuum Dirac
Hamiltonian with disk-shaped step potentials is sufficient.

APPENDIX H: MAP ONTO MASSLESS KANE FERMIONS

In recent experiments [51–53], exotic Dirac-type quasipar-
ticles named massless Kane fermions have been observed in
3D zinc-blende crystals, i.e., Hg1−xCdxTe, at some critical
doping concentration. In the presence of strong spin-orbit
interaction (e.g., ∼1 eV), the fermions can be effectively
described by the six-band Kane Hamiltonian [51] defined in
the basis

{|e ↑〉,|hh ↑〉,|lh ↑〉,|e ↓〉,|hh ↓〉,|lh ↓〉},
that is arranged from the lowest electron conduction band |eλ〉,
heavy-hole valance band |hhλ〉 to the light-hole valance band
|lhλ〉 separated by the spin index λ = ↑,↓ as

HKane(k,kz)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

3vk+
2 − vk−

2 0 0 −vkz√
3vk−
2 0 0 0 0 0

− vk+
2 0 0 −vkz 0 0

0 0 −vkz 0 −
√

3vk−
2

vk+
2

0 0 0 −
√

3vk+
2 0 0

−vkz 0 0 vk−
2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(H1)

where k± = kx ± iky and v = √
3/2P/m0 with P being the

Kane’s matrix element and m0 being the free-electron mass.
With the unitary transformation

S = τ0 ⊗
⎛
⎝0 1 0

1 0 0
0 0 −1

⎞
⎠,

we obtain

HKane(k,kz) = S†HKaneS = vα̃xkx + vα̃yky + vα̃zkz, (H2)

where the matrices α̃x,y,z (resembling those for Dirac
fermions) define the underlying symmetries of the quasiparti-
cles and have the form

α̃x = τ3 ⊗
⎛
⎝ 0

√
3/2 0√

3/2 0 1/2
0 1/2 0

⎞
⎠,

α̃y = τ0 ⊗
⎛
⎝ 0 −i

√
3/2 0

i
√

3/2 0 −i/2
0 i/2 0

⎞
⎠, (H3)

α̃z = τ1 ⊗
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠.
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From Eq. (H3), we have

α̃x = τ3 ⊗ Sα=1/
√

3
x (H4a)

and

α̃y = τ0 ⊗ Sα=1/
√

3
y . (H4b)

Since the subspace on which the Pauli matrices τi=1,2,3 act
hosts real spin instead of the valley isospin, there exists an
exact map between the 2D sector of massless Kane fermion
system and the generalized lattice model proposed in the main
text:

HKane(k,kz = 0) = H0(α = 1/
√

3). (H5)
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