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Abstract
With the pioneering fabrication of graphene thefield of relativistic quantum chaos emerged.Wewill
focus on the spectral properties ofmassless spin-1/2 particles confined in a bounded two-dimensional
region, named neutrino billiards by Berry andMondragon in 1987. A commonly usedmethod for the
determination of the eigenvalues is based on a boundary integral equation originating fromGreen’s
theorem. Yet, in the quantization onemight face problems similar to those occurring for non-
relativistic quantumbilliards. Especially in cases where the eigenvalue spectrum contains near
degeneracies the identification of complete sequences of eigenvaluesmight be extremely elaborate, if
not unfeasible.We propose an expanded boundary integralmethod, which yields complete eigenvalue
sequences with a considerably lower numerical effort than the standard one. Actually, it corresponds
to an extension of themethod introduced inVeble et al (2007New J. Phys. 9 15) to relativistic quantum
billiards. To demonstrate its validity and its superior efficiency compared to the standardmethod, we
apply bothmethods to a circular billiard of which the eigenvalues are known analytically and exhibit
near degeneracies. Finally, we employ it for the quantization of a neutrino billiardwith a hole, of
which the spectrum containsmany close lying levels and exhibits unusualfluctuation properties.

1. Introduction

The search formanifestations of classical chaoswithin the field of quantum chaos in properties of the associated
quantum systemhas been a focus of research during the last 5 decades [1–3]. One of the concepts of quantum
chaos, namely the understanding of the features of the classical dynamics in terms of the spectral properties of
the corresponding quantum system, like nuclei, atoms,molecules, quantumwires, and quantumdots or other
complex systems [4–10], has been elaborated extensively. According to the ‘Bohigas–Giannoni–Schmit’
conjecture [11–14] for chaotic systems the spectral fluctuation properties of a generic chaotic system coincide
with those of randommatrices from theGaussian orthogonal ensemble (GOE), if time-reversal invariance is
conserved, and from theGaussian unitary ensemble (GUE), if it is violated. For integrable systems they have
been shown to coincidewith those of randomnumbers from aPoisson process [15]. Billiards are well suited for
the study of the dependence of the features of a quantum systemon the degree of chaoticity of its classical
dynamics since it depends only on their shapes. Furthermore, the corresponding non-relativistic quantum
mechanical system, referred to as quantumbilliard in the sequel, can be investigated experimentally usingflat,
cylindricalmicrowave resonators of corresponding shapes. In such systems signatures of classical chaoswere
observed in the fluctuation properties of their resonance frequency spectra, in the statistical properties of their
electric field distributions, in thefluctuation properties of the scatteringmatrix elements of chaotic scattering
processes, also in systems, where time-reversal invariance is broken [3, 16–19].

Most of theworks on quantum chaos focus on systems described by the non-relativistic Schrödinger
equation.Only recently a new field of interest emerged, namely relativistic quantum chaos [20, 21]. These
studies were triggered by the pioneering fabrication of graphene [22]. In the low-energy region it exhibits
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extraordinary properties attributed to the conically shaped band structure near the Fermi energy. Consequently,
in that energy region the electronic properties of graphene are described by aDirac equation so that graphene
features relativistic phenomena [23, 24]. Accordingly, the question arose whether the conclusions drawn on
properties featured by generic non-relativistic quantum systemswith a classically chaotic counterpart also apply
to those of graphene dots, frequently referred to as graphene billiards; see [20, 21, 25] for an overview on
numerical and experimental studies.With this focus on the spectral properties of graphene billiards in the
relativistic energy region interest in those of amassless spin-1/2 paricle confined in a two-dimensional domain
—named neutrino billiard in the seminal work [26] of 1987, where neutrinos still were considered to bemassless
—re-emerged. Confinement of the particle to the billiard domain is achieved by ensuring a vanishing outward
probability current and realized by imposing appropriate boundary conditions. TheDirichlet boundary
condition, commonly used for non-relativistic quantumbilliards, would complywith this requirement, yet it is
inadequate, because it destroys the self-adjointness of the associatedDiracHamiltonian.One possible boundary
conditionwas proposed in [26] implying the need of the extension of the, by nowwell developed, numerical
methods employed in quantumbilliards to neutrino billiards. There already exist numerousworks on the study
of neutrino billiards with shapes of classically integrable billiards or resulting from a conformalmap of the unit
circle. Thefirst oneswere actually presented in [26]. It was found that for circular neutrino billiards the spectral
properties follow Poisson statistics whereas for onewith the shape of anAfrica billiardwith a fully chaotic
classical dynamics they do not coincide with those of randommatrices from theGOE aswould be expected, but
instead exhibit GUE statistics, i.e. they behave like chaotic systemswith violated time-reversal invariance. In [26]
the eigenvalues were determined by numerically solving the boundary integral equation resulting fromGreen’s
theorem formassless relativistic spin-1/2 particles. It has the enormous advantage compared to the
corresponding equation for quantumbilliards, that its integrand does not exhibit singularities. Yet, its numerical
evaluationmay be accompanied by problems similar to those encountered in quantumbilliards, e.g. for too
closely-lying eigenvalues, inner corners and holes in the billiard domain like theMonza billiard [27]. The
purpose of the present article is to introduce a procedure for the quantization of such billiards which
incorporates an expanded boundary integralmethod of the type proposed in [27].

In section 2wewill introduce theDirac equation of amassless spin-1/2 particle in themost commonly used
coordinate systems, in section 3 the boundary conditions defining a neutrino billiard are specified and its salient
features are reviewed, in section 4 the boundary integral is given and compared to that of quantumbilliards with
mixed boundary conditions, in section 5we introduce the boundary integralmethod, in section 6 the expanded
boundary integralmethod is derived, tested in circular neutrino billiards exhibiting nearly degenerate
eigenvalues andfinally applied to theMonza billiard, which comprises a hole.

2. TheDirac equation for a free,massless spin-1/2 particle in general coordinates

For amassless spin-1/2 particlemoving freely in the (x, y) plane theDiracHamiltonian is given as

H c p 1D s=ˆ · ( )

where p pp , ix y = = -( ˆ ˆ ) and ,x ys s s= ( ˆ ˆ )with x y,ŝ denoting the Paulimatrices.Writing E in terms of the

wavenumber k, E ck= , theDirac equation for the energy eigenstates of HD
ˆ with the eigenfunctions
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Its solutionsmay bewritten explicitly in terms of planewaves
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wheref0 is the angle between k and the x-axis.
We consider amassless spin-1/2 particle which is confined to a bounded two-dimensional region, referred

to as neutrino billiard in the original work [26]. Generally, the boundary of billiards with polygonal shape is
parametrized in cartesian coordinates, whereas curved shapes resulting from a conformalmapping of the circle
are prevalently defined in terms of polar coordinates 0�r�1 and 0�f�2π by a polynomial in z in the
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complex plane
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with cl real or complex coefficients, r<1 parametrizing the interior and r= 1 the boundary. The coordinate
transformation from cartesian coordinates (x, y) to w z rei= f( ) yields for the gradient in the complex plane
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The simplest example is a neutrino billiardwith circular shape for which polar coordinates aremost suitable,
x y r, cos , sinf f=( ) ( ), or in the complex-plane representationw(z)=z andw′(z)=1.

Solutions of equation (7) are again given in terms of planewaves, whichwith k R kR cos 0q q= -· ( ) can be
expanded in polar coordinates as [28]
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where Jm(x) denotes themth Bessel function of thefirst kind. An ansatz of the form equation (5)with l�0
might not be possible, like, e.g. in the case of an elliptic boundary. However, there a similar ansatz with r replaced
by a function f (r)works, if f 0 0¹( ) and 0
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boundary of the billiard for some value r=r0 and
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Another commonly used parametrization for convex billiards is
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and the boundary again defined by some value r=r0.
We are eventually interested in solutions of theDirac equation in bounded domainswhich contain the

origin and in view of equation (8) accordingly choose as ansatz forψ1,2(r,f) the expansions [29]
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yields as condition for it to be a solution of equation (7)
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These equations can be further reduced by using the orthogonality of thewave functions equation (12) in θ
in a circular domain R w z R0= < ¥∣ ( )∣ . For this wemultiply both equations in (15)with J k w z em
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Thus, the solutions of theDirac equation for a free spin-1/2 particlemay be generally written as
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The same set of solutions is obtainedwhen choosing the parametrization (9) or (10).

3.Neutrino billiards

The expansions equation (18)provide the solutions of theDirac equation for a free spin-1/2 particle in an
unbounded system. To obtain those for amassless spin-1/2 particle which is confined to a bounded two-
dimensional domain of which the boundary is given at r=1 by w z e , 0, 2i f p= Îf( ) [ ), in the sequel referred
to asw(f), we proceed as described in [26]. The appropriate boundary condition is obtained from the
requirement that theHamiltonian of a closed system should preserve self-adjointness implying that it is
Hermitian, i.e. the eigenvalues should be real. This condition ensures the impenetrability of thewalls, that is, that
there is no outward flux

Hn 0 19p NBy y =ˆ · [ ˆ ] ( )†

with ,1 2
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wherewe choseB(f)=1 in accordancewith [26] for infinite-mass confinement. The tangential vector
t cos 2 , sin 2a f p a f p= + +ˆ ( [ ( ) ] [ ( ) ]) is determined from the derivative dr/df or in complex-plane
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Note that in this notation w z we iew z

z
i d

d
i f¢ = = = - ¢f f-( ) ( )( ) . Furthermore, wewould like to emphasize,

that this choice of boundary conditions is not the only one guaranteeing self-adjointness of theDirac
Hamiltonian and zero outgoing current [30]. Further information on boundary conditions for the confinement
of relativistic particles to a bounded region, called ‘MITbagmodel’, can be found on pages 108–129 of [31].

3.1. Implications of geometric symmetries of a neutrino billiard for its eigenstates
At this point a remark concerning the impact of symmetry properties of the billiard shape on those of thewave
functions is necessary. In a quantumbilliard amirror symmetry of its shape implies that wave functions are
either symmetric or antisymmetric with respect to the symmetry axis, that is, followNeumann, respectively
Dirichlet boundary conditions along this axis. Consequently numerical efforts and the computation time
required for the determination of its eigenstates can be drastically reduced by separating the boundary integral
equation according to these boundary conditions into two independent ones. This, however, is not the case for a
neutrino billiard of which the shape has amirror symmetry, e.g. with respect to the x- or y-axis, that is, is
invariant under reflections y→−y at the x-axis, respectively, x→−x at the y axis. The corresponding unitary
operators areUx xs=ˆ ˆ andU iy ys=ˆ ˆ . Generally, when applying a unitary transformation Û to theDirac
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Hamiltonian HNB
ˆ in (2)
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Invariance of the associatedDiracHamiltonianwith respect to these transformations holds if the eigenfunction
components of HNB

¢ˆ fulfill the boundary condition
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supposing that this is the case for those of HNB
ˆ . Here, in the transformed coordinate system e ei i=a a-˜ for the

transformationUx
ˆ and e ei i= -a a-˜ forUy

ˆ , implying that neither xỹ nor yỹ are eigenfunctions of the

Hamiltonian of neutrino billiards, that is, HNB
ˆ is not invariant under either of them.Consequently, in general,

thewave functions can not be separated according to theirmirror symmetries. Yet, since
H Hx y x y, ,NB NB


- =ˆ ( ) ˆ ( ) and H Hx y x y, ,z zNB NB

s s- =ˆ ( ) ˆ ˆ ( ) ˆ some of the eigenfunctions will have the property
x y x y x y x y, , , , , ,1 2 1 2

 y y y y- - = [ ( ) ( )] [ ( ) ( )], and x y x y x y x y, , , , , ,1 2 1 2
 y y y y- - =  [ ( ) ( )] [ ( ) ( )],

respectively, in accordance with the boundary condition equation (20), implying real coefficients al in
equation (18).

If, on the other hand, the billiard shape has an n-fold rotational symmetry, then theHamiltonian can be
brought to a block diagonal structure in its eigenrepresentationwith each of the n blocks corresponding to an
invariancewith respect to a rotation by m
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2p , m n0, 1, , 1= - . The unitary transformation performing a

rotation by
n

2p in HNB
ˆ is given by

U e 0
0 e

26n

i

i

n

n
=

-

p

p

⎛
⎝⎜

⎞
⎠⎟ˆ ( )

and the eigenfunctions of the transformedHamiltonian are obtained from those of HNB
ˆ as

e

e
. 27n

n

n

,1

,2

i
1

i
2

n

n
y

y

y
y
y

= =
- p

p

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

˜
˜
˜ ( )

The unitary operator for themth rotation by
n

2p is given byUn
mˆ . Using the symmetry properties of the shape,
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which is fulfilled for the eigenfunctions equation (27) if it is for those of HNB
ˆ itself. Note that, if the boundary

shape hasmirror symmetries with respect to two perpendicular axes, it has a twofold symmetry so that for each
of its eigenfunctions the componentψ1 is symmetric andψ2 is antisymmetric with respect to a rotation byπ,
yielding for the solutions equation (18)

r
r r

a i J k w z

r
r r

a i J k w z

,
, ,

2
e

,
, ,

2
e . 30

S

l
l

l
l

l z

A

l
l

l
l

l z

1
1 1

2
2

2
i2

2
2 2

2
2 1

2 1
i 2 1

å

å

y q
y q y q p

y q
y q y q p

=
+ +

=

=
- +

=

q

q+
+

+

( ) ( ) ( ) ( ∣ ( )∣)

( ) ( ) ( ) ( ∣ ( )∣) ( )

( )

( ) ( )

Weconclude this sectionwith a remark on time-reversal invariance, i.e. on the invariance of HNB
ˆ under

T Ki ys=ˆ ˆ ˆ with K̂ denoting complex conjugation [2, 32]. The transformed eigenfunction
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does not fulfill the boundary condition, that is, theDiracHamiltonian of neutrino billiards is not time-reversal
invariant. Consequently, the spectralfluctuation properties of a typical neutrino billiardwith the shape of a
chaotic billiard are described by theGUE, if it does not exhibit any geometric symmetries.
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4.Green’s theorem and a boundary integral for neutrino billiards

Only in a few cases, namely for certain shapes corresponding to classically integrable billiards, like a circle
neutrino billiard [26], or for billiards of which the boundary results from a conformal transformation of the
circle [33], solutions can be found by imposing the boundary condition equation (20) on an ansatz of the form
equation (18), e.g. in terms of the eigenfunctions of the circular neutrino billiard [33, 34] similar to [35].
Generally a plane-wave decomposition [36] or the scalingmethod [37] based on the ansatz equation (18) are
suitable only for convex billiards. The boundary integralmethod on the other hand originates from theGreen
theorem,which provides an exact integral equation for awave function in the interior of the billiard in terms of
that on the boundary, and is applicable to arbitrary shapes. Furthermore, like the scalingmethod, the boundary
integral approach has the huge advantage that the eigenvalue problem is reduced froma two-dimensional
differential equation to a one-dimensional boundary integral. It was generalized to neutrino billiards in [26].

The starting point for the derivation of the boundary integral are theDirac equation for y†,

r rk i 0 32ry y s- =( ) ( ) · ˆ ( )† †

and the correspondingmatrix equation for the free-spaceGreen function

G r r G r r r rk , i , , 33r0 0 s d¢ + ¢ = - ¢ˆ ( ) ˆ · ˆ ( ) ( ) ( )

where  denotes the 2×2 unitmatrix and theGreen function G r r,0 ¢ˆ ( ) refers to the coordinate representation
of theGreen operator G k i i 1 s = + + -ˆ ( ˆ · ) ,

G r r r G r r rk H k, i i
i

4
. 340 0

1 s ¢ = á ¢ñ = + - - - ¢⎜ ⎟⎛
⎝

⎞
⎠ˆ ( ) ∣ ˆ∣ ( ˆ · ) ( ∣ ∣) ( )( )

Here, we used that in two-dimensional space r r r r r rk G H ki , i 42 1
0 0

1á + + D ¢ñ º ¢ = - - ¢-∣[( ) ] ∣ ( ) ( ∣ ∣)( )

which is the scalar free-spaceGreen functionwith H x0
1 ( )( ) denoting theHankel function of order zero of the first

kind. In terms of the coordinate system introduced in equation (5) this yields with the notations
z r z re , ei i= ¢ = ¢f f¢, z z w z w z,r ¢ = - ¢( ) ( ) ( ), z z z z, ,rr ¢ = ¢( ) ∣ ( )∣and e z z z z

z z
i , ,

,
= rx

r
¢ ¢

¢
( ) ( )

( )
(see figure 1 for the

definition of these quantities) for the free-spaceGreen function

G r r
k H k z z H k z z

H k z z H k z z
,

4

i , e ,

e , i ,
. 35

z z

z z
0

0
1 i ,

1
1

i ,
1

1
0

1

r r

r r
¢ =

- ¢ ¢

¢ - ¢

x

x

- ¢

¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ( )

[ ( )] [ ( )]
[ ( )] [ ( )]

( )
( ) ( ) ( )

( ) ( ) ( )

Multiplying equation (33) from the left with ry ( )† and equation (32) from the right with G r r,0 ¢ˆ ( ),
subtracting the latter from the former and performing the r integration over the billiard domainΩ leads to

Figure 1. Illustration of the quantities entering equations (37) and (38) for the case r Î ¶W and r ¢ Î ¶W. The anglesα and a¢ denote
the angles of the normal vector at s and s′, respectively, ξ that of r with respect to the x-axis, denoted by x̂ .
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r r G r r n r G r r

r r

r r

si d , 2i d ,

,

,

0, otherwise

. 36

r 0 0
2

1

2

ò ò y s y s

y

y

 ¢ = ¢

=

¢ ¢ Î W ¶W

¢ ¢ Î ¶W

W ¶W

⎧
⎨⎪

⎩⎪

∮· [ ( ) ˆ ˆ ( )] ˆ · [ ( ) ˆ ˆ ( )]

( ) ⧹

( ) ( )

† †

†

†

Thefirst equality results from the application ofGauss’s theorem to transform the two-dimensional integral
overΩ into a one-dimensional line integral over s along the domain boundary ¶W. Note that, if r¢ is chosen at a
corner of the boundary, the factor 1

2
needs to be replaced by

2
inq
p
with θin denoting the inner angle of the corner

[38, 39]. Using the boundary condition equation (20)we obtain for eachwave function component a separate
boundary integral equation,

r
k

w H k z H k zi
4

d , e e , , 37z
1 1 0

1 i i ,
1

1 òcy f f y f r f r f¢ = - ¢ ¢ - ¢
p

p
a f x f

-

- ¢( ) ∣ ( )∣ ( ){ [ ( )] [ ( )]} ( )( ) ( ) ( ) ( )

r
k

w H k z H k zi
4

d , e e , , 38z
2 2 0

1 i i ,
1

1 òcy f f y f r f r f= +
p

p
a f x f¢

-

¢ ¢ - ¢¢( ) ∣ ( )∣ ( ){ [ ( )] [ ( )]} ( )( ) ( ) ( ) ( )

wherewe inserted z ei= f into z z,r ¢( ) and z z,x ¢( ). Furthermore,χ=1 for r¢ Î W ¶W⧹ andχ=1/2 for
r¢ Î ¶W and the arc length s and the parameterf are related through s wd df f= ¢∣ ( )∣. Since 1

y f( ) and 2
y f( )

are related via the boundary condition equation (20)wemay evaluate either of these equations. The eigenvalues
are given as the discrete solutions for k of these equations with both r and r¢ chosen on the boundary of the
neutrino billiard. Then, the eigenfunctions are obtained by inserting the resulting eigenvalues and boundary
functions i

y f( ) into these equations and choosing r¢ in the interior of the billiard. Yet, H k0
1 r( )( ) and H k1

1 r( )( )

exhibit singularities for ρ=0, that is, for f f df= ¢ + with δf→ 0,

H k
k

w o

H k
k w k w

k w
o

, 1 i
2

i
2

ln
2

ln

, i ln
2

i
2

ln . 39

0
1 2

1
1 2

r f df f
g
p p

f df df df

r f df f
f df
p

f df
p f df

df df

¢ + ¢ + + ¢ ¢ +

¢ + ¢
¢ ¢ ¢ ¢

-
¢ ¢

+





⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ( )) ∣ ( ) ∣ (∣ ∣ (∣ ∣))

( ( )) ∣ ( ) ∣ ∣ ( ) ∣
∣ ( ) ∣

(∣ ∣ (∣ ∣)) ( )

( )

( )

In order to attain a non-singular integrand, we apply in equation (38) the boundary condition equation (20) to
replace 2

y f( ) by 1
y f( ), add equation (37) and obtain

k
w Q k

i

4
d , ; 401 1

 y f f f f f y f¢ = ¢ ¢
¶W

∮( ) ∣ ( )∣ ( ) ( ) ( )

with

Q k H k

H k

, ; e 1 ,

e e , . 41

i
0
1

i i , i i ,
1

1

f f r f f

r f f

¢ = - ¢

+ + ¢

a f a f

a f x f f a f x f f

¢ -

¢ - ¢ - + ¢

( ) [ ] [ ( )]
[ ] [ ( )] ( )

[ ( ) ( )] ( )

( ) ( ) ( ) ( ) ( )

For f f ¢ the integrand approaches zero, Q k, ; 0f f f ¢ ¢ ( ) because

w o

w w

w
o

w
w w

w
o

e e 1 i

e e i i
2

e e i i
2

,

i i 2

i i ,
2

2

i i ,
2

2





k f f df df
df
df

f f
f

df
df

df
df

k f f
f f

f
df

df

- ¢ ¢ ¢ +

- -
¢ ¢  ¢

¢ ¢
+

+ - ¢ ¢ ¢ +
¢ ¢  ¢

¢ ¢
+

a f a f df

a f x f df f

a f df x f df f

¢ - ¢+

¢ - ¢+ ¢

- ¢+ ¢+ ¢






⎡
⎣⎢

⎤
⎦⎥

( )∣ ( )∣∣ ∣ [( ) ]

∣ ∣
( )[ ( )]
∣ ( )∣

∣ ∣ [( ) ]

∣ ∣
( )∣ ( )∣ [ ( )] ( )

∣ ( )∣
∣ ∣ [( ) ]

( ) ( )

( ) ( )

( ) ( )

with w w w w w2i 3 f f f f f k f¢  - ¢  = - ¢[ ( )] ( ) ( )[ ( )] ∣ ( )∣ ( ) andκ(f) denoting the curvature of the boundary
atf. Similarly, for 2

y f( ) the boundary integral reads
k

w Q k
i

4
d , ; 422 2

 y f f f f f y f¢ = ¢ ¢
¶W

∮( ) ∣ ( )∣ ˜( ) ( ) ( )

with

Q k H k

H k

, ; 1 e ,

e e , . 43

i
0
1

i i , i i ,
1

1

f f r f f

r f f

¢ = - ¢

+ + ¢

a f a f

a f x f f a f x f f

- ¢

- ¢ - ¢ + ¢

˜( ) [ ] [ ( )]
[ ] [ ( )] ( )

[ ( ) ( )] ( )

( ) ( ) ( ) ( ) ( )

Thewave functions inside the billiard are calculated by inserting the solutions of equations (40) or (42) into
(37) and (38). Note, thatf andf′ are not necessarily chosen as in equation (5), but generally denote the
parameter which defines the boundary of the billiard. In appendix Awe compare the boundary integral
equation (37) to the corresponding one for a quantumbilliardwith Robin boundary conditions in order to
illustrate their commonalities.
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Generally, the boundary integral equation equation (40)needs to be solved numerically in order to
determine the eigenvalues and eigenfunctions of a neutrino billiard. Only for a few exceptions, the eigenstates
can be found either directly from the plane-wave expansion equation (18) or by solving the boundary integral
equation analytically. Yet, when solving the boundary integral equation numerically onemight face the problem
ofmissing levels due to the presence of nearly degenerate eigenvalues. Such situations demand an expanded
boundary integralmethod of the same type as the one for quantumbilliards [27]. Thus, even thoughwe can
obtain exact analytical results either directly from an expansion in terms of plane waves or from the boundary
integral equation, the computation of all eigenvalues of the circular neutrino billiard by numerically solving the
latter is a non-trivial task. Thereforewe chose it as an example to illustrate the efficiency of thismethod in
neutrino billiards. In appendix Bwe outline in detail the analytic procedure for solving the boundary integral
equation for the circle billiard. For systemswith nearly degenerate eigenvalues and also for billiards with holes
[27] or inner corners [40], we propose an expanded boundary integralmethodwhich is based on [27]. First, we
briefly review in section 5 the procedure for solving the boundary integral equation (41)numerically and then
outline in section 6 the expanded boundary integralmethod.

5. Boundary integralmethod for neutrino billiards

In order to solve the boundary integral equations (40)with (41)numerically, the boundary parameterf is
dicretized and the integral is approximated by a sum, turning the boundary integral equation into amatrix
equation

u Q k u, ; . 44j
i

N

j i i i
1

åf f f f f= D
=

( ) ( ) ( ) ( )

Here, thematrix elements Q k, ;j if f( ) are obtained from equation (41) by replacingf′ byfj andf byfi. One
possible choice is to partition the boundary parameterf into equal-size pieces

i i N
N

1

2
, 1, 2, ,

2
45i i if f f

p
= - D = D =⎜ ⎟⎛

⎝
⎞
⎠ ( )

yielding a Riemann sum. Another one is to use increments generated by theGauss–Legendre algorithm. For a
givenN this discretization generally yields the integral and thus the eigenvalues with a considerably higher
accuracy than the former one.Note that, iff does not coincide with the arc length s, partioning of 0, 2f pÎ [ )
into piecesΔfi corresponds to a discretization of the billiard perimeter into segments s wi i if fD = ¢ D∣ ( )∣ , and
thus to a higher density of supporting points in regionswhere the boundary curve is stronger bent; see figure 2.
Because the integrand in equation (40) does not contain any singularities, the numerical approximation
equation (44) approaches the boundary integral with increasing number of partitioningsN. However, the larger
N, the higher will the numerical effort and computation time be. For a given k-range an optimal value forN is
obtained in terms ofmultiples cλ of the number of de Broglie wave lengths

k

2l = p
fitting into the perimeter  of

Figure 2.Discritization of the boundary for an equal-size partitioning inf; see equation (45).
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the billiard, N c c k

2

 = =l l l p
. The size of cλ is typically chosen of the order cλ∼8–12.Defining

k Q k, ; 46ji ji j i i d f f f= - D( ) ( ) ( )

yields thematrix equation

uk 0 47 =( ) ( )

which has solutions at discrete values of kn corresponding to the eigenvalues of the neutrino billiard.Wewould
like to stress that, in distinction to, e.g. the boundary integral problem for quantumbilliards with Robin
boundary conditions (see equation (A.6))where one has to deal with the singularity exhibited by the H k0 r( )
Hankel function at ρ=0, this is not the case for neutrino billiards because there the correspondingmatrix
elements Q k, ;i if f( ) vanishes as outlined in section 3. Even though this singularity is logarithmic in ρ and thus
liftedwhen performing the integral overf, it affects the accuracy of the eigenvalues.

The eigenvalues kn correspond to singular values of k( ), that is, to zeros of the determinant of,
kdet 0n =[ ( )] . Since equation (47) corresponds to an approximation of the actual boundary integral

equation, k( )will in general not be exactly singular, i.e. its determinant will generally be non-vanishing. Thus,
in order tofind the eigenvalues, onemay either use the singular value decompositionmethod for complex
matrices and then sort the eigenvalues by size of their absolute values and plot the smallest one or else

kdet ∣ [ ( )]∣versus k and seek for localminima. In order to save computation time this can be done by
successively refining the discretization. However, this proceduremight notwork if two ormore eigenvalues are
too close to each other, as itmay occur, e.g. for eigenvalue spectra exhibiting Poisson statistics, or if a dip is too
narrow.Note, that the problemof spurious eigenvalues possibly occurringwhen solving theDirichlet boundary
problem for a quantumbilliard using a double layer equationwith no singularities of the integrand instead of the
original boundary integral equation [38], does not arise for neutrino billiards containing no holes since there
singularities are absent.Wewill use theMonza billiard [27] to illustrate the efficiency of the expanded boundary
integralmethod in neutrino billiards of which the shape comprises holes.

6. Expanded boundary integralmethod for neutrino billiards

In order to identifymissing levels we use an expanded boundary integralmethodwhich corresponds to an
extension of the one proposed for quantumbilliards in [27] to neutrino billiards. The basic idea of thismethod is
similar to that of Vergini and Saraceno [37]. They expanded the boundary norm,which vanishes at the
eigenvalues of the corresponding quantumbilliard, in a Taylor series around a reference value kn

0( ) to obtain a
generalized eigenvalue problemof which the solutions provide the eigenvalues in a narrow interval around kn

0( ).
In our case the boundary normdoes not vanish at an eigenvalue kn of the neutrino billiard, yet k( ) in
equation (47) has a singular value [27]. Accordingly, we choose a reference value kn

0( ) which is not a solution kn of
equation (47) and then expand kn

0( )( ) around this value

u uk k k k k k
1

2
. 48n n n n

0 0 2 0   d d= + ¢ +  + 
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

Here,
k

d

d
 ¢ º ,

k

d

d

2

2  º and k k kn n
0d = - ( ). Tofind appropriate initial values for kn

0( ) and for the k-interval,
wefirst solve equation (47) for a larger k range and then identify regions ofmissing levels by, e.g. analyzing the
fluctuating part of the integrated level density [38]. In order to determine the values kn of themissing levels we
solve a generalized eigenvalue problem similar to the one proposed in [27]. There, a perturbation parameter ò
was introduced and then kn, k( ) and u k( )were expanded in terms of powers of it

k k k k , 49n n n n
0 1 2 2 = + + +  ( )( ) ( ) ( )

k , 50n
0 1 2 2    = + + + ( ) ( )( ) ( ) ( )

u u u uk , 51n
0 1 2 2 = + + + ( ) ( )( ) ( ) ( )

and thus

k k k k k , 52n n n n
0 1 2 2 d = - = + +  ( )( ) ( ) ( )

wherewe suppressed the argument kn
0( ) in the(·) and u(·)-terms Inserting these expansions into equation (48)

yields

u u u

k k k k k k k o

o

1

2

0. 53

n n n n n n n
0 1 0 2 2 0 1 2 0 3

0 1 2 2 3

   

  

   + ¢ + ¢ +  +

´ + + + =

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( ) ( )

[ ( )] ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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In afirst approximationwe solve this generalized eigenvalue problemup to o(ò2),

uk k k 0, 54n n n
0 1 0 + ¢ =( ( ) ( )) ˜ ( )( ) ( ) ( )

wherewe introduced the notation u u u0 1= +˜ ( ) ( ). This yields the eigenvalue kn and the corresponding
eigenvector to a precision of second order in ò,

k k k o 55n n n
0 1 2 = + + ( ) ( )( ) ( )

u u o . 562= +˜ ( ) ( )
Similarly, the left eigenvectors ṽ solve the generalized eigenvalue problem

v k k k 0. 57n n n
0 1 0 + ¢ =˜ ( ( ) ( )) ( )† ( ) ( ) ( )

Naturally, only those eigenvalues of equations (54), respectively, (57) are taken into account which are close to
the reference value kn

0( ), i.e. for which kn
1 ( ) is within a value set by the required accuracy as outlined below.

In order to improve the accuracy of the eigenvalues we solve equation (53) in a further iteration up to o(ò3),
i.e. search for solutions of the generalized eigenvalue problem

u u uk k k k k k k k
1

2
0, 58n n n n n n n n

0 1 0 2 2 0 1 2 0 0 2 2       + ¢ + ¢ +  + =⎜ ⎟⎛
⎝

⎞
⎠( ( ) ( )) ˜ ( ) ( ) ( ) ˜ ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

based on the solutions of equation (54), which implies that thefirst term vanishes.Multiplicationwith the left
eigenvector ṽ† turns the third term into an o(ò3) contribution, since according to equation (57) v kn

0˜ ( )† ( ) is of
order ò so that up to order o(ò3)

v u

v u
k k

k

k

1

2
. 59n n

n

n

2 2 1 2
0

0
 




= -

¢


( ) ˜ ( ) ˜
˜ ( ) ˜

( )( ) ( )
† ( )

† ( )

The o(ò2) contribution to the eigenvector u is obtainedwith this result and equations (54) from (58) as

u uk k k k k
1

2
, 60n n n n n

0 2 2 2 2 0 1 2 0    = - ¢ + ⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( ) ˜ ( )( ) ( ) ( ) ( ) ( ) ( )

This procedure yields the corrections kn
1 ( ), kn

2 2 ( ), ũ and u2 2 ( ) to the reference value and thus the eigenvalues
up to accuracy o(ò3),

k k k k o , 61n n n n
0 1 2 2 3  = + + + ( ) ( )( ) ( ) ( )

but not ò itself. Yet, for the consistency of this approach it is sufficient to know these terms to ensure that the
required accuracy is achievedwhich is essentially determined by their values and the size of the next-leading
order contribution kn

3 3 ( ). For their determinationwe need to differentiate thematrix elements of k( ), that is,
according to equation (46) thematrixQ defined in equation (41)with respect to k,

Q k
k

H k H k, ;
i

4
e 1 e e 62j i ij ij

i
0
1 i i

1
1j i ij i j ijf f r r= - + +a a x a a x- - -( ) {( ) ( ) ( ) ( )} ( )( ) ( ) ( ) ( ) ( )

Q k

k
H k k H k

d , ;

d

i

4
e 1 63

j i
ij ij ij

i
0
1

0
1j i

f f
r r r= - +a a- ¢( )

{( )[ ( ) ( )] ( )( ) ( ) ( )

H k k H ke e 64ij ij ij
i i

1
1

1
1

ij i j ij r r r+ + +x a a x- - ¢( )[ ( ) ( )]} ( )( ) ( ) ( ) ( )

Q k

k
H k k H k

d , ;

d

i

4
e 1 2 65

j i
ij ij ij ij

2

2
i

0
1 2

0
1j i

f f
r r r r= - +a a- ¢¢ ¢( )

{( )[ ( ) ( ) ] ( )( ) ( ) ( )

H k k H ke e 2 66ij ij ij ij
i i

1
1 2

1
1

ij i j ij r r r r+ + +x a a x- - ¢¢ ¢( )[ ( ) ( ) ]} ( )( ) ( ) ( ) ( )

with

H x H x , 670
1

1
1= -¢( ) ( ) ( )( ) ( )

H x H x H x
H x

x
680

1
1

1
0
1 1

1

= - = +¢¢ ¢( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( )

H x
H x

x
H x

H x

x
2 . 691

1 0
1

1
1 1

1

2
= - - +¢¢( ) ( ) ( ) ( ) ( )( )

( )
( )

( )

Note that also the derivatives of Q k, ;j if f( ) do not contain singularities, because each differentiation of the
Hankel functionswith respect to k is accompanied by an additional factor ρijwhich vanishes dfµ∣ ∣with δf→
0, and thus cancels the singularities of the associatedHankel function. Furthermore, thewave functionswere
determined by inserting the eigenvalues (61) into equation (47) and proceeding as in the standardmethod.

Missing eigenvalues are found in a given k region by choosing equidistant reference values kn
0( ) and solving

equations (54), (57), (59) and (60) in an interval k k k k2, 2n n
0 0- D + D[ ]( ) ( ) for each of them. The distanceΔk
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between the reference values should be chosen larger than themean level spacing d k¯ ( ), i.e. the inversemean level
density ksmoothr ( ). It differs fromWeyl’s law [41] by the perimeter termwhich vanishes for neutrino billiards,

i.e. k Aksmooth
2

r =
p

( ) withA denoting the billiard area, yielding d k
Ak

2= p¯ ( ) . The eigenvalues kn are determined up

to order k kn n
3 3 1 3 ~ ( )( ) ( ) where kn

1 ( ) should not exceed d k¯ ( ). The distance between adjacent reference values
should varywith kn as k kn

1 3D µ - to ensure a constant error in the determination of an eigenvalue with respect
to themean level spacing, k d kn

3 3 ¯ ( )( ) . On the scale of the unfolded eigenvalues sorted by size, k ku u
1 2  ( ) ( ) ,

k
Ak

n
4

70n
u n

2

p
=  ( )( )

thewindow size varies with kn
u( ) as

k
Ak

k n
2

. 71n
u n 1

3

p
D = D µ ( )( )

We set

k n , 72n
u 1

3D = ( ˜ ) ( )( )

and chose ̃ such that kn
uD ( ) comprised approximately 3–4 levels (see figure 3).

The eigenvalues are determined in a k region bymoving the interval k k k k2, 2n n
0 0- D + D[ ]( ) ( ) along the

k-axis and using the above described procedure for each reference value kn
0( ). All the resulting sequences need to

bemerged into one. Generally this is possible by simply cutting the individual sequences at a value k kc
u= ( )

where they start to overlap. In cases where an eigenvalue obviously is obtained twice, the onewith the higher
accuracy, that is, producing a value of kdet n[ ( )]closest to zero, is chosen. Yet, due to the numerical errors, it
can happen that either a genuine eigenvalue is thereby removed or doubled [27]. The simplest choice of the
border kc

u( ) between two neighboring sequences of eigenvalues ki
u( ) around k u

0
( ) and ki

u¢ ( ) around

k k ku u u
0 0¢ = + D( ) ( ) ( ) would be themiddle point kc

u k k

2

u u
0 0=

¢+( ) ( ) ( )

,

k k k k k k k . 73n
u

i
u

i
u

c
u

i
u

i
u

c
uÈ= < ¢ ¢ >{ } { ∣ } { ∣ } ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

In order to avoid that kc
u( ) is too close to some ki

u( ) or kj
u¢ ( ) with respect to the numerical accuracy, we define a

weighting function

W k e e 74c
u

l i l j

kl
u kc

u kl
u kc

u2

2 3 2

2

2 3 2 å å= +
=

-

=

-
- ¢ -

( ) ( )( )
( ( ) ( ) )

( ˜ )

( ( ) ( ) )

( ˜ )

which isW k ec
u 1 2> -( )( ) if there is some eigenvalue closer than 3̃ to kc

u( ). In such a case we define a new value
for the border between the sequences, k 3c

u + ˜( ) continuing untilW k ec
u 1 2< -( )( ) is satisfied.

6.1. Test of the expanded boundary integralmethod in the circular neutrino billiard
For a test the expanded boundary integralmethod and comparisonwith the standard onewe determined the
first 1000 eigenvalues with eachmethod independently and compared themwith the exact eigenvalues of the
circular neutrino billiard obtained from equation (B.7)which indeed exhibitsmany near degeneracies. Herewe
chose 0.001 =˜ for the expanded, and cλ=8 for the standard boundary integralmethod. This yielded in both
cases the eigenvalues with a similar accuracy, yet for the latter one several eigenvalues could not be detected
because theywere too close to a neighboring one.One example of twonearly degenerate eigenvalues is given in
table 1. Figure 4 shows the real part, the imaginary part and the phase of the componentsψ1 andψ2 of the
associated pair of wave functions. The distance of the eigenvalues equals k 5 10 6D » ´ -∣ ∣ corresponding to 1/

Figure 3.Merging of the eigenvalue sequences obtained by applying the expanded boundary integralmethod around the reference
points kni 1- , kni , and kni 1+ . The error in the determination of the eigenvalues increases as the cubic of the distance from their
reference point. The ticksmark the eigenvalues and the vertical bars indicate the borders of the adjacent intervals. Their colors are
greenwhen they are accepted and red otherwise. The zoom illustrates that even degenerate eigenvalues will not bemissing.
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k 6900u
Ak k

2

n n
D = »p

D
∣ ∣( )

∣ ∣ withA=π denoting the area. Accordingly, the determination of all eigenvalues

with the standardmethod offinding localminima of the determinant kdet∣ ( )∣requires in the vicinity of
degeneracies a discretization cλ25. Thus, the numerical efforts relatedwith the identification of regions
where eigenvalues aremissing and thenfinding them is large in the standardmethodwhereas we did not
encounter the problemofmissing levels in the expanded one, that is, it ismore reliable and consideraly less time-
consuming in such situations.Wemade similar experiences with rectangular, elliptic and triangular neutrino
billiards which also exhibit nearly degenerate eigenvalues.

6.2. Application of the expanded boundary integralmethod to theMonza neutrino billiard
In the abovementioned examples the eigenvalues can be obtained directly based on the plane-wave expansions
equation (18). In the present sectionwewill consider a case where this is no longer possible, namely theMonza
billiard [27]which for the following reasons provides a stringent test of their efficiencies. Firstly, since theMonza
billiard contains a hole, one has to facewith spurious eigenvalues. Secondly, the eigenvalue spectrum comprises
closely-lying eigenvalues. This is attributed to the unidirectionality of its classical dynamics, implying that the
Monza billiard exhibits the particular property that themotion of a particle launched into it with a certain
rotational directionwill follow this direction forever [42–44]. Consequently, the classical phase space is divided
into twodisjoint regions. They are separated by a family ofmarginally stable bouncing-ball orbits which are
reflected back and forth perpendicularly at the inner and outer boundary parts and thus do not perform
rotationalmotion, that is, they form the invariant separatrix between clockwise and counterclockwisemotion.
The separation of the phase space, in turn, gives rise to an extraordinary structure in the eigenvalue spectrumof
the non-relativistic quantumand the neutrinoMonza billiard, which can be split into doublets and singlets. The
singlets correspond to the bouncing-ballmodeswhich are ofmeasure zero in classical phase space [27, 43–45].
The appearance of doublets has its origin in the separation of classical phase space into two parts. Yet, for the
quantum case the eigenvalues are not degenerate, as would be expected if switching between clockwise and
counterclockwisemotionwere strictly forbidden also in this limit. They are, actually, split by a distancewhich is
small compared to themean spacing of the doublets [27]. This splitting is attributed to dynamical tunneling
[27, 43, 44] between the two regions of phase space through the barrier region associatedwith the bouncing-ball
orbits. Note, that the splittings do not decrease exponentially with increasing eigenvalue number, asmight be
expected in the semiclassical limit, but rather algebraically. Accordingly, almost all eigenvalues are nearly-
degenerate in the quantumMonza billiard. It was shown in [27] that the classical dynamics in each invariant half
of phase space is fully chaotic and ergodic and the spectral properties of the doublets of theMonza quantum
billiardwere found to exhibit GUE rather thanGOEbehavior [27]. This reminds on the spectral structure

Table 1.Eigenvalues of the circular neutrino billard. The 807th and 808th
eigenvalue are very close to each other. They are characterized by a pair of integer
numbers (l,m) denoting the index of the Bessel function (angular quantum
number) and themth solution of equation (B.7) (radial quantumnumber),
respectively.

No. (l,m) Theorical Numerical Difference

807 (12,13) 56.735 729 05 56.735 728 85 −2.011 × 10−7

808 (22, 9) 56.735 734 15 56.735 733 92 −2.269 × 10−7

Δk −5.09 × 10−6 −5.07 × 10−6

k1 uD∣ ∣( ) 6926 6953

Figure 4.Real part, imaginary part and phase of thewave function componentsψ1 (left triples) andψ2 (right triples) of eigenstate
number 807 (top) and 808 (bottom). For details see table 1.
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present in quantumbilliards with threefold symmetries [46]. Yet, in contrast to the latter theMonza billiard does
not exhibit any geometric symmetries. These exceptional features of the classical and quantum system
immediately brought us to the question towhat extent they are also present in theMonza neutrino billiard.

We chose for theMonza billiard the same shape as in [27]. It is composed of four parts with straight inner
and outer boundary segments at the same distance rd, where two parts have length a, respectively b, and lie
opposite to each other with respect to the hole. They are joined by three ring shaped parts of width rd defined by
parametersα, q, and r.We chose for the parameters the same values as in [27], q=1/12, a=1/2, b=1/3,
r=1/3,α=1 and computed its levels up to k;65 using the standard and the expanded boundary integral
method. The discretization parameter was chosen to be cλ=12 and the parameter ̃ setting the spacing between
the reference value kn

u( ) between individual runs equation (72) equaled 0.001 =˜ .
The resulting eigenvalue sequences contain for bothmethods;100 spurious eigenvalues. This is attributed

to the fact that, due to the hole, the boundary integral equation involves a combination of boundary integrals
along the inner and outer boundary whichmight result in a zero of A kdet ( )within the numerical error, even
though the equation is not exactly fulfilled along the inner boundary like in the example shown infigure 5.
Checkingwhether thewave function components vanish inside the hole does not alwayswork, because of the
unavoidable numerical error. Therefore, in order to test whether the eigenvalues are genuinewe checked the
orthogonality of the corresponding eigenfunctions ny with respect to those corresponding to the upper
neighboring eigenvalues, C m n n n m, , 1, 2, ,nm n m maxy y= = + + ¼ +∣ ⟨ ⟩ ∣ withmmax; 10. Again,
because of the numerical accuracywe cannot expect thatCnm vanishes exactly for n m¹ in the case of
orthogonality.We found out that by setting the limit toCnm 0.051 for orthogonalitymost of the spurious
eigenvalues could be eliminated.

Finally, we used theWeyl formula equivalent for neutrino billiards in order to identify non-genuine
eigenvalues or regions ofmissing ones. It turned out that the fluctuating part of the integrated spectral density,
N k N k N kn n n

fluc smooth= -( ) ( ) ( ), n=1,L, 2170, which is depicted infigure 6 exhibits fast and clearly visible
slow oscillations which hamper this search and are due to the bouncing-ball orbitsmentioned above.
Furthermore, the right panel shows the length spectrum, i.e. the absolute value of the Fourier transformof the
fluctuating part of the spectral density which exhibits peaks at the lengths of the periodic orbits. Here, below
l;10 the bouncing-ball orbits clearly dominate.

Their contribution can be derived explicitly [45] based on the trace formula for a rectangular neutrino
billiard

N k
k

r
m mk r

2
1 cos 2

3

4
75n

n

d m

N
m

n d
bbo bbo

1

3 2 åp p
p= - -

=

- ⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )

with rd denoting the distance between the inner and outer boundary, bbo the total length of the boundary where
bouncing-ball orbits occur. It, and also the length spectrumdeduced from it are shown as red dashed lines in
figure 6, thus illustrating that it indeed describes the slow oscillations exhibited by the fluctuating part of the
integrated spectral density. The summand of the trace formula contains an extra phase (−1)m as compared to the
one applicable to the bouncing-ball orbits in the corresponding quantumbilliardwhich is due to the differing
boundary conditions. After subtracting this contribution fromNfluc(k), missing and spurious levels are clearly
visible as jumps in it as demonstrated infigure 7.

We did not encounter anymissing levels in the expanded boundary integralmethodwhereas we had to
increase the numerical effort, associatedwith locating the regionswhere an eigenvalue wasmissing and their

Figure 5.Modulus of thewave function componentsψ1 (left) andψ2 (right) corresponding to a spurious eigenvalue. It is clearly visible
that the boundary integral equation is not fulfilled along the inner boundary.
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identificationwhich required a discretization of cλ25, considerably in order to achieve a complete sequence
of 2170 eigenvalues below k≈65 in the standard one.

Like in the stadiumbilliard, bouncing-ball orbits are ofmeasure zero in the phase space of theMonza
billiard. Yet, they have a clearly visible effect on the spectral properties of theMonza neutrino billiard, as
illustrated infigure 8.

Before analyzing thefluctuation properties in the level sequence of a neutrino billiard the eigenvalues need to
be unfolded such that the spectral density is uniform. This is generally achieved by replacing the kn by the smooth

part of the integrated spectral density which is given by [26] N kn
Aksmooth
4

n
2

=
p

( ) withA denoting the area of the

Monza billiard. Shown are the distribution of the spacings between adjacent eigenvalues P(s), the corresponding
cumulative distribution I(s), the varianceΣ2(L) of the number of eigenvalues in an interval L and theDyson-
Mehta statisticΔ3(L) [47], which gives the local average least-square deviation of the integrated spectral density
of the unfolded eigenvalues from a straight line over an interval of length L. The curves are compared to the
corresponding ones for Poisson statistics (dashed lines), GOE (solid lines), GUE (dashed–dotted lines) and the
case of randommatrices consisting of two diagonal blocks of the same dimension containingGUEmatrices (red
lines). The left panels show the spectral properties before eliminating the bouncing-ball orbits, the right panels
after their extraction. Like in the stadiumbilliard this is done by replacing the eigenvalues kn by
k N k N kn n n

smooth bbo= +˜ ( ) ( ) instead of just the smooth part. Note that unfolding refers to the slowly varying
part of the integrated spectral density which in the present example includes the slow oscillations caused by the
bouncing-ball orbits. Then the spectral properties agreewell with the 2GUE curves. This implies, that in
distinction to theMonza quantumbilliard, the two doublet partners corresponding to clockwise and
counterclockwisemotion in theMonza billiard, arewell separated, i.e. are well split, indicating that dynamical

Figure 6. Fluctuating part of the integrated spectral density N k N k N kn n n
fluc smooth= -( ) ( ) ( ), n=1,L, 2170 (left) of thefirst

eigenvalues kn of theMonza-shaped neutrino billiard (black dots) and the corresponding length spectrum. The red dashed curves
show the contribution of the bouncing ball orbits, clearly illustrating that they follow the slow oscillations observed in N kn

fluc ( ). The
length spectrumhas peaks at the lengths of periodic orbits. For shorter lengths the bouncing balls are obviously the dominant ones.

Figure 7. Fluctuating part of the integrated spectral density of the neutrinoMonza billiard after subtraction of the contribution of the
bouncing ball orbits given in equation (75). It exhibits a clearly visible jump indicating that we oversaw one spurious eigenvalue when
applying the ortogonaltiy test.
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tunneling ismuch stronger in the neutrino than in the quantumMonza billiard. Yet, deviations are observed
even after extraction especially inP(s) for small spacings. Thesemay be attributed to remnants of contributions
from the singlets and aweak coupling between the doublet partners whichmay be accounted for in a random
matrix ensemble of the formused in [44] inwhich the twoGUEblocks areweakly coupled.We conclude this
sectionwith two examples for thewave functions, one showing a bouncing-ballmode, the other one three
chaotic ones, which correspond to three successive eigenvalues, see figures 9 and 10. Theywere computed by
inserting the eigenvalues, whichwere determinedwith the expanded boundary integralmethod, into the
original boundary integral equations (37) and (38). In order to check their accuracy, i.e. to verify that the
boundary condition is fulfilled, we first computed the boundary functions by choosing r¢ Î ¶Wwhich indeed
was the case. Actually, the absolute value of the corresponding smallest eigenvalue of equation (47)was less than
10−4. Then, we computed thewave functions inside the billiard by choosing r¢ Î W ¶W⧹ . The distance between
the eigenvalues k399 and k400 is by a factor of 30 smaller than that to the adjacent ones, so they form a doublet,
whereas k398 is framed by this doublet and another one, thus it is a singlet state and indeed looks like a slightly
distorted bouncing-ballmode.

7. Conclusions

We introduced an expanded boundary integralmethodwhich is especially suitedwhen dealingwith neutrino
billiards of which the eigenvalue spectrum exhibits near degeneracies. In order to test the efficiency of the
standard and expanded boundary integralmethodwe applied both to the circle neutrino billiard and also to
neutrino billiards, of which the eigenvalues can be determined directly from the planewave expansion
equation (18). It turned out that the numerical effort associatedwith the computation of complete sequences of
eigenvalues is considerablymore time-consumingwhen using the standard boundary integralmethod, because

Figure 8. Spectral properties of theMonza neutrino billiard before (left) and after (right) extracting the bouncing-ballmodes. Shown
are the nearest-neighbor spacing distribution P(s), the integrated nearest-neighbor spacing distribution I(s), the number variance
Σ2(L) and theDyson-Mehta statisticsΔ3(L) (histogram and green triangles-down). They are compared to the corresponding statistical
measures for Poissonian statistics (dashed lines), randommatrices from theGOE (full lines), the GUE (dashed–dotted lines) and the
superposition of two randommatrices from theGUE (2GUE) (red histogram and lines). A quite good agreement of the numerical
results with the 2GUE case is found forP(s) and I(s) except for small spacings, whereas clear deviations are visible for values of L2.5
inΣ2(L) and L5 inΔ3(L) before extraction of the bouncing-ball orbits.

Figure 9.Wave function components 1y∣ ∣ (left), 2y∣ ∣ (middle) and the current (right) corresponding to the bouncing-ballmodewith
state number n=1798.
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the discretization of the billiard boundary needs to be notedly refined and several search iterationsmight be
needed before amissing eigenvalue is detected. Finally we applied the expanded boundary integralmethod to the
Monza neutrino billiardwhich is interesting per se because it has a hole and above all belongs to the family of
unidirectional billiards.We found out, that like in the corresponding quantumbilliard its eigenvalue spectrum
can be separated into singlets and doublets of close lying ones. Yet, in distinction to the latter, the spectral
properties coincide with those of a superposition of two independentGUEs, thus indicating that dynamical
tunneling is stronger in the neutrino billiard than in the corresponding non-relativistic quantumbilliard.
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AppendixA. Comparisonwith the boundary integral for quantumbilliards

The Schrödinger equation of a quantumbilliardwith domainΩ is given by that of a free particle,

k r r0, A.12 yD + = Î W( ) ( ) ( )

with appropriate boundary conditions imposed on thewave functionψ(r) along the boundary∂Ω. The
quantum counterpart of a classical billiardwith hardwalls corresponds to a particle in an infinitely high potential
well. Accordingly, Dirichlet boundary conditions are imposed on thewave functions, r 0y =¶W( )∣ . For pressure
fields in accoustics or incompressible viscousflow, on the other hand theNeumann condition applies,

r 0ny¶ =¶W( )∣ with nn ¶ = ˆ · denoting the normal derivative. The Robin boundary condition [48]merges
them into one,

r r r 0, A.2ny yG + ¶ =¶W( ) ( ) ( )∣ ( )

with rG Î ¶W( ) positive and real. Again, the eigenvalues and eigenfunctionsmay be obtained based onGreen’s
theoremby evaluating a boundary integral [38]

Figure 10.Wave function components 1y∣ ∣ (left), 2y∣ ∣ (middle) and the current (right) corresponding to the chaoticmodes with state
numbers n=398 (top), n=399 (middle) and n=400 (bottom)with k-values k 26.444398 = , k399=26.505 and k400=26.507.
The orthogonality between the state 398 and 399, respectively 400 equaled 0.002, that between the latter two equaled 0.006 5.
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with ρ=ρ(f, z′). This equation should be comparedwith the boundary integral equation equation (37) for the
wave function component 1

y of a neutrino billiard. Upon settingΓ(f)=k [49, 50] they coincide except for an
additional term m H ke ei i

1
1 ra x-[ ( )]( ) in the latter, which leads to differing spectral properties for quantumand

neutrino billiards as outlined at the end of section 3. It, actually, was shown in [26] that the spectral properties of
anAfrica-shaped quantumbilliard, of which the classical dynamics is chaotic, and that of the corresponding
neutrino billiard do not coincide.While the former are described by those of randommatrices from theGOE as
expected for time-reversal invariant quantumbilliards with classically chaotic dymanics, the latter coincidewith
those from theGUE, i.e. behave like chaotic systemswith violated time-reversal invariance. This is generally the
case for billiards having a shape generating a chaotic classical dynamics if it has no geometric symmetry, whereas
if it, e.g. has amirror symmetry, both the quantumand the neutrino billiard exhibit GOE statistics [26]; see also
end of section 3.1.

Appendix B. Boundary integral for a circle neutrino billiard

In the followingwe briefly outline the analytical determination of the eigenstates of the circle neutrino billiard.
We havewith equations (5) and (21)

w z r we , e , e e , B.1i i i if= = =f f a f( ) ( ) ( )

so that equation (40) becomeswith equation (41)
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Like in equation (12)we use as ansatz for the boundary function at r=1 an expansion in terms of plane
waves,
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Nextwemultiply both sides with e mi f¢ and integrate overf′ to obtain a component-by-component equation
which has solutions at discrete values of k [51],
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Separation into real and imaginary parts yields for the latter

J k J k J k J k J k J k0 , B.4m m m m m m1
2 2

1 1= - = - ++ + +( ) ( ) [ ( ) ( )][ ( ) ( )] ( )

that is

J k J k . B.5m m1 = + ( ) ( ) ( )

The equation for the real part yields with equation (B.5)
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Note, that the term in rectangular brackets in the second line is theWronskianW J k Y k,m m k
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equations, and thus equation (B.4) are fulfilled for
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This equation yields the eigenvalues kn, n=1, 2,Lof the circle neutrino billiard. Based on these results the
wave functions rm n,

y ¢( ) are determined from equation (37)
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Nextwe employ the addition theorems for theHankel functions entering equation (B.8),
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replaceψ1(f) by the ansatz equation (B.3) and integrate overf, thenmultiply both sides of equation (B.8)with
e mi f¢ and perform the integral overf′, yielding
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Applying equation (B.7)wemay express the result again in terms of theWronskianW J k Y k,m n m n{ ( ) ( )},
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and obtain for thewave functions of the neutrino circle billiard

r a i J k r e B.12m n m
m

m n
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thereby validating the ansatz equation (B.3). Note, that for circle neutrino billiards these results can be derived
directly from the plane-wave expansions equation (18), using that θ(z)=f and w z r=∣ ( )∣ , because the
coordinate lines w r const .,f=( ) and w r, const.f =( ) are orthogonal with respect to each other. The
eigenvalues of the corresponding quantumbilliard are given by the zeros of the Bessel functions and thewave
functions by the real or imaginary part of those in equation (B.12). The spectral properties follow Poisson
statistics both for the circular quantum and neutrino billiard.
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