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Abstract

With the pioneering fabrication of graphene the field of relativistic quantum chaos emerged. We will
focus on the spectral properties of massless spin-1/2 particles confined in abounded two-dimensional
region, named neutrino billiards by Berry and Mondragon in 1987. A commonly used method for the
determination of the eigenvalues is based on a boundary integral equation originating from Green’s
theorem. Yet, in the quantization one might face problems similar to those occurring for non-
relativistic quantum billiards. Especially in cases where the eigenvalue spectrum contains near
degeneracies the identification of complete sequences of eigenvalues might be extremely elaborate, if
not unfeasible. We propose an expanded boundary integral method, which yields complete eigenvalue
sequences with a considerably lower numerical effort than the standard one. Actually, it corresponds
to an extension of the method introduced in Veble et al (2007 New J. Phys. 9 15) to relativistic quantum
billiards. To demonstrate its validity and its superior efficiency compared to the standard method, we
apply both methods to a circular billiard of which the eigenvalues are known analytically and exhibit
near degeneracies. Finally, we employ it for the quantization of a neutrino billiard with a hole, of
which the spectrum contains many close lying levels and exhibits unusual fluctuation properties.

1. Introduction

The search for manifestations of classical chaos within the field of quantum chaos in properties of the associated
quantum system has been a focus of research during the last 5 decades [ 1-3]. One of the concepts of quantum
chaos, namely the understanding of the features of the classical dynamics in terms of the spectral properties of
the corresponding quantum system, like nuclei, atoms, molecules, quantum wires, and quantum dots or other
complex systems [4—10], has been elaborated extensively. According to the ‘Bohigas—Giannoni—Schmit’
conjecture [11-14] for chaotic systems the spectral fluctuation properties of a generic chaotic system coincide
with those of random matrices from the Gaussian orthogonal ensemble (GOE), if time-reversal invariance is
conserved, and from the Gaussian unitary ensemble (GUE), if it is violated. For integrable systems they have
been shown to coincide with those of random numbers from a Poisson process [15]. Billiards are well suited for
the study of the dependence of the features of a quantum system on the degree of chaoticity of its classical
dynamics since it depends only on their shapes. Furthermore, the corresponding non-relativistic quantum
mechanical system, referred to as quantum billiard in the sequel, can be investigated experimentally using flat,
cylindrical microwave resonators of corresponding shapes. In such systems signatures of classical chaos were
observed in the fluctuation properties of their resonance frequency spectra, in the statistical properties of their
electric field distributions, in the fluctuation properties of the scattering matrix elements of chaotic scattering
processes, also in systems, where time-reversal invariance is broken [3, 16—19].

Most of the works on quantum chaos focus on systems described by the non-relativistic Schrodinger
equation. Only recently a new field of interest emerged, namely relativistic quantum chaos [20, 21]. These
studies were triggered by the pioneering fabrication of graphene [22]. In the low-energy region it exhibits
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extraordinary properties attributed to the conically shaped band structure near the Fermi energy. Consequently,
in that energy region the electronic properties of graphene are described by a Dirac equation so that graphene
features relativistic phenomena [23, 24]. Accordingly, the question arose whether the conclusions drawn on
properties featured by generic non-relativistic quantum systems with a classically chaotic counterpart also apply
to those of graphene dots, frequently referred to as graphene billiards; see [20, 21, 25] for an overview on
numerical and experimental studies. With this focus on the spectral properties of graphene billiards in the
relativistic energy region interest in those of a massless spin-1/2 paricle confined in a two-dimensional domain
—named neutrino billiard in the seminal work [26] of 1987, where neutrinos still were considered to be massless
—re-emerged. Confinement of the particle to the billiard domain is achieved by ensuring a vanishing outward
probability current and realized by imposing appropriate boundary conditions. The Dirichlet boundary
condition, commonly used for non-relativistic quantum billiards, would comply with this requirement, yet it is
inadequate, because it destroys the self-adjointness of the associated Dirac Hamiltonian. One possible boundary
condition was proposed in [26] implying the need of the extension of the, by now well developed, numerical
methods employed in quantum billiards to neutrino billiards. There already exist numerous works on the study
of neutrino billiards with shapes of classically integrable billiards or resulting from a conformal map of the unit
circle. The first ones were actually presented in [26]. It was found that for circular neutrino billiards the spectral
properties follow Poisson statistics whereas for one with the shape of an Africa billiard with a fully chaotic
classical dynamics they do not coincide with those of random matrices from the GOE as would be expected, but
instead exhibit GUE statistics, i.e. they behave like chaotic systems with violated time-reversal invariance. In [26]
the eigenvalues were determined by numerically solving the boundary integral equation resulting from Green’s
theorem for massless relativistic spin-1,/2 particles. It has the enormous advantage compared to the
corresponding equation for quantum billiards, that its integrand does not exhibit singularities. Yet, its numerical
evaluation may be accompanied by problems similar to those encountered in quantum billiards, e.g. for too
closely-lying eigenvalues, inner corners and holes in the billiard domain like the Monza billiard [27]. The
purpose of the present article is to introduce a procedure for the quantization of such billiards which
incorporates an expanded boundary integral method of the type proposed in [27].

In section 2 we will introduce the Dirac equation of a massless spin-1/2 particle in the most commonly used
coordinate systems, in section 3 the boundary conditions defining a neutrino billiard are specified and its salient
features are reviewed, in section 4 the boundary integral is given and compared to that of quantum billiards with
mixed boundary conditions, in section 5 we introduce the boundary integral method, in section 6 the expanded
boundary integral method is derived, tested in circular neutrino billiards exhibiting nearly degenerate
eigenvalues and finally applied to the Monza billiard, which comprises a hole.

2. The Dirac equation for a free, massless spin-1/2 particle in general coordinates

For a massless spin-1/2 particle moving freely in the (x, y) plane the Dirac Hamiltonian is given as

Hp = co - P (D)
where p = (p,, ﬁy) = —i/4Vand o = (6, 6;,) with &y , denoting the Pauli matrices. Writing E in terms of the

wavenumber k, E = /ick, the Dirac equation for the energy eigenstates of Hp, with the eigenfunctions
corresponding to two-component spinors

oy = B = ), ©)
(2
becomes in cartesian coordinates
3 )
0 — —1
. ] 9
kp=—il " T (3)
o + IE 0

Its solutions may be written explicitly in terms of plane waves

¢1) 1 'k.R(e_i(bO/z)
= —e¢' ) N 4
( wz \/E el(/)o /2 ( )
where ¢, is the angle between k and the x-axis.

We consider a massless spin-1,/2 particle which is confined to a bounded two-dimensional region, referred
to as neutrino billiard in the original work [26]. Generally, the boundary of billiards with polygonal shape is

parametrized in cartesian coordinates, whereas curved shapes resulting from a conformal mapping of the circle
are prevalently defined in terms of polar coordinates 0 < r < 1and0 < ¢ < 2wbyapolynomialin zin the

2
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complex plane
dw(z)

w(z) = x(r, @) + iy(r, ¢) = Z azl, z=rel?, r €)0, 1], ¢ € [0, 2m),

=0

=0 (5)

with ¢;real or complex coefficients, r < 1 parametrizing the interior and r = 1 the boundary. The coordinate
transformation from cartesian coordinates (x, y) to w(z = rel?) yields for the gradient in the complex plane

o .0 1 o .0
AN A S P | 6)
Ox dy z*[w/(2)]*\ Or 0¢
where the star denotes complex conjugation and w’(z) = dgz), leading to the Dirac equation
0 . (ri — ii)
. z[w' @I\ Or 0
kp = —i - . @)
;(ri I ii) 0
zZ*[w'(@)]* \\ or [o0)

The simplest example is a neutrino billiard with circular shape for which polar coordinates are most suitable,
(x, y) = r(cos ¢, sin @), or in the complex-plane representation w(z) = zand w'(z) = 1.

Solutions of equation (7) are again given in terms of plane waves, which with k - R = kR cos(f# — 6,) can be
expanded in polar coordinates as [28]

eik.R — Z imeim(H—OO)]m(kR)’ (8)
where J,,,(x) denotes the mth Bessel function of the first kind. An ansatz of the form equation (5) with [ > 0
might not be possible, like, e.g. in the case of an elliptic boundary. However, there a similar ansatz with r replaced

by a function f (r) works, if f (0) = 0 and d);(:) = 0.In these coordinates z = f (r)e'? with f(r = r,) defining the

boundary of the billiard for some value r = ryand
, 1 df(n ) .
i_Fli = ( f(r)) f(T)g-Fli . 9
Ox dy z*[w! ()" dr or ol
Another commonly used parametrization for convex billiards is
W, 0) = R( 0)e, R, 0) = (o, )], K2 o, (10)
A
with the gradient given as
R, 0) OR(r, ) i n ii _ _iaw(r, 0) ﬁ n i8W(r, 0) 2’ a1
or Ox dy 00  Oor or 00
and the boundary again defined by some value r = .
We are eventually interested in solutions of the Dirac equation in bounded domains which contain the
origin and in view of equation (8) accordingly choose as ansatz for 11 ,(r, ¢) the expansions [29]
(z/w, ¢)) (X @ilhkiw @) De @ )
Ua(r @)\ X bithkiw () e |
Here, w(z) = |w(z)]e?@,i.e. el?@® = % Inserting this ansatz into equation (7) and using
(r% + i%)lw(z)l = z*[w/(z)]* e’ (13)
and
rﬁ + ii ol — 712* [w'(2)]* i+ 10
or 0o [w(2)|
!/
200 )i _ 2V @] e (14)
or 0¢ [w(2)]
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yields as condition for it to be a solution of equation (7)
ST aifkw @) e = 37 bt Yo (kw (2) el Do
! I

> biiiklw(2) e =3 ari i (klw (2)]) el TV, (15)
I I

These equations can be further reduced by using the orthogonality of the wave functions equation (12) in
inacircular domain R = |w(z)| < Ry < oo. For this we multiply both equations in (15) with J,,, (k|w (z)])e "’
and integrate over the circular domain after transforming from cartesian coordinates (x, y) to w(r, ¢ ), and then

to ‘polar’ coordinates R = |w(z)|and e’ = |x2§;| ,

fdxfdy%frdrquﬁl w @) HfRded@, (16)

yielding for the coefficients g;and b, the equality
a; = by (17)

Thus, the solutions of the Dirac equation for a free spin-1,/2 particle may be generally written as
Ui(r, 9) = aiii(klw(2)])e @
!
Ua(r, §) = Y @i i (klw (2) el DPE, (18)
!

The same set of solutions is obtained when choosing the parametrization (9) or (10).

3. Neutrino billiards

The expansions equation (18) provide the solutions of the Dirac equation for a free spin-1/2 particle in an
unbounded system. To obtain those for a massless spin-1/2 particle which is confined to a bounded two-
dimensional domain of which the boundaryis given at r = 1 by w(z = €l?), ¢ € [0, 27), in the sequel referred
to as w(¢), we proceed as described in [26]. The appropriate boundary condition is obtained from the
requirement that the Hamiltonian of a closed system should preserve self-adjointness implying that it is
Hermitian, i.e. the eigenvalues should be real. This condition ensures the impenetrability of the walls, that is, that
there is no outward flux

A - (4" VpHxptpl = 0 (19)
with 9" = (¥}, %) and /i the outward normal to the boundary at ¢. Defining itby /i = (cos a(¢), sin a(¢))
yields with iVl,ﬁNB = co theboundary condition

P2(9) = iB()e* (o), (20)

where we chose B(¢) = 1 in accordance with [26] for infinite-mass confinement. The tangential vector
t = (cos[a (o) + 7/2], sin[a(¢) + 7/2])is determined from the derivative dr/d¢ or in complex-plane

~ ! 1 . .
notation from t = 2 with w’(¢) = 29 thatis

Iw'(0)] do
li !
Y ) B R U C) B @1
[w'(@)] [w' ()]
Note that in this notation w/(z = el?) = % = —ie” 1w’ (¢). Furthermore, we would like to emphasize,

that this choice of boundary conditions is not the only one guaranteeing self-adjointness of the Dirac
Hamiltonian and zero outgoing current [30]. Further information on boundary conditions for the confinement
of relativistic particles to abounded region, called ‘MIT bag model’, can be found on pages 108—129 of [31].

3.1.Implications of geometric symmetries of a neutrino billiard for its eigenstates

At this point a remark concerning the impact of symmetry properties of the billiard shape on those of the wave
functions is necessary. In a quantum billiard a mirror symmetry of its shape implies that wave functions are
either symmetric or antisymmetric with respect to the symmetry axis, that is, follow Neumann, respectively
Dirichlet boundary conditions along this axis. Consequently numerical efforts and the computation time
required for the determination of its eigenstates can be drastically reduced by separating the boundary integral
equation according to these boundary conditions into two independent ones. This, however, is not the case for a
neutrino billiard of which the shape has a mirror symmetry, e.g. with respect to the x- or y-axis, that s, is
invariant under reflections y — —y at the x-axis, respectively, x — —xat the y axis. The corresponding unitary
operators are U, = &; and IAJ), = i6;,. Generally, when applying a unitary transformation U to the Dirac

4
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Hamiltonian Hyg in (2)

Hy = U'HU. (22)
Then, denoting by 1) the eigenfunctions of Hys, those of I-AIIiIB are given by
Hy, Uy = kU, (23)
yielding for the eigenfunctions corresponding to the above reflection operations
< Y (1/12) - [P (1/)2)
= o ’ = N = ~ = . (24)
% [¢x,z 3] ¢y Py G

Invariance of the associated Dirac Hamiltonian with respect to these transformations holds if the eigenfunction
Al .
components of Hyy fulfill the boundary condition

a(6) = ie"P(¢), (25)
supposing that this is the case for those of HNB Here, in the transformed coordinate system el = e~ for the
transformation Uy and el® = —e i for U;,, implying that neither ), nor 111 are eigenfunctions of the

Hamiltonian of neutrino b1111ards, that is, Hyp is not invariant under either of them. Consequently, in general,
the wave functions can not be separated according to their mirror symmetries. Yet, since
Hyp(—x, y) = I-AII\*]B (x, y)and Hyp(x, — y) = @IAII\*IB (x, y) 6, some of the eigenfunctions will have the property
[V1(=x, ), Ya(—=x, )] = i[¢f % ¥), w;(:’ﬁ )l and [Y1(x, —y), Ya(x, —y)] = [i¢f(x’ ¥)s :FI/)E((X, J2I8
respectively, in accordance with the boundary condition equation (20), implying real coefficients 4;in
equation (18).

If, on the other hand, the billiard shape has an n-fold rotational symmetry, then the Hamiltonian can be
brought to ablock diagonal structure in its eigenrepresentation with each of the n blocks corresponding to an
invariance with respect to a rotation by m%ﬂ, m =0, 1, ---, n — L. The unitary transformation performing a

rotation by 27” in ﬁNB is given by

o~ 5% 6)
0 e
and the eigenfunctions of the transformed Hamiltonian are obtained from those of Hyg as
~ {ﬂ 1 e i
¢n . n _ - ¢1 . ( 27)
wn,Z € "¢2

The unitary operator for the mth rotation by 2777 isgiven by U,". Using the symmetry properties of the shape,
W(z) = el"w(z) implying with equation (21)
eld = eiiela (28)

yields for the transformed eigenfunctions with equation (25) the boundary condition

eiha(9) = ieiF e ety (¢) (29)

which is fulfilled for the eigenfunctions equation (27) if it is for those of Hyp itself. Note that, if the boundary
shape has mirror symmetries with respect to two perpendicular axes, it has a twofold symmetry so that for each
of its eigenfunctions the component ¢/, is symmetric and v, is antisymmetric with respect to a rotation by ,
yielding for the solutions equation (18)

1/11(7‘, 9) + 1/11(r> 0 + 7T)

L, 0) = ; = > ani?u(klw(z))e"®
I
BA(r, 0) = Pa(r, 0) — ;ﬂz(r, 0+m _ S ayi? Uy (Klw (2) ) e CHDIG), (30)
1

We conclude this section with a remark on time-reversal invariance, i.e. on the invariance of Hyg under
T = i6, K with K denoting complex conjugation [2, 32]. The transformed eigenfunction

;] 1/}1 1/)3
v'= (wz) (—1/11*) GD

does not fulfill the boundary condition, that is, the Dirac Hamiltonian of neutrino billiards is not time-reversal
invariant. Consequently, the spectral fluctuation properties of a typical neutrino billiard with the shape of a
chaotic billiard are described by the GUE, if it does not exhibit any geometric symmetries.

5
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Figure 1. [llustration of the quantities entering equations (37) and (38) for the case r € 9Q and v’ € 9. Theangles vand o’ denote
the angles of the normal vector at sand ¢/, respectively, £ that of p with respect to the x-axis, denoted by %.

4. Green’s theorem and a boundary integral for neutrino billiards

Only in a few cases, namely for certain shapes corresponding to classically integrable billiards, like a circle
neutrino billiard [26], or for billiards of which the boundary results from a conformal transformation of the
circle [33], solutions can be found by imposing the boundary condition equation (20) on an ansatz of the form
equation (18), e.g. in terms of the eigenfunctions of the circular neutrino billiard [33, 34] similar to [35].
Generally a plane-wave decomposition [36] or the scaling method [37] based on the ansatz equation (18) are
suitable only for convex billiards. The boundary integral method on the other hand originates from the Green
theorem, which provides an exact integral equation for a wave function in the interior of the billiard in terms of
that on the boundary, and is applicable to arbitrary shapes. Furthermore, like the scaling method, the boundary
integral approach has the huge advantage that the eigenvalue problem is reduced from a two-dimensional
differential equation to a one-dimensional boundary integral. It was generalized to neutrino billiards in [26].
The starting point for the derivation of the boundary integral are the Dirac equation for v/,

k' (r) — iV’ (r) - 6 =0 (32)
and the corresponding matrix equation for the free-space Green function

kGo(r, ') + 16 - V,Go(r, ') = 6(r — '), (33)

where 1 denotes the2 x 2 unit matrix and the Green function G (r, ') refers to the coordinate representation
of the Green operator G = (k + ie + i6 - V)71,

Go(r, ') = (r|G|r') = (k + ie — i& - V)(—iHé”(klr - r’|)). (34)

Here, we used that in two-dimensional space (r|[(k + i€)?> + A]7Yr!) = Gy(r, ') = fi/4H(§1) (klr — 7'
which is the scalar free-space Green function with H§" (x) denoting the Hankel function of order zero of the first
kind. In terms of the coordinate system introduced in equation (5) this yields with the notations
z=re, 2/ =1, p(z, 2) = w(z) — w(@), p(z, ') = |p(z, z’)|and ei¢>7) = Zg—)’j; (see figure 1 for the
definition of these quantities) for the free-space Green function

k[ —iH kp(z, 2)] e €@ YHD[kp(z, 2')]

G (r’ rl) = , . (35)
0 4\ €@ HOkp(z, 21)]  —iH [kp(z, 2')] ]

Multiplying equation (33) from the left with ¢ (r) and equation (32) from the right with Go(r, 1),
subtracting the latter from the former and performing the r integration over the billiard domain 2 leads to

6
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i f J, &V [ @ 6Go(r, =21 ¢ | ds fi - [ (1) 6Go(r, r')]
P, r e Q\on
= %1,[)*(#), r' e 00 - (36)
0, otherwise
The first equality results from the application of Gauss’s theorem to transform the two-dimensional integral
over {2 into a one-dimensional line integral over s along the domain boundary 0. Note that, if #’ is chosen ata
corner of the boundary, the factor % needs to be replaced by 27 with 6y, denoting the inner angle of the corner

[38, 39]. Using the boundary condition equation (20) we obtain for each wave function component a separate
boundary integral equation,

XY (') = —if [ doiw @) 105 G HP ko (6, 2] — e @D HOkp(6, 201}, (37)

W) =i [T 40 WO GO (6, )] + e DDk (6, ), (38)

where we inserted z = e into p(z, z’) and & (z, 2’). Furthermore, y = 1for r' € Q\9Qand x = 1/2for

r’ € 9N and the arclength s and the parameter ¢ are related through ds = dé|w’(¢)|. Since ¥ (¢) and ¢35 (¢)
are related via the boundary condition equation (20) we may evaluate either of these equations. The eigenvalues
are given as the discrete solutions for k of these equations with both r and ’ chosen on the boundary of the
neutrino billiard. Then, the eigenfunctions are obtained by inserting the resulting eigenvalues and boundary
functions v} (¢) into these equations and choosing r’ in the interior of the billiard. Yet, H{" (kp) and H{" (kp)
exhibit singularities for p = 0, thatis, for ¢ = ¢’ + 6¢ with ¢ — 0,

HP(kp(¢ + 6¢, ) 1 + iz% + i% ln(SIW’(W)&bI) + 0(16¢[* In(|6¢]))

' (6)50) ln(k|w'<¢’>6¢>|) 2
. 2 Kl (&) 60

In order to attain a non-singular integrand, we apply in equation (38) the boundary condition equation (20) to
replace ¢35 (¢) by ¥7 (¢), add equation (37) and obtain

W) = % $ dow@1Q@ 6 i @) (40)

H Y (kp(¢' + 6¢, ¢")) ~ + 0(18¢1* In(160])).  (39)

with
Q9> ¢3 k) = [ =@ — 11HP[kp(¢, ¢)]
+ [ela@)—iE@¢) 4 e’i“(¢)+i£(¢’¢/)]Hl(l)[kp(¢, A]. (41)

For ¢ — ¢’ theintegrand approaches zero, Q(¢ — @', ¢'; k) — 0because

elt(@e 00 H00) — 1~ ik (§/) W/ (@) 160] + 0[(66)°]
cla(@)g-i€ @' +60.0) o~ _ 00 _ W (@D WD [66]

+ o[(69)?
1661 wionp 2 o]
(B SDY E (D S b . 6¢ -[W/(¢/)]*W//(¢/) |6¢|
(@' +60) p1€(9'+06¢,0") ~ ;2 _ / PN 1V 2
e e 5l +[ (@) w (¢)|+1—|W,(¢,)|2 ] 5 + 0[(60)"],

with [w/ (@)W (¢) — W' () [w" (P)]* = —2i|w’(¢) Pk (¢) and k(¢) denoting the curvature of the boundary
at ¢. Similarly, for ¢} (¢) the boundary integral reads

Y3 =5 § dolw @100, 5 i) (12)
4 Joo
with

Qs ¢35 k) =[1 — elle@=2@NHVkp(p, ¢")]
4 [eia(é)*if(cﬁ,@’) + e*ia(¢’)+i§(®‘,é’)]Hl(l)[kp((b’ 1. (43)

The wave functions inside the billiard are calculated by inserting the solutions of equations (40) or (42) into
(37) and (38). Note, that ¢» and ¢’ are not necessarily chosen as in equation (5), but generally denote the
parameter which defines the boundary of the billiard. In appendix A we compare the boundary integral
equation (37) to the corresponding one for a quantum billiard with Robin boundary conditions in order to
illustrate their commonalities.
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Figure 2. Discritization of the boundary for an equal-size partitioning in ¢; see equation (45).

Generally, the boundary integral equation equation (40) needs to be solved numerically in order to
determine the eigenvalues and eigenfunctions of a neutrino billiard. Only for a few exceptions, the eigenstates
can be found either directly from the plane-wave expansion equation (18) or by solving the boundary integral
equation analytically. Yet, when solving the boundary integral equation numerically one might face the problem
of missing levels due to the presence of nearly degenerate eigenvalues. Such situations demand an expanded
boundary integral method of the same type as the one for quantum billiards [27]. Thus, even though we can
obtain exact analytical results either directly from an expansion in terms of plane waves or from the boundary
integral equation, the computation of all eigenvalues of the circular neutrino billiard by numerically solving the
latter is a non-trivial task. Therefore we chose it as an example to illustrate the efficiency of this method in
neutrino billiards. In appendix B we outline in detail the analytic procedure for solving the boundary integral
equation for the circle billiard. For systems with nearly degenerate eigenvalues and also for billiards with holes
[27] or inner corners [40], we propose an expanded boundary integral method which is based on [27]. First, we
briefly review in section 5 the procedure for solving the boundary integral equation (41) numerically and then
outline in section 6 the expanded boundary integral method.

5. Boundary integral method for neutrino billiards

In order to solve the boundary integral equations (40) with (41) numerically, the boundary parameter ¢ is
dicretized and the integral is approximated by a sum, turning the boundary integral equation into a matrix
equation

N
w(@) = Qdy b3 K AGu(B). (44)
i=1

Here, the matrix elements Q(¢;, ¢;; k) are obtained from equation (41) by replacing ¢’ by ¢;and ¢ by ¢;. One
possible choice is to partition the boundary parameter ¢ into equal-size pieces

¢1:(17 %)A(b;)l: 1) 2) N> A(ybl:% (45)

yielding a Riemann sum. Another one is to use increments generated by the Gauss—Legendre algorithm. For a
given N this discretization generally yields the integral and thus the eigenvalues with a considerably higher
accuracy than the former one. Note that, if ¢ does not coincide with the arclength s, partioning of ¢ € [0, 27)
into pieces A¢; corresponds to a discretization of the billiard perimeter into segments As; = |w/(¢,)|A¢;, and
thus to a higher density of supporting points in regions where the boundary curve is stronger bent; see figure 2.
Because the integrand in equation (40) does not contain any singularities, the numerical approximation
equation (44) approaches the boundary integral with increasing number of partitionings N. However, the larger
N, the higher will the numerical effort and computation time be. For a given k-range an optimal value for Nis
obtained in terms of multiples ¢, of the number of de Broglie wave lengths \ = 2% fitting into the perimeter £ of
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thebilliard, N = c,\§ =0 % The size of ¢, is typically chosen of the order ¢), ~ 8-12. Defining
Ab)ji = 6 — Q(9y, ¢33 k) Ag; (46)
yields the matrix equation
A(k)u =0 (47)

which has solutions at discrete values of k,, corresponding to the eigenvalues of the neutrino billiard. We would
like to stress that, in distinction to, e.g. the boundary integral problem for quantum billiards with Robin
boundary conditions (see equation (A.6)) where one has to deal with the singularity exhibited by the Hy(kp)
Hankel function at p = 0, this is not the case for neutrino billiards because there the corresponding matrix
elements Q(¢;, ¢;; k) vanishes as outlined in section 3. Even though this singularity is logarithmic in p and thus
lifted when performing the integral over ¢, it affects the accuracy of the eigenvalues.

The eigenvalues k,, correspond to singular values of A (k), that is, to zeros of the determinant of A,
det[A(k,)] = 0. Since equation (47) corresponds to an approximation of the actual boundary integral
equation, A (k) will in general not be exactly singular, i.e. its determinant will generally be non-vanishing. Thus,
in order to find the eigenvalues, one may either use the singular value decomposition method for complex
matrices and then sort the eigenvalues by size of their absolute values and plot the smallest one or else
| det [A(k)]| versus k and seek for local minima. In order to save computation time this can be done by
successively refining the discretization. However, this procedure might not work if two or more eigenvalues are
too close to each other, as it may occur, e.g. for eigenvalue spectra exhibiting Poisson statistics, or if a dip is too
narrow. Note, that the problem of spurious eigenvalues possibly occurring when solving the Dirichlet boundary
problem for a quantum billiard using a double layer equation with no singularities of the integrand instead of the
original boundary integral equation [38], does not arise for neutrino billiards containing no holes since there
singularities are absent. We will use the Monza billiard [27] to illustrate the efficiency of the expanded boundary
integral method in neutrino billiards of which the shape comprises holes.

6. Expanded boundary integral method for neutrino billiards

In order to identify missing levels we use an expanded boundary integral method which corresponds to an
extension of the one proposed for quantum billiards in [27] to neutrino billiards. The basic idea of this method is
similar to that of Vergini and Saraceno [37]. They expanded the boundary norm, which vanishes at the
eigenvalues of the corresponding quantum billiard, in a Taylor series around a reference value k\”’ to obtain a
generalized eigenvalue problem of which the solutions provide the eigenvalues in a narrow interval around k.
In our case the boundary norm does not vanish at an eigenvalue k,, of the neutrino billiard, yet A (k) in

equation (47) has a singular value [27]. Accordingly, we choose a reference value k'*’ which is not a solution k,, of
equation (47) and then expand A(k.”) around this value

Aky)u = [A(k,ﬁo)) + 6k Ak + %(6k)2A”(k,§°)) + ]u (48)

Here, A = %, A = ‘3% and 6k = k, — k. To find appropriate initial values for k\”’ and for the k-interval,
we first solve equation (47) for a larger k range and then identify regions of missing levels by, e.g. analyzing the
fluctuating part of the integrated level density [38]. In order to determine the values k,, of the missing levels we
solve a generalized eigenvalue problem similar to the one proposed in [27]. There, a perturbation parameter €
was introduced and then k,,, A(k) and u (k) were expanded in terms of powers of it

k= kO + ek + P+ (49)
Alky) = AQ + e AV 4 24D+ -, 50)
uk) = u® + cu® + 24> ... 51
and thus
k= ky — k" = ek’ + P+ o, (52)

(0)
n

where we suppressed the argument k. in the A®) and u”)-terms Inserting these expansions into equation (48)

yields
I:'A(krs())) 4 €k,(11).A/(k,SO)) + 62k,52).,4'(k,50)) 4 %(fkr(,l))z-"l”(kém) + 0(63)]

X [u® + cu® + 2@ 1 o(e¥)] = 0. (53)
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In a first approximation we solve this generalized eigenvalue problem up to o(¢”),
(Ak?) + ekD AkP)ii = 0, (54)

where we introduced the notation i = u® + ¢ u. This yields the eigenvalue k,, and the corresponding
eigenvector to a precision of second order in ¢,

ko =k + eklV + o(e?) (55)
u =i+ o(e?). (56)

Similarly, the left eigenvectors ¥ solve the generalized eigenvalue problem
FAED) + kD AED)) = 0. (57)

Naturally, only those eigenvalues of equations (54), respectively, (57) are taken into account which are close to
the reference value k\*, i.e. for which ¢ k" is within a value set by the required accuracy as outlined below.

In order to improve the accuracy of the eigenvalues we solve equation (53) in a further iteration up to o(¢’),
i.e. search for solutions of the generalized eigenvalue problem

(AGKD) + ekP A (k\P)yii + (ezk,?)A'(k,g")) + %(ek,?))m”(k;o)))a + Atk eu® = 0, (58)

based on the solutions of equation (54), which implies that the first term vanishes. Multiplication with the left
eigenvector ¥ turns the third term into an o(€’) contribution, since according to equation (57) 7T AK?)is of
order e so that up to order o(¢”)

=t A O
%@ — _l(ekr(ll))zv Ak, )u‘ (59)
2 FHA (k)i
The o(€”) contribution to the eigenvector u is obtained with this result and equations (54) from (58) as
he o(€” ibuti he eig is obtained with thi Itand equati fi
Ay e2u® = —(eZkf)A/(k;O)) + %(6k,ﬁ”)2¢4”(k,§(’)))ﬁ, (60)

This procedure yields the corrections e k", ¢ 2% ?, i and e2u® to the reference value and thus the eigenvalues
up to accuracy o(e),

kn =k + ekl + %P + o(e?), (61)

but not e itself. Yet, for the consistency of this approach it is sufficient to know these terms to ensure that the
required accuracy is achieved which is essentially determined by their values and the size of the next-leading
order contribution 63k,§3). For their determination we need to differentiate the matrix elements of A (k), that is,
according to equation (46) the matrix Q defined in equation (41) with respect to k,

Q¢ ¢35 k) = %{(e“af“» — DH{  (kpy) + (167 + el @~ H (kp;)} (62)
dQ@y o3 b i ,
— = i{(ewra» — DIH (kpykpy; + H§" (kpy)] (63)
+(eCm ) + el =) (HY (kpy) kp; + HP (kpy)1) (64)
d2Q(¢‘) ¢1) k) i . " ’
i = O DHE Rppkoj + 2H( (kpy o] (65)
el 4 el ) [HD" (kpy ko, + 2H{" (kpy) oy} (66)
with
H"'(x) = —H{"(x), (67)
1" I (1)
H (x) = —HY (x) = H{"(x) + L uCO) (68)
. o (1)
HY () = 2000 oy 4 L0 (69)
X X

Note that also the derivatives of Q(¢,, ¢;; k) do not contain singularities, because each differentiation of the
Hankel functions with respect to k is accompanied by an additional factor p;; which vanishes oc|6¢| with 6¢p —
0, and thus cancels the singularities of the associated Hankel function. Furthermore, the wave functions were
determined by inserting the eigenvalues (61) into equation (47) and proceeding as in the standard method.
Missing eigenvalues are found in a given k region by choosing equidistant reference values k\” and solving
equations (54), (57), (59) and (60) in an interval [k” — Ak/2, k¥ + Ak/2]for each of them. The distance Ak

10



10P Publishing

New J. Phys. 21 (2019) 073039 PYuetal

4
L
y
L
A

A.(u.)

Figure 3. Merging of the eigenvalue sequences obtained by applying the expanded boundary integral method around the reference
points Ky 1, knj, and ky; 1. The error in the determination of the eigenvalues increases as the cubic of the distance from their
reference point. The ticks mark the eigenvalues and the vertical bars indicate the borders of the adjacent intervals. Their colors are
green when they are accepted and red otherwise. The zoom illustrates that even degenerate eigenvalues will not be missing.

between the reference values should be chosen larger than the mean level spacing d (k), i.e. the inverse mean level
density p*mooth (k). It differs from Weyl’s law [41] by the perimeter term which vanishes for neutrino billiards,

Le. psmooth (k) = ?—: with A denoting the billiard area, yielding d (k) = %. The eigenvalues k,, are determined up
toorder €%k? ~ (¢ k{V)? where € k" should not exceed d (k). The distance between adjacent reference values

should vary with k, as Ak o k;'/3 to ensure a constant error in the determination of an eigenvalue with respect
to the mean level spacing, ¢k(® /d (k). On the scale of the unfolded eigenvalues sorted by size, k(" < k{* < -,

Ak,
k="t ~np (70)
4
the window size varies with k") as
Ak = A—k"Ak o 75 (71)
27
We set
Ak™ = (ne)s, (72)

and chose # such that Ak ") comprised approximately 3—4 levels (see figure 3).

The eigenvalues are determined in a k region by moving the interval [k” — Ak/2, k\” + Ak/2]along the
k-axis and using the above described procedure for each reference value k. *. All the resulting sequences need to
be merged into one. Generally this is possible by simply cutting the individual sequences at a value k = k*’
where they start to overlap. In cases where an eigenvalue obviously is obtained twice, the one with the higher
accuracy, that s, producing a value of det [LA(k,,)] closest to zero, is chosen. Yet, due to the numerical errors, it
can happen that either a genuine eigenvalue is thereby removed or doubled [27]. The simplest choice of the
border k™ between two neighboring sequences of eigenvalues k™ around k¢ and k; " around

(1) 1(u)
ko™ = k{ 4+ Ak® would be the middle point k) = %

W} = (k™ < kD) U (k] “k/® > k@), (73)

In order to avoid that k) is too close to some k™ or k]( ) with respect to the numerical accuracy, we define a
weighting function

(k’(u),kf_u))z (k’r(u),kﬁu))z

W (kW) = Z e 00?2 + Z e 2002 (74)
1=i 1=

whichis W (k) > e~!/2if there is some eigenvalue closer than 32 to k). In such a case we define a new value
for the border between the sequences, k" + 3 continuing until W (k") < e~1/2is satisfied.

6.1. Test of the expanded boundary integral method in the circular neutrino billiard

For a test the expanded boundary integral method and comparison with the standard one we determined the
first 1000 eigenvalues with each method independently and compared them with the exact eigenvalues of the
circular neutrino billiard obtained from equation (B.7) which indeed exhibits many near degeneracies. Here we
chose € = 0.001 for the expanded, and ¢, = 8 for the standard boundary integral method. This yielded in both
cases the eigenvalues with a similar accuracy, yet for the latter one several eigenvalues could not be detected
because they were too close to a neighboring one. One example of two nearly degenerate eigenvalues is given in
table 1. Figure 4 shows the real part, the imaginary part and the phase of the components ¢, and 1, of the
associated pair of wave functions. The distance of the eigenvalues equals |Ak| ~ 5 x 10~° correspondingto 1/

11
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Table 1. Eigenvalues of the circular neutrino billard. The 807th and 808th
eigenvalue are very close to each other. They are characterized by a pair of integer
numbers (I, m) denoting the index of the Bessel function (angular quantum
number) and the mth solution of equation (B.7) (radial quantum number),

respectively.
No. (I, m) Theorical Numerical Difference
807 (12,13) 56.735 729 05 56.735 728 85 —2.011 x 1077
808 (22,9) 56.735 734 15 56.735 733 92 —2.269 x 1077
Ak —5.09 x 107° —5.07 x 107°
1/]Ak®) 6926 6953

Figure 4. Real part, imaginary part and phase of the wave function components 1); (left triples) and 1), (right triples) of eigenstate
number 807 (top) and 808 (bottom). For details see table 1.

|AK®W| = ﬁ ~ 6900 with A = 7 denoting the area. Accordingly, the determination of all eigenvalues

with the standard method of finding local minima of the determinant | det A (k)| requires in the vicinity of
degeneracies a discretization ¢y, 2, 25. Thus, the numerical efforts related with the identification of regions
where eigenvalues are missing and then finding them is large in the standard method whereas we did not
encounter the problem of missing levels in the expanded one, that is, it is more reliable and consideraly less time-
consuming in such situations. We made similar experiences with rectangular, elliptic and triangular neutrino
billiards which also exhibit nearly degenerate eigenvalues.

6.2. Application of the expanded boundary integral method to the Monza neutrino billiard

In the above mentioned examples the eigenvalues can be obtained directly based on the plane-wave expansions
equation (18). In the present section we will consider a case where this is no longer possible, namely the Monza
billiard [27] which for the following reasons provides a stringent test of their efficiencies. Firstly, since the Monza
billiard contains a hole, one has to face with spurious eigenvalues. Secondly, the eigenvalue spectrum comprises
closely-lying eigenvalues. This is attributed to the unidirectionality of its classical dynamics, implying that the
Mongza billiard exhibits the particular property that the motion of a particle launched into it with a certain
rotational direction will follow this direction forever [42—44]. Consequently, the classical phase space is divided
into two disjoint regions. They are separated by a family of marginally stable bouncing-ball orbits which are
reflected back and forth perpendicularly at the inner and outer boundary parts and thus do not perform
rotational motion, that is, they form the invariant separatrix between clockwise and counterclockwise motion.
The separation of the phase space, in turn, gives rise to an extraordinary structure in the eigenvalue spectrum of
the non-relativistic quantum and the neutrino Monza billiard, which can be splitinto doublets and singlets. The
singlets correspond to the bouncing-ball modes which are of measure zero in classical phase space [27, 43—45].
The appearance of doublets has its origin in the separation of classical phase space into two parts. Yet, for the
quantum case the eigenvalues are not degenerate, as would be expected if switching between clockwise and
counterclockwise motion were strictly forbidden also in this limit. They are, actually, split by a distance which is
small compared to the mean spacing of the doublets [27]. This splitting is attributed to dynamical tunneling

[27, 43, 44] between the two regions of phase space through the barrier region associated with the bouncing-ball
orbits. Note, that the splittings do not decrease exponentially with increasing eigenvalue number, as might be
expected in the semiclassical limit, but rather algebraically. Accordingly, almost all eigenvalues are nearly-
degenerate in the quantum Monza billiard. It was shown in [27] that the classical dynamics in each invariant half
of phase space is fully chaotic and ergodic and the spectral properties of the doublets of the Monza quantum
billiard were found to exhibit GUE rather than GOE behavior [27]. This reminds on the spectral structure
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Figure 5. Modulus of the wave function components 1), (left) and 1, (right) corresponding to a spurious eigenvalue. It is clearly visible
that the boundary integral equation is not fulfilled along the inner boundary.

present in quantum billiards with threefold symmetries [46]. Yet, in contrast to the latter the Monza billiard does
not exhibit any geometric symmetries. These exceptional features of the classical and quantum system
immediately brought us to the question to what extent they are also present in the Monza neutrino billiard.

We chose for the Monza billiard the same shape as in [27]. It is composed of four parts with straight inner
and outer boundary segments at the same distance 4, where two parts have length a, respectively b, and lie
opposite to each other with respect to the hole. They are joined by three ring shaped parts of width r,; defined by
parameters a, g, and r. We chose for the parameters the same valuesasin [27],g = 1/12,a = 1/2,b = 1/3,

r = 1/3,a = 1and computed itslevels up to k ~ 65 using the standard and the expanded boundary integral
method. The discretization parameter was chosen to be ¢, = 12 and the parameter € setting the spacing between
the reference value k" between individual runs equation (72) equaled = 0.001.

The resulting eigenvalue sequences contain for both methods ~100 spurious eigenvalues. This is attributed
to the fact that, due to the hole, the boundary integral equation involves a combination of boundary integrals
along the inner and outer boundary which might result in a zero of det A (k) within the numerical error, even
though the equation is not exactly fulfilled along the inner boundary like in the example shown in figure 5.
Checking whether the wave function components vanish inside the hole does not always work, because of the
unavoidable numerical error. Therefore, in order to test whether the eigenvalues are genuine we checked the
orthogonality of the corresponding eigenfunctions 1), with respect to those corresponding to the upper
neighboring eigenvalues, C,,, = | (¥, ¥,,) |, m=n+ 1, n+ 2,...,n + Mpyay with 1, > 10. Again,
because of the numerical accuracy we cannot expect that C,,,,, vanishes exactly for n = m in the case of
orthogonality. We found out that by setting the limit to C,,,,, < 0.051 for orthogonality most of the spurious
eigenvalues could be eliminated.

Finally, we used the Weyl formula equivalent for neutrino billiards in order to identify non-genuine
eigenvalues or regions of missing ones. It turned out that the fluctuating part of the integrated spectral density,
N (k) = N(k,) — Nsmooth(k ), n = 1,---,2170, which is depicted in figure 6 exhibits fast and clearly visible
slow oscillations which hamper this search and are due to the bouncing-ball orbits mentioned above.
Furthermore, the right panel shows the length spectrum, i.e. the absolute value of the Fourier transform of the
fluctuating part of the spectral density which exhibits peaks at the lengths of the periodic orbits. Here, below
I ~ 10 the bouncing-ball orbits clearly dominate.

Their contribution can be derived explicitly [45] based on the trace formula for a rectangular neutrino
billiard

N
Libo ﬁ Z (— l)mm73/2 cos (kan rg — %ﬂ') (75)

i m=1

with r; denoting the distance between the inner and outer boundary, Ly, the total length of the boundary where
bouncing-ball orbits occur. It, and also the length spectrum deduced from it are shown as red dashed lines in
figure 6, thus illustrating that it indeed describes the slow oscillations exhibited by the fluctuating part of the
integrated spectral density. The summand of the trace formula contains an extra phase (—1)™ as compared to the
one applicable to the bouncing-ball orbits in the corresponding quantum billiard which is due to the differing
boundary conditions. After subtracting this contribution from N™(k), missing and spurious levels are clearly
visible as jumps in it as demonstrated in figure 7.

We did not encounter any missing levels in the expanded boundary integral method whereas we had to
increase the numerical effort, associated with locating the regions where an eigenvalue was missing and their
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Figure 6. Fluctuating part of the integrated spectral density N™(k,) = N (k) — N*™°°h(k ), n = 1,---,2170 (left) of the first
eigenvalues k,, of the Monza-shaped neutrino billiard (black dots) and the corresponding length spectrum. The red dashed curves
show the contribution of the bouncing ball orbits, clearly illustrating that they follow the slow oscillations observed in N1““(k,). The
length spectrum has peaks at the lengths of periodic orbits. For shorter lengths the bouncing balls are obviously the dominant ones.
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Figure 7. Fluctuating part of the integrated spectral density of the neutrino Monza billiard after subtraction of the contribution of the
bouncing ball orbits given in equation (75). It exhibits a clearly visible jump indicating that we oversaw one spurious eigenvalue when
applying the ortogonaltiy test.

identification which required a discretization of ¢, 2 25, considerably in order to achieve a complete sequence
of 2170 eigenvalues below k =~ 65 in the standard one.

Like in the stadium billiard, bouncing-ball orbits are of measure zero in the phase space of the Monza
billiard. Yet, they have a clearly visible effect on the spectral properties of the Monza neutrino billiard, as
illustrated in figure 8.

Before analyzing the fluctuation properties in the level sequence of a neutrino billiard the eigenvalues need to
be unfolded such that the spectral density is uniform. This is generally achieved by replacing the k, by the smooth
part of the integrated spectral density which is given by [26] Nsmeoth (k) = i—]j with A denoting the area of the
Monza billiard. Shown are the distribution of the spacings between adjacent eigenvalues P(s), the corresponding
cumulative distribution I(s), the variance ©*(L) of the number of eigenvalues in an interval L and the Dyson-
Mehta statistic As(L) [47], which gives the local average least-square deviation of the integrated spectral density
of the unfolded eigenvalues from a straight line over an interval of length L. The curves are compared to the
corresponding ones for Poisson statistics (dashed lines), GOE (solid lines), GUE (dashed—dotted lines) and the
case of random matrices consisting of two diagonal blocks of the same dimension containing GUE matrices (red
lines). The left panels show the spectral properties before eliminating the bouncing-ball orbits, the right panels
after their extraction. Like in the stadium billiard this is done by replacing the eigenvalues k,, by
k, = Nesmeoth(f y 1 NPbo(k yinstead of just the smooth part. Note that unfolding refers to the slowly varying
part of the integrated spectral density which in the present example includes the slow oscillations caused by the
bouncing-ball orbits. Then the spectral properties agree well with the 2GUE curves. This implies, that in
distinction to the Monza quantum billiard, the two doublet partners corresponding to clockwise and
counterclockwise motion in the Monza billiard, are well separated, i.e. are well split, indicating that dynamical
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Figure 8. Spectral properties of the Monza neutrino billiard before (left) and after (right) extracting the bouncing-ball modes. Shown
are the nearest-neighbor spacing distribution P(s), the integrated nearest-neighbor spacing distribution I(s), the number variance
¥*(L) and the Dyson-Mehta statistics As(L) (histogram and green triangles-down). They are compared to the corresponding statistical
measures for Poissonian statistics (dashed lines), random matrices from the GOE (full lines), the GUE (dashed—dotted lines) and the
superposition of two random matrices from the GUE (2GUE) (red histogram and lines). A quite good agreement of the numerical
results with the 2GUE case is found for P(s) and I(s) except for small spacings, whereas clear deviations are visible for values of L 2 2.5
in©*(L)and L > 5in A(L) before extraction of the bouncing-ball orbits.

Figure 9. Wave function components |1/4| (left), |1/, (middle) and the current (right) corresponding to the bouncing-ball mode with
state number n = 1798.

tunneling is much stronger in the neutrino than in the quantum Monza billiard. Yet, deviations are observed
even after extraction especially in P(s) for small spacings. These may be attributed to remnants of contributions
from the singlets and a weak coupling between the doublet partners which may be accounted for in a random
matrix ensemble of the form used in [44] in which the two GUE blocks are weakly coupled. We conclude this
section with two examples for the wave functions, one showing a bouncing-ball mode, the other one three
chaotic ones, which correspond to three successive eigenvalues, see figures 9 and 10. They were computed by
inserting the eigenvalues, which were determined with the expanded boundary integral method, into the
original boundary integral equations (37) and (38). In order to check their accuracy, i.e. to verify that the
boundary condition is fulfilled, we first computed the boundary functions by choosing ' € 0f) which indeed
was the case. Actually, the absolute value of the corresponding smallest eigenvalue of equation (47) was less than
10~*. Then, we computed the wave functions inside the billiard by choosing ' € Q \ 0€2. The distance between
the eigenvalues k399 and k4o is by a factor of 30 smaller than that to the adjacent ones, so they form a doublet,
whereas kjog is framed by this doublet and another one, thus it is a singlet state and indeed looks like a slightly
distorted bouncing-ball mode.

7. Conclusions

We introduced an expanded boundary integral method which is especially suited when dealing with neutrino
billiards of which the eigenvalue spectrum exhibits near degeneracies. In order to test the efficiency of the
standard and expanded boundary integral method we applied both to the circle neutrino billiard and also to
neutrino billiards, of which the eigenvalues can be determined directly from the plane wave expansion

equation (18). It turned out that the numerical effort associated with the computation of complete sequences of
eigenvalues is considerably more time-consuming when using the standard boundary integral method, because
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Figure 10. Wave function components || (left), |1/, (middle) and the current (right) corresponding to the chaotic modes with state
numbers n = 398 (top), n = 399 (middle) and n = 400 (bottom) with k-values ksos = 26.444, k399 = 26.505 and ko = 26.507.
The orthogonality between the state 398 and 399, respectively 400 equaled 0.002, that between the latter two equaled 0.006 5.

the discretization of the billiard boundary needs to be notedly refined and several search iterations might be
needed before a missing eigenvalue is detected. Finally we applied the expanded boundary integral method to the
Monza neutrino billiard which is interesting per se because it has a hole and above all belongs to the family of
unidirectional billiards. We found out, that like in the corresponding quantum billiard its eigenvalue spectrum
can be separated into singlets and doublets of close lying ones. Yet, in distinction to the latter, the spectral
properties coincide with those of a superposition of two independent GUEs, thus indicating that dynamical
tunneling is stronger in the neutrino billiard than in the corresponding non-relativistic quantum billiard.

Acknowledgments

We thank the National Natural Science Foundation of China for financial support under Grant Numbers
11775100 and 11775101.

Appendix A. Comparison with the boundary integral for quantum billiards

The Schrodinger equation of a quantum billiard with domain 2 is given by that of a free particle,

(A + Ky =0,reQ (A.1)

with appropriate boundary conditions imposed on the wave function 1(r) along the boundary 9€2. The
quantum counterpart of a classical billiard with hard walls corresponds to a particle in an infinitely high potential
well. Accordingly, Dirichlet boundary conditions are imposed on the wave functions, 1 (r)|sqo = 0. For pressure
fields in accoustics or incompressible viscous flow, on the other hand the Neumann condition applies,

0,0 () |aq = Owith 0, = fi - V denoting the normal derivative. The Robin boundary condition [48] merges
them into one,

L@y () + 0 (®oq = 0, (A.2)

with I'(r € 0Q) positive and real. Again, the eigenvalues and eigenfunctions may be obtained based on Green’s
theorem by evaluating a boundary integral [38]
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= %W(r’), r'e o . (A.3)
0, otherwise
Here
i r—r!
OnGor, 1) = —ki(s) - ﬁHf”(kv -, (A4)
r—r
where in the complex-plane notation
- ‘ - / o
Ai(s) - r-r = Re eﬂa(a)M = Re[e @@ ei(®2)]] (A.5)
|r — ] lw(¢) — w(zhl
and thus
.k r o
vy =ik § dotw @l { DL H G - Rete e | (A6)

with p = p(¢, Z). This equation should be compared with the boundary integral equation equation (37) for the
wave function component ¢ of a neutrino billiard. Upon setting I'(¢) = k[49, 50] they coincide except for an
additional term Zm [e e H" (kp)] in the latter, which leads to differing spectral properties for quantum and
neutrino billiards as outlined at the end of section 3. It, actually, was shown in [26] that the spectral properties of
an Africa-shaped quantum billiard, of which the classical dynamics is chaotic, and that of the corresponding
neutrino billiard do not coincide. While the former are described by those of random matrices from the GOE as
expected for time-reversal invariant quantum billiards with classically chaotic dymanics, the latter coincide with
those from the GUE, i.e. behave like chaotic systems with violated time-reversal invariance. This is generally the
case for billiards having a shape generating a chaotic classical dynamics if it has no geometric symmetry, whereas
ifit, e.g. has a mirror symmetry, both the quantum and the neutrino billiard exhibit GOE statistics [26]; see also
end of section 3.1.

Appendix B. Boundary integral for a circle neutrino billiard

In the following we briefly outline the analytical determination of the eigenstates of the circle neutrino billiard.
We have with equations (5) and (21)

w(z) = rel?, w(g) = el?, el = el?, (B.1)

so that equation (40) becomes with equation (41)

(@) = ikfh délei@ =9 — 11HO | 2k
: 4 Jo 0

sin(¢ ; ¢/) le* (®). (B.2)

Like in equation (12) we use as ansatz for the boundary function at r = 1 an expansion in terms of plane
waves,

Vi) =D aifi(k)e (B.3)
1

siné ‘]
2

Next we multiply both sides with e”?" and integrate over ¢’ to obtain a component-by-component equation
which has solutions at discrete values of k [51],
sin Ll
2

= ikguﬁ,ﬂ(k) — J23k)] — kgumﬂ(k)YmH(k) — () Y ().

and insert it into the boundary integral, yielding with ¢ = ¢/ — ¢

1 2r . .
ST aifkye " =37 a;il];(k)e*iwikj; dgel(eid — l)H(()l)[Zk
1 ]

A T s i Dd iy (D
1 4kj:7r dd(e eimd) H (Zk
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Separation into real and imaginary parts yields for the latter
0= Joi1(®0) = Ja(®) = U1 ()) = Jn (I Unm1(K) + T (K], (B.4)
thatis
Jmn1(k) = £ (k). (B.5)
The equation for the real part yields with equation (B.5)

1= %kUmac) Y k) = Jore1 () Y1 K))

_ i%k[]w(k) Y (k) — Jon(K) Yoy 1 ()]
==+l1. (B.6)

Note, that the term in rectangular brackets in the second line is the Wronskian W {J,,(k), Y,,(k)} = % Both
equations, and thus equation (B.4) are fulfilled for

Im+1(kn) = ]m(kn) (B-7)

This equation yields the eigenvalues k,,, n = 1, 2, ---of the circle neutrino billiard. Based on these results the
wave functions 9/, ,(r’) are determined from equation (37)

o kn [T X —igni
Uiy = it [ dout @) H () — e H (ki)
R (B.8)
. 0 _ f/eid . o )
elt = &,pzleld’—reld’l,ogr <L
Next we employ the addition theorems for the Hankel functions entering equation (B.8),
H(kp) = 37 HP (k) iy =20, (B.9)
l=—00
H{V(kyp)e%ei = 37 H (ko) Jikar')e" =", (B.10)
I=—00

replace ¢, (¢) by the ansatz equation (B.3) and integrate over ¢, then multiply both sides of equation (B.8) with
e”%" and perform the integral over ¢/, yielding

7k,

[ de'el" i (r') = —i—ani" [Hyy (k) = HyL k)i ka) Tt

Applying equation (B.7) we may express the result again in terms of the Wronskian W {J,,,(k,,), Y,,(k,)},

[HY (k) — HY (k) (ki) = ilm1kn) You(kin) — Jon(kin) Y (k)] = i i

(B.11)

n

and obtain for the wave functions of the neutrino circle billiard
wlm,n(rl) = amim]m(knrl)eimw/ (B.12)

thereby validating the ansatz equation (B.3). Note, that for circle neutrino billiards these results can be derived
directly from the plane-wave expansions equation (18), using that §(z) = ¢ and |w(z)| = r,because the
coordinate lines w (r = const., ¢) and w(r, ¢ = const.) are orthogonal with respect to each other. The
eigenvalues of the corresponding quantum billiard are given by the zeros of the Bessel functions and the wave
functions by the real or imaginary part of those in equation (B.12). The spectral properties follow Poisson
statistics both for the circular quantum and neutrino billiard.
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