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ABSTRACT

Radiotherapy plays a vital role in cancer treatment, for which accurate prognosis is important for guid-
ing sequential treatment and improving the curative effect for patients. An issue of great significance
in radiotherapy is to assess tumor radiosensitivity for devising the optimal treatment strategy. Previous
studies focused on gene expression in cells closely associated with radiosensitivity, but factors such as
the response of a cancer patient to irradiation and the patient survival time are largely ignored. For clin-
ical cancer treatment, a specific pre-treatment indicator taking into account cancer cell type and patient
radiosensitivity is of great value but it has been missing. Here, we propose an effective indicator for
radiosensitivity: radiosensitive gene group centrality (RSGGC), which characterizes the importance of the
group of genes that are radiosensitive in the whole gene correlation network. We demonstrate, using both
clinical patient data and experimental cancer cell lines, which RSGGC can provide a quantitative estimate
of the effect of radiotherapy, with factors such as the patient survival time and the survived fraction of
cancer cell lines under radiotherapy fully taken into account. Our main finding is that, for patients with
a higher RSGGC score before radiotherapy, cancer treatment tends to be more effective. The RSGGC can
have significant applications in clinical prognosis, serving as a key measure to classifying radiosensitive
and radioresistant patients.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

from NCI-60 cancer cells are closely associated with radiotherapy
(Kim et al., 2012). However, due to the high complexity of the gene

Radiotherapy has been an indispensable tool for treating can-
cer and controlling its growth, which is received by nearly 50% of
the cancer patients (Moding et al., 2013). A fundamental issue in
radiotherapy is to assess the radiosensitivity (RS) of a cancer pa-
tient to enable decision making toward optimal treatment strategy
(Eschrich et al., 2009). In the modern era of precise medicine, gene
signatures as a response predictor for radiotherapy and chemother-
apy have been effective in the treatment of various cancers (Zhu
et al, 2010; Van De Vijver et al, 2002; Lee et al., 2015; Bing
et al.,, 2016). Previous studies established that a group of 31 genes
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regulatory system, the intrinsic relationship between these genes
has been unclear and it remains difficult to predict the effective-
ness of radiotherapy for cancer patients.

Network science has the potential to provide powerful tools for
analyzing a variety of natural and artificial complex systems (Palla
et al., 2005; Barthe, 2011; Holme, 2012; Wang et al., 2016), in-
cluding those in life science and medicine. For example, metabolic
pathways can be identified through analyzing the network struc-
ture of genes/proteins (Kauffman et al., 2003; Barabasi and Oltvai,
2004), epidemic outbreak can be explained based on spreading dy-
namics on networks (Pastor-Satorras and Vespignani, 2001; Brock-
mann and Helbing, 2013), ecological stability associated with envi-
ronment can be assessed using the network approach (Proulx et al.,
2005), designing genetic circuits can benefit from the principles
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Table 1

Datasets used in this article.
Dataset Brief description Platform’
GSE59 cDNA microarrays of NCI-60 cancer cell lines GPL167, 169
GSE3578 mRNA expression of cervical cancer patients during therapy GPL2895
GSE5949 mRNA expression of NCI-60 cancer cell lines GPL91~95
GSE7505 cDNA microarrays of NCI-60 cancer cell lines after radiation GPL5080
GSE7696 mRNA expression of GBM patients GPL570
GSE16011 mRNA expression of GBM patients GPL8542
GSE32474 mRNA expression of NCI-60 cancer cell lines GPL570
TCGA-GBM GBM patient samples from TCGA GPL570

(1) GPL91~95, Affymetrix Human Genome U95A U95E Array.
(2) GPL167, 169, 10kPrint3, 10kPrint2 of spotted DNA/cDNA (non-commercial).

(4) GPL2895, GE Healthcare/Amersham Biosciences CodeLink Human Whole Genome Bioarray.

)
)
(3) GPL570, Affymetrix Human Genome U133 Plus 2.0 Array.
)
)

(5) GPL5080, NHGRI Homo sapiens 6K of spotted DNA/cDNA.
(6) GPL8542, Affymetrix GeneChip Human Genome U133 Plus 2.0 Array.

1 We adopt GEO accession for data sets to simplify the description of the GEO Platform (GPL). The
detailed information, which can be found from the website of National Center for Biotechnology Infor-

mation (NCBI), is.

from network science (Alon, 2007), and tipping points in complex
mutualistic networks can be analyzed and predicted (Jiang et al.,
2018). Recently, network science has been employed to advance
research in cancer and oncology, providing unprecedented insights
into physiological phenomena related to tumor growth (Yarden and
Pines, 2012; Pujana et al., 2007)with clinical applications (Chuang
et al., 2007; Gevaert et al., 2006), clarifying the biochemical factors
and signaling pathways during primary tumor development (Ivliev
et al., 2010; Balkwill, 2004), and leading to pathway-directed drug
discovery (Altieri, 2008). The purpose of this paper is to exploit
principles of complex network science to propose, analyze, and val-
idate a geometric indicator to effectively and quantitatively char-
acterize the impact of radiotherapy on cancer patients. This is the
radiosensitive gene group centrality (RSGGC), which can be calcu-
lated through identifying both the relations among gene signatures
and the efficiency of the radiotherapy treatment.

Our work is motivated by the considerations that, in spite of the
completeness of the Human Genome Project (Venter et al., 2001),
the detailed functions and relationship among the genes remain
unclear, and the existing protein-protein interaction (PPI) networks
are unable to capture the overall features of the regulation process.
It is thus useful to concentrate on the intrinsic properties of the
genes with a network dynamic topology. In particular, we consider
the intergenic correlations among data samples of the same clus-
ter or classification to obtain a network through Pearson’s corre-
lation matrix, which is also known as the gene co-expression ma-
trix (Stuart et al., 2003). The matrix quantifies the gene-gene re-
lationship across tissue samples. In network science, the centrality
of a node quantifies its importance in the network based on the
local connection strength to its neighbors (Freeman, 1978; Gomez
et al.,, 2003; Borgatti and Everett, 2006). Similarly, the centrality of
a cluster of nodes is the sum of the centrality values over all the
nodes in the cluster, which characterizes the importance of the fo-
cal cluster (Aguirre et al., 2013). Based on this concept, we propose
RSGGC as a novel indicator to quantitatively assess malignant tu-
mor development and to provide prognosis for patients. Combin-
ing with the finding of work (Kim et al., 2012), we group the 31
radiosensitive genes to be our focal cluster to calculate the RSGGC,
as shown schematically in Fig. 1.

Through analysis based on different data sets from patients
and cancer cell lines, we find a strong correlation between RSGGC
and the patient’s clinical or physiological indicators, suggesting
that RSGGC can be potentially be applied to analyzing the ther-
apeutic effect of radiotherapy. Specifically, for clinical data, we
collect the previously public datasets from Gene Expression Om-
nibus (GEO) and the Cancer Genome Atlas (TCGA) to calculate
the correlation between the survival time of a patient and his/her

RSGGC value from the clinical perspective. We then analyze the
experimental data of cancer cell lines from the existing literature
(Amundson et al.,, 2008). A typical data set includes the survival
fraction (SF) of parallel cell lines with different radiation dosages
(2Gy, 5Gy, 8Gy) as labels of irradiation resistance for follow-up
process. We calculate the RSGGC values for the corresponding NCI-
60 cancer cell lines mRNA expression data. A statistical analysis
shows that patients with a high RSGGC score have a longer survival
time after radiotherapy and, consistently, cell lines with a higher
RSGGC value have a smaller survival fraction after irradiation. Fur-
ther, for different glioblastoma multiforme (GBM) cancer subtypes,
our results indicate that the higher the RSGGC score is, the bet-
ter therapeutic effect would be for patients receiving radiotherapy.
Finally, based on the time sequencing data associated with irradia-
tion, we compare the values of RSGGC before and after irradiation
and find a sensitive response of RSGGC to irradiation, indicating
the potential advantage of using RSGGC to assess the effect of ra-
diotherapy in a quantitative manner. Our detailed and systematic
analysis of RSGGC suggest that it can be used as a potential indica-
tor of the effectiveness of radiotherapy to greatly facilitate decision
making toward an optimal strategy for treating cancer.

2. Material and methods
2.1. Data collection

The required mRNA/cDNA expression profile of a patient or
a cancer cell line involved in radiotherapy or in irradiation ex-
periment, respectively, is collected from the previous published
datasets from Gene Expression Omnibus (GEO) and the Cancer
Genome Atlas (TCGA), with detailed information listed in Table 1.

Radiotherapy is the leading therapeutic strategy for patients
suffering from GBM, as the surgical risk for this type of cancer is
greater than others. GBM thus provides substantially more radio-
therapy cases in the test datasets (GSE7696 (Murat et al., 2008),
GSE16011 (Gravendeel et al., 2009), and TCGA-GBM). In order to
investigate the effect of radiotherapy on patients, we use a number
of cervical cancer patients in the dataset GSE3578 (Iwakawa et al.,
2007) that contains the sequencing changes of mRNA expres-
sion during therapy. We use NCI-60 cancer cell lines in a more
homogeneous environment as the validation datasets: GSE32474
(Pfister et al., 2009) and GSE5949 (Reinhold et al., 2010), which
were widely used in exploring the underlying mechanisms of can-
cer and for developing drugs (Shoemaker, 2006; Gao et al., 2015;
Lee et al., 2007). As an additional validation of the cancer cell lines,
we study the integrated datasets: GSE59 (Ross et al., 2000) and
GSE7505 (Amundson et al., 2008), which record the abundance of
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Fig. 1. Schematic illustration of the effects of radiation sensitive genes on the intercellular interaction or correlation of genes in cells: (A) before and (B) after irradiation. The
red (thicker border) and blue (thiner border) blocks represent the radiation sensitive and the remaining genes, respectively. For simplicity and clarity, only a small fraction
of the genes are demonstrated. The links in the network are drawn according to the open database STRING-DB. The thickness of a line between a pair of genes indicates the
interaction strength between the genes. A comparison between (A) and (B) gives a glimpse of one possible change in the interaction strength due to irradiation.

cDNA of the NCI-60 cell lines before and after irradiation, respec-
tively.

2.2. Data preprocessing

For reliable and meaningful statistical analysis, preprocessing of
data is necessary. Briefly, we first select proper data through rank-
ing and variance cutoff. We then apply either linear or logarith-
mic scales to the pertinent index, e.g., the survival time of patients
(Table 2) or the survival fraction of cell lines (Table 3). In the fol-

lowing, we describe the preprocessing details for clinical data and
cancer cell lines separately.

Preprocessing of clinical data. For patients, we screen out the
cases GSE7696, GSE16011 and TCGA-GBM from GEO and TCGA pri-
marily. All clinical data are filtered according to the following crite-
ria: (1) null and void cases were removed (for example, lost record,
abnormal expression, and rewritten data), and patients with both
mRNA expression and the corresponding clinical information were
selected; (2) one clinical index was used to classify patients (e.g.,
survival time or subtypes of patients). The GSE3578 (cervical can-
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Table 2

Clinical information and groups of patients in different datasets.

Dataset Sample size  Grouping to the survival time Mean survival Mean Age  Gender (M/F)
(K days) time (K days)’

GSE7696 65 0-0.25-0.50-0c0 0.438 51.178 48/17

GSE16011 180 0-0.1-0.2-0.4-0.8-1.6-3.2-c¢ 0.836 49.986 122/58

TCGA-GBM 318 0-0.25-0.50-1.00-2.50-00 0.563 56.138 195/123

1 Only the patients with a clinical event (death) are taken into account.

Table 3
Method to group cancer cell lines based on the survival fractions under different radiation dosages (2, 5, and 8 Gy, respec-
tively).

Dataset Sample size  Grouping to the survival fraction

SF2 SF5 SF8

GSE59 60 quartiles 0-0.01-0.05- 0-0.001-0.005-

GSE5949 60 quartiles 0.10-0.25-1.00 0.010-0.25-1.00

GSE7505 60 quartiles

GSE32474 174 deciles 0-0.005-0.05-0.1-0.25-1.00 0-0.0005-0.005-0.010-0.025-0.05-0.1-1.0

cer patient set) has relatively adequate, complete clinical and gene
expression information, so it was chosen as an additional vali-
dation of the ability of RSGGC to evaluate therapy, from which
samples were classified according to the difference in therapeutic
strategies and checking time. For convenience, samples were clas-
sified on a logarithmical scale to balance the survival time and the
relevant order of magnitude of samples. Table 2 shows the physi-
ological or pathological brief summary and grouping results.

Preprocessing of cell lines data. We match the description and
annotation of the experimental samples with the expression pro-
file, and remove samples with missing information. We adopt only
the cancer cell lines described in previous work (Amundson et al.,
2008) and label them with the SF value. The radiosensitive and ra-
dioresistant lines can be represented by the replication rate, cell
migration capacity, and SF under specific condition or environ-
ment. We use the SF value after receiving irradiation of differ-
ent dosage level to characterize cell’s radiosensitivity |/ radioresis-
tance. All the cell line datasets are ranked according to the SF val-
ues of the cell lines after receiving 2Gy, 5Gy, and 8Gy irradia-
tion, denoted by SF2, SF5, and SF8, respectively (Amundson et al.,
2008). Table 3 shows the method of sampling groups for differ-
ent radiation dosage, where the low dose irradiation dataset (2 Gy)
is grouped linearly according to SF2, such as deciles or quartiles,
while the high dose irradiation datasets (5Gy and 8 Gy) have loga-
rithmical bins according to SF5 and SF8. The different ways of data
binning were adopted just for convenience.

2.3. Correlation matrix and RSGGC measure

Correlation matrix. A basic fact in systems biology and biomed-
ical science is that genes are not isolated with each other but
work collectively as an interacting network, regardless of whether
the underlying process is intracellular or extracellular. To charac-
terize the responses of patients or cancel cell lines to irradiation,
we introduce the measure of RSGGC by considering the differences
among sample groups and the corresponding inherent dynamic re-
lationship from the point of view of a complex network.

A prerequisite to defining RSGGC is the correlation matrix. To
begin, for a given dataset, we rank all the genes by the inter-
sample variance with a proper cutoff to ensure computational ef-
ficiency, taking into account the balance of heterogeneity of the
platforms as in previous work (Volinia and Croce, 2013). The re-
sulting M x N expression matrix (for M genes and N samples) are
ordered again by some index, e.g., the survival rate or subtypes.
We then divide the matrix into different sections: M x ny,M x nj,

.-+, where n; +n, +--- = N. For each sectional expression matrix,
we calculate its Pearson’s correlation matrix from all the gene pairs
based on the available samples, which leads to an M-dimensional,
fully connected, real symmetric matrix, with each element charac-
terizing the similarity in the expression level of the two genes. To
distinguish this M x M matrix from a gene co-expression network,
we do not set any threshold so as to maintain the original corre-
lation between the genes, and obtain an adjacency matrix without
information loss, with the element of the matrix given by

Pxy = M (1)

Ox - Oy
where cov(X, Y) stands the covariance between variables X and Y
(genes), ox and oy are the standard deviations (SD) of the two
variables, respectively.

After the data is filtered and grouped, we calculate the intra-
sample variance of a single gene for one total dataset. Some
datasets provide gene’s expression data, while others record the
original expression profiles of RNA fragments. For the former, it is
straightforward to calculate the variance but for the latter, we first
merge the multiple probes that match the same genes via arith-
metic averaging before calculating the variance. Probes without the
corresponding gene names are dropped from the calculation. The
detailed information of the remaining gene number in each step is
presented in Table S1.

To treat the different datasets on an equal footing, it is nec-
essary to determine a variance cutoff. In particular, the datasets
are obtained from different platforms and are processed by probe
merging, and each single dataset contains a different number of
genes. One difficulty is that, after ranking by the variance size,
many genes have values of variance that are close to each other.
Moreover, invalid genes in the data lead to wasted computation. In
addition, certain genes have almost the same expression among di-
verse cells or environment. To overcome these difficulties, we use
the insights from previous work (Oldham et al., 2006; Zhang and
Horvath, 2004) and choose the first 8000 genes with large vari-
ance to ensure that they are computationally distinct without loss
of generality or universality of the results. Since not all 31 radi-
ation sensitive genes are included in the top-8000 large variance
genes, we generate the 31 genes contained in the gene list then
complement it with the 8000th genes by means of variance. The
variance distribution of the 31 genes is presented in Table S2).

RSGGC measure. In network science, a large number of cen-
trality measures have been introduced in different contexts
(Newman, 2010). For example, degree centrality (DC) represents
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the number of edges of a node in the network, closeness central-
ity (CC) characterizes how close a pointed node from other nodes
(Bavelas, 1950), betweenness centrality (BC) reflects a node’s in-
termediary status of route or pathway in the network (Freeman,
1977; Park et al., 2004), and eigenvector centrality (EC) measures
the relative influence of a node in the network (Bonacich, 1987).
We focus on the EC of the correlation matrix as it is appropriate
to our task. In general, the eigenvector X associated with the max-
imum eigenvalue of the adjacency matrix is closely related to the
asymptotic behavior of the collective dynamics on the network and
control (Aguirre et al., 2013). Let x; be the component of the eigen-
vector corresponding to node i. The EC of node i is given by

1 1
Xi = XZX]‘ZXZGU‘X]‘ (2)
JjeN; jeM

where N; is the set of node i's neighbors, M is the set of all nodes
in the network, and g; is the element of the Pearson’s correlation
matrix A. The vector form of Eq. 2 is

A-X=)\X (3)

Our RSGGC measure is defined in terms of EC. In particular, for
all the selected genes, RSGGC is the ratio of the EC of the focal
group to that of the entire gene set:

2w il

where n is the number of genes in the radiation sensitivity gene
group and N=8000 is the total number of genes in the whole
set. For the available data set in our study, we have n=31 and
N=28000. The absolute values in the sums indicate a focus on the
importance of individual genes rather than distinguishing the de-
tailed passive or active role of a specific gene in the system. The
RSGGC value characterizes the topological and dynamical proper-
ties of a small group of genes in the whole gene network.

For a group, the correlation matrix represents its average level
under various circumstances. The 8000 x N matrices, with N be-
ing the sample size of each entire dataset, are treated as described
in Tables 2 and 3 so that the within-group RSGGC values can be
computed. The multi-step analysis is summarized as a workflow
chart, as shown in Fig. 2.

3. Results

3.1. Power of RSGGC as a predictor of radiotherapy outcome for
clinical patients

We calculate RSGGC for each classified clinical patient group,
as shown in Fig. 3. The striking finding is the robust positive cor-
relation between the RSGGC value and the survival time, indicat-
ing that the patients with a higher RSGGC score have longer ex-
pected survival time after radiotherapy. That is, radiotherapy is
more effective for patients with a higher RSGGC score. More specif-
ically, the Pearson’s correlation coefficient for the clinical data in
Fig. 3(A)-(C) are 0.96, 0.83, and 0.87, respectively, with the signif-
icance index values of 0.06, 0.02, and 0.19 (Table S3). After ran-
dom grouping of the clinical data, the positive correlation is lost
completely (Fig. S1), providing strong evidence for the reliability
of RSGGC as a quantitative indicator of the effect of radiotherapy.
The finding of the positive correlation between RSGGC and patient
survival time is unprecedented and practically significant, as it can
serve as the base for more reliable prediction of the outcome of
radiotherapy for cancer patients.

3.2. Ability of RSGGC to predict radiation outcome in cell line
experiments

Observation of the survival fraction of cancer cell lines in re-
sponse to radiation in experiments is more straightforward and
more controllable than clinical tests with patients. Our data anal-
ysis suggests that the results from experimental cell lines at the
microscopic level strongly corroborate the role of RSGGC in clinical
tests. Fig. 4 shows the downtrend relationship between the RSGGC
value and the survival fraction (SF), which is completely consistent
with the results from the clinical data. In particular, the group of
cancer cell lines with higher RSGGC scores has lower survival frac-
tion after radiation, corresponding to longer survival time of pa-
tients.

The values of Pearson’s correlation coefficients of RSGGC and SF
in Fig. 4 are —0.77 and —0.91, respectively, with the significance in-
dex values of 0.01 and 0.09 (More statistics are presented in Table
S3). Similar results of negative correlation between RSGGC and SF
have been obtained from the two datasets with larger irradiation
doses (5Gy and 8 Gy, see Fig. S2). In clinical practice, the general
protocol for radiotherapy consists of daily exposure to fractionized
radiation of 2 Gy irradiation for 5-7 weeks. A dosage over 2 Gy is
in fact harmful to patient’s health. Thus, the relationship between
the survival fraction with 2 Gy and RSGGC is practically significant
for generating quantitative patient prognosis.

3.3. Further exploitation of RSGGC for GBM subtypes

The results in above focus on the relationship between RSGGC
and the survival time for clinical cases of GBM, where information
about the detailed subtypes of GBM is ignored. In a previous exper-
imental study (Verhaak et al., 2010), it was found that the subtypes
can have quite different radiation therapy effects. For example, ra-
diation can have a significant effect on the subtypes “Classical”,
“Mesenchymal”, and “Neural”, but the effect is small for the sub-
type “Proneural”. We ask whether RSGGC is capable of characteriz-
ing the radiation therapy effects at the subtypes level of GBM. To
address this issue, we group cases according to the subtypes rather
than the survival time and calculate the RSGGC values. Table 4
presents the detailed clinical index and RSGGC for the four sub-
types: Classical, Mesenchymal, Neural, and Proneural. We see that
the first three subtypes have similar values of RSGGC, which are
larger than that of the fourth subtype (Proneural). This coincides
well with the therapeutic effect observed from the experimental
studies of these subtypes. The general result is that radiation ther-
apy is more effective for subtypes with a larger value of RSGGC.

3.4. Mechanism of RSGGC as an estimator and predictor of
radiotherapy effect

Our computations and analysis taking into account the survival
time of clinical patients, the survival fraction of cancer cell lines,
or different subtypes, give strong evidence that RSGGC is effective
for assessing and predicting the radiotherapy effect against can-
cer. A plausible reason for the power of RSGGC is that the corre-
sponding selected genes may participate in the key pathways asso-
ciated with repairing DNA damage, activating cell cycle checkpoints
or maintaining signal transduction pathways after the irradiation,
either directly or indirectly. To verify this conjecture, we employ
clinical data (Iwakawa et al., 2007) from cervical cancer patients
prior to and during radiotherapy to test how the RSGGC scores
calculated from the group of genes change as radiotherapy treat-
ment is being implemented. Specifically, we classify the expression
profile into two groups: prior to or during treatment, as shown
in Fig. 5. We find that the RSGGC scores of patients receiving ra-
diotherapy increase dramatically in comparison with those prior to



Y.-X. Yao, Z.-T. Bing and L. Huang et al./Journal of Theoretical Biology 462 (2019) 528-536 533

- Flowchart oi Computational Analysis

Data Collection and Filtering

¥v" mRNA expression data from

patients undergoing

radiation therapy and cell lines exposed to radiation

¥v" Removal of invalid and/or null samples

¥' Match between clinical information and patients with

mRNA expression

v' Selection of patients with complete information

GSE59 GSE3578 GSES5949 GSET7505
GSE7696 GSE16011 GSE32474 TCGA-GBM

4

Variance Ranking

¥ Computation of intra-sample

variance of single gene

¥ Gene ranking in terms of magnitude of variance

¥ Cut off of large variance samples

A

Sample Grouping

¥ Sample grouping according to specific research issues

v Patients: GBM v" Subtypes - Four v Patients: mRNA
sample grouping groups of GBM expression of cervical
based on overall patients in terms of cancer patients
survival length gene level: undergoing radiation

v Cellli . (1) Classical ﬂ]erap‘v

ell lines: sample .

i e ~enchymal ¥ Cell lines: cDNA of
grouping in terms of (3) Neural i
survival fraction [ —— NCI-60 before and

after radiation

_f—_d

Computation of Correlation Matrix
& RSGGC for Each Group

L ¥

% Finding 1: positive
correlation of RSGGC with
survival time of patients

3 Finding 2: negative value

3% Radiotherapy more
effective for subtype
with larger RSGGC

3% Comparison of
RSGGC values of patients
and cancer cells in
responses to radiation

correlation of RSGGC with
survival fraction of cell lines

Fig. 2. Workflow of multi-step calculation of RSGGC.

the therapy. We also utilize the time sequences of samples with ir-
radiation process obtained from two independent datasets: GSE59
and GSE7505, the cDNA microarrays of NCI-60 cell lines before and
after irradiation (Amundson et al., 2008; Ross et al., 2000). Since
the datasets are from different experimental platforms, we con-

sider only the common genes of the cell lines. After classifying the
lines as describe in Materials and Methods, we calculate the RSGGC
values before and after irradiation, as shown in Fig. 5. We find that,
for the three different irradiation dosages, the RSGGC values of the
groups with low SF decrease drastically while those with high SF
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Fig. 4. Negative correlation between RSGGC and survival fraction of cancer cell lines. The datasets are (A) GSE32474 and (B) GSE5949 with 2 Gy radiation. The horizontal
axis is the mean SF value of the samples within the group. RSGGC exhibits a negative relationship with the survival fraction, which is completely consistent with the results
in Fig. 3.

Table 4

Characteristic description of clinical subtypes of GBM and the corresponding RSGGC values.
Subtypes Sample size!  Age (mean) Gender (M/F)  Therapeutic effect? HR?>  P-value?  RSGGC(%)
Classical 141 10.9-86.59 (58.9) 83/58 significant 0.45 0.02 0.321
Mesenchymal 151 24.4-84.8 (59.6) 91/60 significant 054  0.02 0.357
Neural 82 23.1-88.6 (59.9) 54/28 effective 0.56 0.1 0.334
Proneural 129 17.7-89.3 (53.9) 77/52 less effective 080 04 0.223

1 The total sample size is 503, which includes patients with clinical events (death).
2 The therapeutic effect, the values of hazard ratio (HR), and P-values are from Ref. (Verhaak et al., 2010).
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Fig. 5. Applicability of RSGGC to cervical cancer patients and cell lines. (A) RSGGC values of cervical cancer patients prior to or during irradiation treatment. There is a
dramatic increase in the RSGGC value as a result of the irradiation treatment. (B-D) RSGGC values of NCI-60 cancer cell lines before and after irradiation, with dosages of 2,
5, and 8 Gy, respectively. The solid and open squares represent the RSGGC values of each group of cell lines before (from data in GSE59) and after receiving the irradiation

(from data in GSE7505).

increase, indicating that the effects of irradiation at the molecular
level vary for different cancer cell lines. The observable response
of RSGGC to irradiation implies again its potential power in pre-
dicting the effect of irradiation therapy. In a general sense, RSGGC
can effectively be regarded as a geometrical indicator of the activ-
ity of the radiosensitive gene group during irradiation. Since the
centrality of the whole set of genes is normalized, an increase in
the RSGGC score for a subset of genes implies that the centrality
values of the remaining genes must decrease.

4. Discussion

A standard and widely used method to treat cancer patients
is radiotherapy. An outstanding problem in medical science is to
predict the survival time of a patient who has undergone radio-
therapy. A major deficiency of previous work is the focus on gene
expression in cells directly pertinent to radiosensitivity with fac-
tors such as the response of a cancer patient to irradiation and the
patient survival time totally ignored. To overcome the deficiency
and to devise a more accurate and reliable predictor of the patient
survival time, we exploit modern complex network science to ar-
ticulate a geometric approach to estimating and predicting the ef-
fect of radiotherapy on cancer. In particular, we propose a measure,
the radiosensitive gene group centrality (RSGGC), that can be used
to predict the survival time of a patient undergoing radiotherapy.
We validate the predictive power of RSGGC by using data from
both clinical patients and experimental cancer cell lines. Results
from clinical data reveal a positive correlation between RSGGC and
the survival time of the patients going through radiotherapy. Since,
in clinical practice, a patient’s prognosis is influenced by multiple

factors (Berchuck et al., 2005; Wang et al., 2015) that can intro-
duce fluctuations in the outcomes (Table S1), we also systemati-
cally analyze data from cancer cell lines, which are more reliable
due to the homogeneous microenvironment and the controllabil-
ity of external conditions in experiments. Results from cancer cell
lines support our finding from the clinical data in a completely
consistent way: the cell lines with higher RSGGC values are more
sensitive to irradiation and thus have smaller values of the survival
fraction.

RSGGC as a novel indicator/predictor for characterizing ra-
diosensitivity from a geometric viewpoint has potential advantages
over the traditional clinical indicators. RSGGC can lead to new in-
sights into understanding the relationship among the known ra-
diosensitive gene signatures and can be used for data based anal-
ysis of extensive risk gene sets, intracellular pathways regulation
and control.
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