
Abstract Synchronization in complex networks has been an
active area of research in recent years. While much effort has
been devoted to networks with the small-world and scale-free
topology, structurally they are often assumed to have a single,
densely connected component. Recently it has also become
apparent that many networks in social, biological, and tech-
nological systems are clustered, as characterized by a number
(or a hierarchy) of sparsely linked clusters, each with dense
and complex internal connections. Synchronization is funda-
mental to the dynamics and functions of complex clustered
networks, but this problem has just begun to be addressed.
This paper reviews some progress in this direction by focus-
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ing on the interplay between the clustered topology and net-
work synchronizability. In particular, there are two parame-
ters characterizing a clustered network: the intra-cluster and
the inter-cluster link density. Our goal is to clarify the roles
of these parameters in shaping network synchronizability. By
using theoretical analysis and direct numerical simulations
of oscillator networks, it is demonstrated that clustered net-
works with random inter-cluster links are more synchroniz-
able, and synchronization can be optimized when inter-cluster
and intra-cluster links match. The latter result has one coun-
terintuitive implication: more links, if placed improperly, can
actually lead to destruction of synchronization, even though
such links tend to decrease the average network distance. It
is hoped that this review will help attract attention to the fun-
damental problem of clustered structures/synchronization in
network science.

Keywords clustered networks, network analysis, synchro-
nization, oscillators

PACS numbers 05.45.Xt, 05.45.Ra, 89.75.Hc

Recent years have witnessed a growing interest in the syn-
chronizability of complex networks [1−21]. Earlier works
[1−10] suggest that small-world [22], random [23] and scale-
free [24] networks, due to their short network distances, are
generally more synchronizable than regular networks. It has
been found, however, that heterogeneous degree distributions
typically seen in scale-free networks can inhibit their syn-
chronizability [11], but add suitable weights to the network
elements, i.e. the assignment of large weights to nodes with
large degrees (the number of links) can enhance their chances
to synchronize with each other [12−21]. Modifying local
connecting structures, if done properly, could also change the
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synchronizability significantly [25−32]. Synchronizability of
complex clustered networks has not been investigated until re-
cently [33−36]. The purpose of this paper is to review recent
progress in this new area of research in network science.

In general, a clustered network consists of a number
of groups, in which nodes within each group are densely
connected, but the linkages among the groups are sparse
[37−45]. Clustered networks were first described by Zachary
in 1977 as a model of social networks with group structures
[46]. In particular, he examined the organization of martial-
art clubs in a city and found that a number of clubs were
actually originated from one root club, where the owners of
those clubs had been former students in the root club. As a
result, members within each club are close to each other, but
interactions with members from a different club are much less
likely. This type of organization can also be found commonly
in the business world where restructuring and recombination
are routine practices. The clustered structure can explain fa-
miliar social experiences such as quick identification of ac-
quaintances. For example, once two people are introduced,
they describe themselves in terms of their social characteris-
tics (e.g., professions, places of work, and leisure activities,
etc.). Next, each of them cites friends with social character-
istics “close” to those of the other person. This is actually
a second step in the process of introduction, but can be ef-
fectively seen as an attempt to find chains of acquaintances
linking them. The success of this attempt depends on the clus-
tered structure of the social network. Clustered networks have
recently been systematically studied and analyzed in social
science [37−39].

Besides in social science, clustered networks can arise in
biological situations [40−42], as a key feature in a biologi-
cal system is the tendency to form a clustered structure. For
example, proteins with a common function are usually physi-
cally associated via stable protein-protein interactions to form
larger macromolecular assemblies. These protein complexes
(or clusters) are often linked by extended networks of weaker,
transient protein-protein interactions to form interaction net-
works that integrate pathways mediating major cellular pro-
cesses[40]. As a result, the protein-protein interaction net-
work can naturally be viewed as an assembly of intercon-
nected functional modules, or a clustered network. Further-
more, macroscopic tissues, a network of intercellular com-
munication, typically exhibit clustered organizational struc-
tures in which organs largely consist of repeating, densely-
connected, functional subunits such as the glomeruli in kid-
neys, liver lobules, and colon crypts. Interestingly, these or-
ganizational structures are greatly diminished in a cancer but
still often persist as non-functional caricatures of the tissue of

origin. The organizational structure of biological networks in
organs represents an optimal strategy in the sense that syn-
chronization must be maintained over a wide range of envi-
ronments, e.g., an organ needs to be able to adapt itself to the
environment and continue to function in the face of pertur-
bations such as injury or infection. In addition, the strategy
for optimal system dynamics within the cluster will probably
be different from that for connecting the clusters into an or-
gan. The clustered structure has also been identified in tech-
nological networks such as electronic circuits and computer
networks [43−45].

A complex clustered network is typically small-world in
that its average network distance is short. Moreover, its de-
gree distribution can be made quite homogeneous. For the
synchronization problem, an interesting question regarding
the clustered structure is that for a given number of inter-
cluster links, how would their distributions affect the syn-
chronizability? By Use of linear stability analysis [47] and
its generalization [48], the dependence of synchronizability
on the number of clusters in a network has been studied [34],
and it has been found that the network can become more
synchronizable as the number of clusters is increased if the
inter-cluster links are random. If those links of the clusters
are mostly local or diametrical in a topological ring struc-
ture, the synchronizability would deteriorate continuously as
more clusters appear in the network. Therefore, how links
distribute among clusters has a significant influence on net-
work synchronizability. A relevant question is that for a given
distribution of the inter-cluster links, say random distribu-
tion, how does the number of links influence synchronizabil-
ity? Given a complex network with a fixed (large) number
of nodes, intuitively, its synchronizability can be improved by
increasing the number of links, as a denser linkage makes the
network more tightly coupled or, “smaller,” thereby facilitat-
ing synchronization. Our recent work [35, 36] on this prob-
lem has revealed a phenomenon that apparently contradicts
this intuition. Namely, more links, which makes the network
smaller, do not necessarily lead to stronger synchronizabil-
ity. There can be situations where more links can even sup-
press synchronization if placed improperly. In particular, it is
found that the synchronizability of a clustered network is de-
termined by the interplay between the inter-cluster and intra-
cluster links in the network. Strong synchronizability requires
that the numbers of the two types of links be approximately
matched. In this case, increasing the number of links can in-
deed enhance synchronizability. However, if the matching is
deteriorated, synchronization can be severely suppressed or
even totally destroyed.

Our finding can have a potential impact on real network dy-
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namics. In biology, synchronization is fundamental, on which
many biological functions rely. Our result implies that, in
order to achieve robust synchronization for a clustered bio-
logical network, the characteristics of links are more impor-
tant than the number of them. Simply counting the number
of links may not be enough to determine its synchronizabil-
ity. Instead, links should be distinguished and classified to
predict synchronization-based functions of the network. In
technological applications, it is supposed that a large-scale,
parallel computational task is to be accomplished by a com-
puter network, for which synchronous timing is of paramount
importance. Our result can provide clues as to how to design
the network to achieve the best possible synchronization and
consequently optimal computational efficiency.

In Section 2, a general linear-stability analysis is described
for solving the synchronization problem in both continuous-
time oscillator networks and discrete-time coupled-map net-
works. In Section 3, a theory is developed and numerical
results are presented to demonstrate the effects of the distri-
bution of inter-cluster links. In Section 4, the emphasis is
placed on clustered networks with random inter-cluster links,
and how the number of links affects the synchronizability of
the oscillator network is examined. Two types of coupling
schemes are studied in detail, theoretically and numerically.
Extensive discussions of the main results and their broader
implications are offered in Section 5.

The approach taken to establish the result is to introduce non-
linear dynamics to each node in the network and then perform
stability and eigenvalue analyses [48, 49].

2.1 Continuous-time oscillators networks

The goal is to establish synchronization conditions of clus-
tered networks in a proper network-parameter space. Each
oscillator, when isolated, is described by

dx
dt

= F (x) (1)

where x is a d-dimensional vector and F (x) is the velocity
field. Without loss of generality a prototype oscillator model
is chosen - the Rössler oscillator, for which x = [x, y, z]T

([∗]T denotes transpose), and

F (x) = [−(y + z), x + ay, b + z(x − c)]T (2)

The parameters of the Rössler oscillator are chosen such that
they exhibit chaotic oscillations. The network dynamics is

described by

dxi

dt
= F (xi) − ε

N∑
j=1

GijH(xj) (3)

where H(x) = [x, 0, 0]T is a linear coupling function, ε is
a global coupling parameter, and G is the coupling matrix
determined by the network topology. For theoretical conve-

nience, G is assumed to satisfy the condition
N∑

j=1

Gij = 0

for any i, where N is the network size; therefore, the system
permits an exact synchronized solution: x1 = x2 = · · · =
xN = s, where ds/dt = F (s).

For the system described by Eq. (3), the variational equa-
tions governing the time evolution of the set of infinitesimal
vectors xi(t) ≡ xi(t) − s(t) are

d xi

dt
= DF (s) · xi − ε

N∑
j=1

GijDH(s) · xj (4)

where DF (s) and DH(s) are the Jacobian matrices of the
corresponding vector functions evaluated at s(t). Diagonal-
izing the coupling matrix G yields a set of eigenvalues {λ i}
(i = 1, · · · , N) and the corresponding normalized eigenvec-
tors are denoted by e1, e2, · · · , eN . Generally, the eigenval-
ues are real and non-negatives [49] and thus can be sorted as
0 = λ1 < λ2 � · · · � λN . The smaller the ratio λN/λ2, the
stronger the synchronizability of the network (to be discussed
below) [11−14, 17]. The transform y = O−1 · x, where O

is a matrix whose columns are the set of eigenvectors, leads
to the following block-diagonally decoupled form of Eq. (4):

dyi

dt
= [DF (s) − ελiDH(s)] · yi

Letting K = ελi (i = 2, · · · , N ) be the normalized coupling
parameter, it can be written as follows:

d y

dt
= [DF (s) − KDH(s)] · y (5)

The largest Lyapunov exponent from Eq. (5) is the master-
stability function Ψ(K)[48]. If Ψ(K) is negative, a small
disturbance from the synchronization state will be diminished
exponentially, and the system is stable and can be synchro-
nized; if Ψ(K) is positive, a small disturbance will be mag-
nified and the system cannot be synchronized.

The function Ψ(K) is negative in an interval [K1, K2],
where K1 and K2 solely depend on F (x) that governs the
node dynamics, and the output function H(x). Thus, for
K1 < K < K2, all the eigenvectors (eigenmodes) are trans-
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versely stable and the network can be synchronized, which
gives the condition of the boundary of the synchronization re-
gion:

λ2 � K1

ε
(6)

λN � K2

ε
(7)

For the Rössler oscillators used in the simulation in Section
4(4.2), a = b = 0.2, c = 9 is chosen and the master stability
function is shown in Fig. 1, where K1 ≈ 0.2 and K2 ≈ 4.62.

Fig. 1 For the Rössler oscillator network, an example of the master stability

function Ψ(K) calculated from Eq. (5).

2.2 Discrete-time coupled-map network

The following general class of coupled-map networks is con-
sidered:

xi
m+1 = f (xi

m) − ε
∑

j

GijH [f(xj
m)] (8)

where xm+1 = f(xm) is a d-dimensional map, ε is a global
coupling parameter, G is the coupling matrix, and H is a
coupling function. If the rows of the coupling matrix G have
zero sum, Eq. (8) permits an exact synchronized solution:
x1

m = x2
m = · · · = xN

m = sm, where sm+1 = f (sm).
For the system described by Eq. (), the variational equation

governing the time evolution of the set of infinitesimal vectors
xi ≡ xi − s is

xi
m+1 = Df(sm) · xi

m − ε
∑

j

GijDH[f(sm)]

·Df (sm) · xj
m (9)

where Df and DH are the Jacobian matrices of the cor-
responding vector functions evaluated at sm and f(sm), re-
spectively. Diagonalizing the coupling matrix G yields a set
of eigenvalues {λi} (i = 1, · · · , N), where 0 = λ1 < λ2 �
· · · � λN . The transform y = O−1 · x, where O is a

matrix whose columns are the set of eigenvectors, leads to the
following block-diagonally decoupled form of Eq. (9):

yi
m+1 = {I − ελiDH[f (sm)]} · Df (sm) · yi

m (10)

Compared with Eq. (5), and letting K = ελi, the largest Lya-
punov exponent of Eq. (10) can be called its master stability
function, denoted again by Ψ(K). Generally, there exist K 1

and K2 such that Ψ(K) is negative in the interval [K1, K2],
for which the synchronization solution of the coupled sys-
tem is linearly stable. For a special class of coupled-map net-
works, K1 and K2 can be obtained explicitly as follows.

The system is stable if 2 � i � N for any i. The following
holds:

lim
m→∞

1
m

ln
| yi

m|
| yi

0|
=

lim
m→∞

1
m

ln
m−1∏
j=0

| yi
j+1|

| yi
j |

< 0 (11)

For a linear coupling function H , DH is a constant matrix.
If the system is one dimensional, DH is simply a constant,
say, γ. Equation (11) becomes

ln |1 − ελiγ| + lim
m→∞

1
m

ln
m−1∏
j=0

|f ′(sj)| < 0 (12)

Recognizing that the second term in the above equation is the
Lyapunov exponent µ of a single map, it can be obtained

ln |1 − ελiγ| + µ < 0 (13)

which is

|eµ(1 − ελiγ)| < 1, i = 2, · · · , N (14)

To gain insight, f (x) is set to be the one-dimensional lo-
gistic map f(x) = 1− ax2 and H(f ) = f is chosen. Choos-
ing
∑
j �=i

Gij = −1, γ = 1 is obtained and Eq. (14) becomes

[49]

|eµ(1 − ελi)| < 1, i = 2, · · · , N (15)

Because of the ordering of the eigenvalues, the above inequal-
ity will hold for all the is if it holds for i = 2 and i = N .
Therefore, condition (15) can be further simplified as

λ2 >
1
ε
(1 − e−µ) (16)

λN <
1
ε
(1 + e−µ) (17)
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Compared with Eqs. (6) and (7), it can be seen that for the
coupled logistic-map network, K1 = 1 − e−µ and K2 =
1 + e−µ. The boundary of the synchronization region in the
phase diagram can be determined by setting λ2 = (1−e−µ)/ε

and λN = (1 + e−µ)/ε. In our simulation in Sec. IVC,
a = 1.9 is used, and the corresponding Lyapunov exponent
is µ = 0.55, so λ2 = 0.423/ε, and λN = 1.577/ε. If the
coupling function H is nonlinear, DH[f(sm)] will depend
on the value of f(sm) and generally Eq. (11) cannot be sim-
plified further.

2.3 Physical understanding of synchronization boundaries

Now it can be seen that the synchronization conditions for
both continuous-time oscillators and discrete-time coupled-
map networks have the same form of Eqs. (6) and (7). Phys-
ically, the existence of the K1 and K2 boundaries can be un-
derstood by the roles of the coupling terms: (1) they serve
to establish coherence among oscillators, and (2) they are ef-
fective perturbations to the dynamics of individual oscillators.
Whether synchronization can occur depends on the interplay
between these two factors. In particular, for small coupling,
synchronization may not occur because of the fact that al-
though the perturbing effect of the coupling terms is small,
the amount of coherence provided by them is also small. For
very large coupling, although the coupling terms can provide
strong coherence, the effective perturbations are also large.
As a large perturbation requires longer time for the system
to reach an equilibrium state (e.g., synchronization), the sys-
tem will have no time to respond to the perturbations, which
consequently makes it unable to synchronize. Thus, synchro-
nization may not occur if the coupling is too strong. In gen-
eral, there exists a finite interval of the coupling parameter for
which synchronization can occur [48]. These considerations
are demonstrated in Fig. 1, the master stability function of the
coupled Rössler system versus the generalized coupling pa-
rameter K . We see that synchronization can occur only when
the coupling parameter K falls in the interval (K1, K2). In-
deed, this behavior appears to be typical for a large class of
coupled chaotic oscillators [48, 50].

The synchronizability of a complex network of oscillators
for any linear coupling scheme can be inferred from Fig. 1. A
given network can be characterized by the set of eigenvalues
(λ2 through λN ) of the corresponding coupling matrix. For
the fixed value of ε, the spread of the eigenvalues determines
the range of possible variations in K . This suggests a general
quantity that determines the synchronizability of a complex
network, regardless of detailed oscillator models: the spread
of the eigenvalues of the coupling matrix. In Fig. 1, it can
be seen that in order to achieve synchronization, the spread

of the eigenvalues must not be too large to fit the generalized
coupling parameter K in the interval (K1, K2). That is, only
if

λN

λ2
<

K2

K1
≡ β (18)

there could exist values of ε of positive Lebesgue measure
such that the synchronized state is linearly stable. Otherwise,
the system is unstable for any ε value. For various chaotic
oscillators, the value of β ranges from 5 to 100 [17]. The
left-hand side of the inequality (18), the ratio λN/λ2, de-
pends only on the topology of interactions among oscillators.
Hence, the impact of a particular coupling topology on the
network’s ability to synchronize is represented by a single
quantity λN/λ2: the larger the ratio is, the more difficult it
is to synchronize the oscillators, and vice versa [7].

To address the synchronizability of a clustered network, it is
insightful to explore the relationship between the eigenratio
λN/λ2 and the number of clusters. To construct an analyz-
able model of a clustered network, it is imagined that there is
a network of N nodes grouped into M clusters located on a
ring, each being connected to their nearest-neighboring clus-
ters. The Laplacian matrix of the network is similar to that of
a regular, “ring” network of M nodes. The eigenvector corre-
sponding to the first non-zero eigenvalue of the ring network
is

√
2/N

[
sin
(

2πj

N

)]N

j=1

which can be considered as an envelope function of the eigen-
vectors in the clustered network, as shown in Fig. 2. Since
the variance of the components in a cluster is small com-
pared with the difference between the means of two consecu-
tive clusters, components within a cluster are further approx-
imated to obtain the same value and, as a result, the eigen-
vector of the network with M clusters is given as a piecewise
continuous step function:

eT
2 = (

N/M︷ ︸︸ ︷
h1

M , · · ·, · · · ,
N/M︷ ︸︸ ︷

hi
M , · · · , hi

M , · · · ,
N/M︷ ︸︸ ︷
· · · , hM

M )
(19)

where all N/M components of the ith cluster have the same
value hi

M =
√

2/N sin(2πi/M). The first non-zero eigen-
value of the clustered network is
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Fig. 2 Numerically obtained eigenvectors of the first non-zero eigenvalue

e2 for clustered networks with different number of clusters [Reused with

permission from K . Park et al., Chaos, 2006, 16: 015105. Copyright 2006,

American Institute of Physics]. Eigenvectors can be encapsulated by a sin-

gle curve (thick solid line),
√

2/N [sin(2πj/N)]Nj=1, except for some small

phase differences (Note that eigenvectors are shifted vertically).

λ2 = eT
2 Ge2, (20)

where G is the Laplacian matrix of the network. Inserting
Eq. (19) into Eq. (20), and assuming there are only two near-
est connections per cluster, the following equation can be ob-
tained

λ2 =
2
N

M∑
i=1

sin
i

θ0
×[

2 sin
i

θ0
− sin

i − 1
θ0

− sin
i + 1
θ0

]
(21)

where θ0 = M/2π. For M � 1, we have

λ2 ≈ 4π

NM

∫ 2π

0

sin θ(−∇2 sin θ)dθ =
4π2

NM
(22)

Although in general no approximation to the largest eigen-
value can be obtained in a similar way, approximations for
it are known in some special cases. For example, when the
cluster is a regular “ring” network with 2k nearest connec-
tions, the largest eigenvalue of the cluster is λN ≈ (2k +
1)(1 + 2/3π) [51]. Since λN depends on the number of near-
est neighbors only, the same λN may be used as the largest
eigenvalue of the network. Therefore, the ratio is obtained

λN

λ2
≈ (2k + 1)(1 + 2/3π)NM

4π2
(23)

which indicates that the eigenratio increases linearly with M ,
as shown in Fig. 3(a). That is, only with local connections be-
tween clusters, it is more difficult to achieve synchronization
as the number of clusters increases.

Now a more general clustered network model that allows
long range interactions can be considered. That is, two arbi-
trary clusters can make a connection with a probability p(l),

Fig. 3 Eigenratio versus the number of clusters: (a) “ring” network where

only two nearest neighbor clusters are connected and (b) “globally” con-

nected network where each cluster is connected to all the other clusters. Cir-

cles and Squares are numerically obtained eigenratios, while solid lines are

from analytic solutions. The parameters are N = 4086 and the number of

nearest-neighbor connections is 2k = 10 (Reused with permission from Ref.

[34]. Copyright 2006, American Institute of Physics).

where l is the distance between the clusters. It is reasonable
to assume that p(l) has an exponential dependence on l,

p(l) =
exp (−αl)

Nl
(24)

where α is a parameter and Nl is a proper normalization con-
stant. Inserting this p(l) into Eq. (29) and again replacing the
sum with an integral, it can be obtained

λ2 ≈ 4π2K0

NM

∫M/2

1 l2e−αldl∫M/2

1
e−αldl

(25)

where the factor K0 comes from the fact that each cluster
can have multiple (2K0) connections. As an example, for
the case of a “globally” connected clustered network, α →
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0 and K0 ∼ M/2 can be obtained. The integral can then
be simplified as M 2 and λ2 ∼ M2. Thus, the eigenratio
decreases as M increases:

λN

λ2
∼ M−2 (26)

as shown in Fig. 3(b). This is opposite to the result in Fig.
3(a), where no long-range links among clusters are allowed.
It is noted that for α → ∞ and K0 = 1, Eq. (25) becomes
Eq. (22).

An interesting consequence of Eq. (25) is that a transi-
tion phenomenon may occur in the synchronizability of clus-
tered networks. For α � 0, connections between clusters are
decentralized and the integral in Eq. (25) is proportional to
M2, and, as a result, the eigenratio decreases as M increases.
However, for α � 0, connections between clusters are cen-
tralized among nearest neighboring clusters and the integral
becomes independent of M for sufficiently large M � α−1

and the eigenratio eventually increases as M increases. A
similar transition phenomenon is also expected when K0 is
regarded as a function of M (i.e., K0 ∼ Mη). For example, it
is supposed that α → 0 and the total number of connections
between clusters is fixed. Then K0 is inversely proportional
to M ; as a result, the eigenratio remains constant. Distinct
synchronization behavior can arise depending on the value of
η.

Our considerations so far have been limited to the case
where the parameter α is positive. From Eq. (24), it can
be seen that a relatively large, positive value of α stipulates
smaller probabilities for long-range links among clusters as
compared with those for short-range links. Thus, as α is in-
creased from zero, long-range links become increasingly im-
probable, reducing the network synchronizability. An inter-
esting question is what happens if α is negative. Intuitively,
it is expected that for a negative value of α, long-range links
among clusters can be much more probable than short-range
links; as a result, network synchronizability should improve
as α is decreased from zero. But is this really the case?

Insight has been provided in Ref. [34], where a ring clus-
tered-network model is employed and different networks are
generated for visualization with several different values of α,
as shown in Fig. 4(a−c). For Fig. 4(a), the value of α is
positive so that short-range links among the clusters are fa-
vored. In this case, the average network distance can be large.
For α = 0 [Fig. 4(b)], short-range and long-range links are
equally probable, making the connections among the clusters
small-world like with the small average network distance. For
α < 0, long-range links are favored but, the most favorable
links are those that are squarely across the ring configuration.
For example, for a circular ring, the inter-cluster links close

to the diameter of the circle are the most favorable ones, as
shown in Fig. 4(c). This, in fact, makes the average network
distance large.

Fig. 4 Clustered network configurations with different values of α: (a) α =

1.0, (b) α = 0.0, (c) α = −1.0. Every network consists of clusters with

5 nodes in which one-to-all connections are assumed. Neighboring clusters

are connected to each other to give the ring topology. The link ratio, ratio

of the number of links between the clusters to the total number of links in

the network, is kept constant: p = 0.1, for the purpose of clear visualization

(Reused with permission from Ref. [34]. Copyright 2006, American Institute

of Physics).

In Ref. [11], it is shown that scale-free networks are gen-



8

erally more difficult to be synchronized, despite their smaller
average network distances as compared with small-world net-
works. Intuitively, this is mainly because of the highly hetero-
geneous degree distribution in scale-free networks that stipu-
lates the existence of a small subset of nodes with extraordi-
narily larger numbers of links as compared with most nodes
in networks. It is speculated in Ref. [11] that communi-
cation can be blocked at these nodes, significantly reducing
the synchronizability of the whole network as compared with
networks with more homogeneous degree distributions, such
as small-world networks or random networks. However, for
networks with similar characteristics, either homogeneous or
heterogeneous, the average network distance (or diameter)
is the determining factor for synchronizability [3]. These
considerations suggest that, quite counterintuitively, as α be-
comes negative from a positive value, the network synchro-
nizability is expected to increase and reach its maximum for
α = 0, and then to decrease as α is decreased from zero.

For the ring clustered-network configuration, estimates of
the average network distance can be obtained for some lim-
iting cases. In particular, for α → ∞, there is a strong ten-
dency for a cluster to connect only to its nearest neighboring
clusters. For such a configuration with a large number (M )
of clusters, the average network distance is d ∼ M/4. For
α = 0, the probabilities for a cluster to connect to other clus-
ters are equal, so the inter-cluster links appear random. In this
case, the average network distance is d ∼ ln M , as for random
networks [23]. In the limiting case where α → −∞, there is
a tendency for a cluster to connect to diametrically opposite
clusters as seen in Fig. 4(c), making most links nearly pass
through the center of the ring configuration. In this case, the
average network distance is d ∼ M/8. For reasonably large
values of M , it can be obtained

ln M <
M

8
<

M

4

suggesting that ring clustered networks with α near zero are
most synchronizable.

For the ring clustered network model, the eigenratio and
the average network distance versus α are shown in Fig. 5.
The network consists of M clusters, each containing five
nodes that are connected in a one-to-all manner. For com-
parison, the link ratio (the ratio between the number of links
among the clusters and the total number of links in the net-
work) is fixed at a small value (0.01 for Fig. 5). In Fig. 5(a),
the eigenratio versus α is shown for three values of M . It is
seen that for relatively large value of M , the eigenratio ex-
hibits the expected behavior in that it decreases as α is de-
creased from a positive value to zero, and it increases as α

becomes negative from zero. Figure 5(b) shows the behavior
of the average network distance, which is consistent with that
exhibited by the eigenratio, as expected.

Fig. 5 Effect of α on the synchronizability of ring clustered network, (a)

eigenratio versus α for M = 20, 40, and 80, and (b) the corresponding

average network distances versus α. All data points are averaged over 100

realizations of networks with clusters having 5 nodes per cluster and link

ratio of p = 0.01 (Reused with permission from Ref. [34]. Copyright 2006,

American Institute of Physics).

Similar transition behavior persists in internally scale-
free clustered networks, hierarchical clustered networks and
Zachary networks [34].

The preceding section discusses how the distribution of inter-
cluster links affects the synchronizability of the network.
Here, it will be examined, for a given distribution of links,
how the number of links affects synchronizability. The em-
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phasis will be placed on a random clustered network model
for developing a theory and providing numerical support that
theoretical predictions are typical for clustered networks.

To be concrete, the following clustered network model is
considered: N nodes are classified into M groups, where
each group has n = N/M nodes. In a group, a pair of
nodes are connected with probability ps, and nodes of dif-
ferent groups are connected with probability p l. This forms
a clustered random network. Typically, the number of inter-
connections is typically far less than that of intra-connections.
As a result, the parameter region of small p l values is more
relevant.

Theoretical analysis should be developed for synchroniza-
tion, which yields the stability regions for synchronization in
the two-dimensional parameter space defined by the proba-
bilities of the two types of links. The analytical predictions
are verified by direct numerical simulations of corresponding
dynamical networks. The following coupling scheme is con-
sidered: for any i (1 � i � N ), Gii = 1, Gij = −1/ki if
there is a link between node i and j, and Gij = 0 otherwise,
where ki is the degree of node i. The coupling matrix G is
not symmetric since Gij = −1/ki while Gji = −1/kj . The
Gerschgorin theorem stipulates that all the eigenvalues be lo-
cated within a disc centered at 1 with radius 1, thus λN � 2.
One of the synchronization conditions, λN < K2/ε, can usu-
ally be satisfied. Thus the synchronizability of the system is
determined by λ2. In the following section, a theoretical for-
mula will be derived to understand the dependence of λ 2 on
pl and ps for small values of pl, the typical parameter regime
for realistic clustered networks.

4.1 Dependence of λ2 on pl and ps

For a clustered network, the components of the eigenvec-
tor e2 have approximately the same value within any clus-
ter, while they can be quite different among different clus-
ters, as illustrated in Fig. 6. It is written that e2 ≈
[ẽ1, · · · , ẽ1, ẽ2, · · · , ẽ2, · · · , ẽM , · · · , ẽM ]T, and for each I ,
1 � I � M , there are n ẽI’s in e2. By definition, G · e2 =

λ2e2 and e2 · e2 = 1, λ2 = eT
2 · G · e2 =

N∑
i,j=1

e2iGije2j

is obtained, where e2i is the ith component of e2. Expanding
the summation in j gives

λ2 =
N∑

i=1

e2i{Gi1ẽ1 + Gi2ẽ1 + · · · + Ginẽ1

+Gin+1ẽ2 + · · · + GiN ẽM} (27)

It is recalled that Gii = 1; and if i and j belong to the same
cluster, Gij equals−1/ki with probability ps and 0 with prob-

ability 1−ps; while if i and j belong to different clusters, Gij

equals−1/ki with probability pl and 0 with probability 1−pl,
where ki is the degree of node i. Thus, the following equation
can be obtained:

Fig. 6 A typical profile of components of the eigenvector e2. Parame-

ters are N = 500, M = 5, pl = 0.01, and ps = 0.8 [Reprinted with

permission from L. Huang et al., Phys. Rev. Lett., 2006, 97: 164101

(http://link.aps.org/abstract/PRL/v97/p164101). Copyright 2006, American

Physical Society].

λ2 =
N∑

i=1

e2i

{
−n

pl

ki
ẽ1 − n

pl

ki
ẽ2 + · · ·

+ ẽI − n
ps

ki
ẽI + · · · − n

pl

ki
ẽM

}
where ẽI is the eigenvector component value corresponding
to the cluster that contains node i. When 1−nps/ki = (N −
n)pl/ki is noted, the following equation can be obtained

λ2 =
N∑

i=1

e2i

⎧⎨⎩(N − n)
pl

ki
ẽI − n

pl

ki

M∑
J �=I

ẽJ

⎫⎬⎭
=

N∑
i=1

e2i

{
N

pl

ki
ẽI − n

pl

ki

M∑
J=1

ẽJ

}

For the clustered random network models, the degree distri-
bution has a narrow peak centered at k = nps + (N − n)pl,
thus ki ≈ k. The summation over i can be carried out as
follows:

λ2 ≈
M∑

I=1

nẽI

{
N

pl

k
ẽI − n

pl

k

M∑
J=1

ẽJ

}

=N
pl

k

M∑
I=1

nẽ2
I −

(
n

M∑
J=1

ẽJ

)2

pl

k

Since
M∑

I=1

nẽ2
I ≈

N∑
i=1

e2
2i = 1, and n

M∑
J=1

ẽJ =
N∑

i=1

e2i, it is

obtained
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λ2 ≈ Npl

nps + (N − n)pl
−
(

N∑
i=1

e2i

)2

pl

k
(28)

The normalized eigenvector e1 of λ1 corresponds to the syn-
chronized state, so its components have constant values: e1 =
[1/

√
N, · · · , 1/

√
N ]T. If G is symmetric, eigenvectors asso-

ciated with different eigenvalues are orthogonal: e i ·ej = ij ,
where ij = 1 for i = j and 0 else. when i = 1 and j = 2,
N∑

l=1

e2l = 0 is obtained. If the coupling matrix G is slightly

asymmetric,
N∑

i=1

e2i is nonzero but small, and the second term

in Eq. (28) can be omitted, thus obtaining

λ2 ≈ Npl

nps + (N − n)pl
(29)

For fixed pl and large ps, λ2 decreases as ps increases, indi-
cating that the network becomes more difficult to be synchro-
nized. This is an abnormal behavior in the network synchro-
nizability, which will be verified numerically. Furthermore,
since λ2 depends only on the ratio of p l/ps in Eq. (29), the
synchronization-desynchronization boundaries in the (p s, pl)
parameter plane should consist of straight-line segments.

The above analysis can be extended to more general clus-
tered networks, i.e. those with different cluster sizes or het-
erogeneous degree distributions in each cluster, by replacing
n with nI - the size of the Ith cluster - for each I , and using
the degree distribution PI(k) in the summation over 1/k. In
this case, ps and pl can be regarded as effective parameters,
and may vary in different clusters. A formula similar to Eq.
(29) can be obtained, because even in such a case, the contri-
bution of the second term in Eq. (28) to λ2 is small. Thus,
the abnormal synchronization phenomenon is due to the clus-
tered network structure; it does not depend on the details of
dynamics.

4.2 Numerical support with coupled Rössler networks

Depending on the initial conditions and the network realiza-
tion, the Rössler system may have desynchronization bursts
[52, 53]. It is thus necessary to characterize the network syn-
chronizability statistically. Psyn is defined as the probability
that the fluctuation width of the system W (t) is smaller than
a small number δ (chosen somewhat arbitrarily) at all times
during a long observational period T0 in the steady state, say,
from T1 to T1 + T0, where W (t) = 〈|x(t) − 〈x(t)〉|〉, and
〈·〉 denotes the average over the nodes of the network. If δ is
small enough, the system can be deemed as being synchro-

nized in the period T0, so Psyn is the probability of synchro-
nization of the system in the period T0, with Psyn = 1 if
the network for the given parameters can synchronize. Practi-
cally, Psyn can be calculated by the ensemble average, i.e. the
ratio of the number of synchronized cases over the number of
all random network realizations. Since Psyn can change dras-
tically from 0 to 1 in a small region in the parameter space, it
is possible to define the boundary between the synchronizable
region and the unsynchronizable region as follows: for a fixed
ps, the boundary value plb is such that the quantity

‖∇Psyn(ps, pl)‖ ≡
√(

∂Psyn

∂ps

)2

+
(

∂Psyn

∂pl

)2∣∣∣∣
(ps,pl)

is maximized at (ps, plb). Figure 7 shows the synchronization
boundary in the parameter space (ps, pl) from both numerical
calculation and theoretical prediction of Eqs. (6) and (7). It
can be seen that both results agree with each other. If the num-
ber of inter-cluster connections is fixed, say, p l = 0.2, as the
number of intra-cluster links exceeds a certain value (about
0.78), the system becomes desynchronized. When ps is small,
the number of the inter-cluster connections and the number
of the intra-cluster connections are approximately matched,
and the networks are synchronizable. As ps becomes larger,
the matching condition deteriorates and the network loses its
synchronizability, even though its average distance becomes
smaller. That is, too many intra-cluster links tend to destroy
the global synchronization. The same phenomenon persists
for different parameter values. This is precisely the abnormal
synchronization phenomenon predicted by theory.

Fig. 7 (Color online) Contour plot of synchronization probability of a clus-

tered network of Rössler oscillators with N = 100 and M = 2. T0 = 104

and ε = 0.5. Each data is the result of averaging over 1000 network realiza-

tions. The boundary is obtained by theoretical analysis (From Ref. [35]).
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4.3 Numerical support with coupled logistic-map networks

For the coupled logistic-map network, if the system is syn-
chronizable, starting from a random initial condition, it will
approach the synchronization state. In the simulation, syn-
chronization is defined as 〈|xi − 〈xi〉|〉 < 10−10, where 〈·〉
denotes the average over the network. The average time T

required for the system to become synchronized can be con-
veniently used to characterize the ability of the system to syn-
chronize. If the system is unsynchronizable, the time T is infi-
nite. Figure 8 shows the behavior of T in the two-dimensional
parameter space (pl, ps) for networks with two clusters (a)
and ten clusters (b). This gives the synchronizable region
(grey regions in Fig. 8) in the parameter space in which the
system is able to synchronize within a certain time, and the
unsynchronizable region (white regions in Fig. 8). The shape
of the figure depends on the coupling strength ε and the con-
tour lines of λ2 and λN . For the two-cluster network, if ε = 1,

Fig. 8 (Color online) Contour plot of the synchronization time T (on a

logarithmic scale lg T ) in (pl, ps) space for coupled logistic-map network

with (a) N = 100, M = 2, and (b) N = 500, M = 10. ε = 1, a = 1.9.

The line segments defining the boundaries between the synchronizable and

unsynchronizable regions are determined by theory. Each data point is the

result of averaging over 100 network realizations (From Ref. [35]).

the shape appears to be symmetric, while if ε < 1, the bound-
ary is asymmetric. Figure 8(a) demonstrates that for a given
pl (e.g., 0.2) as ps is increased from 0.2, synchronization time
T is also increased, and at a certain point (about 0.75 in this
case), the system becomes unsynchronizable. The same phe-
nomenon persists for different networks and dynamical pa-
rameters. Again, when the number of inter-cluster links is
fixed, too many intra-cluster links violate the matching con-
dition and thus tend to destroy the global synchronization.

One remark concerning the physical meaning of the result,
as exemplified by Figs. 7 and 8, is in order. Consider two
clustered networks where (A) the two types of links are ap-
proximately matched and (B) there is a substantial mismatch.
Theory predicts that network A is more synchronizable than
network B. This statement is meaningful in a probabilistic
sense, as whether or not a specific system may achieve syn-
chronization is also determined by many other factors such as
the choice of the initial condition, possible existence of mul-
tiple synchronized states, and noise, etc. Our result means
that, under the influence of these random factors, there is a
higher probability for network A to be synchronized than for
network B.

In summary, some recent results about the synchronizability
of complex networks with a cluster structure have been re-
viewed. The first result is that random, long-range couplings
among clusters can enhance the synchronizability, while con-
nections among nodes within individual clusters have little
impact on the network’s ability to synchronize. In terms of
the relationship between the synchronizability and the num-
ber of clusters in the network, an interesting transition phe-
nomenon is uncovered, where the network synchronizability
exhibits a different behavior depending on parameter that con-
trols the probability of random, long-range links among the
clusters. In particular, when these links are less probable,
the synchronizability tends to deteriorate as the number of
clusters is increased; the opposite occurs when the links are
more probable. There has been some theoretical understand-
ing of this phenomenon based on the analysis of a class of
simplified networks with clusters distributed according to a
ring topology. These findings imply that, in the context of so-
cial networks, a viable strategy to achieve synchronization is
to devote resources to establishing and enhancing connections
among distant communities.

The second result concerns theoretical and numerical ev-
idence that the optimal synchronization of complex clus-
tered networks can be achieved by matching the probabili-
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ties of inter-cluster and intra-cluster links. That is, at a global
level, the network has the strongest synchronizability when
these probabilities are approximately equal. Overwhelmingly,
strong intra-cluster connection can counterintuitively weaken
the network synchronizability. This phenomenon persists for
another typical coupling scheme, i.e., for any i (1 � i � N ),
Gii = ki, Gij = −1 if there is a link between node i and
j, and Gij = 0 otherwise. A new set of analysis and numer-
ical justification has been provided in Ref. [36]. While the
network model used to arrive at this result is somewhat ideal-
ized, it can be argued that similar phenomena should persist in
more general clustered networks. In real systems with a clus-
tered structure, if global synchronization is the best perfor-
mance of the system, special attention needs to be devoted to
distinguishing the inter-cluster and intra-cluster connections
as in this case, where a proper distribution of the links is more
efficient than adding links blindly.

For biological networks, such as metabolic networks and
protein-protein interaction networks, certain nodes may have
many more links than others, which forms a hierarchical clus-
ter structure [58]. This indicates a power-law distribution of
the degree k: P (k) ∼ k−γ , and the network is scale-free.
Therefore, it is interesting to study clustered scale-free net-
works, in which each cluster contains a scale-free subnet-
work. The synchronizability of such clustered networks has
been studied. In particular, for each cluster, the subnetwork is
generated via the preferential attachment rule [24]. Initially,
there is a fully connected small subset of size m0, then a new
node is added with m links, and the probability that a previ-
ous node i is connected to this new node is proportional to
its current degree ki. New nodes are continuously added un-
til a prescribed network size n is reached. In our simulation,
m0 = 2m + 1 is set so that the average degree of this net-
work is 2m. Given M such scale-free subnetworks, each pair
of nodes in different clusters are connected with probability
pl. For this model, pl controls the number of inter-clustered
links, and m controls the number of intra-clustered links. Nu-
merical simulations have been carried out, and it is found that
the patterns for the eigenvalues λN and λ2 are essentially the
same as that for the clustered network where each cluster con-
tains a random subnetwork. This indicates that optimization
of synchronization by matching different types of links is a
general phenomenon, regardless of the detailed topology in
each individual cluster.

Some networks, e.g., intercellular communication net-
works, may have a locally regular structure. For example,
a tissue network can be defined such that the nodes are cells
and the links are the interactions between cells, i.e., the trans-
mission of signal molecules. These interactions mainly occur

between adjacent cells, which form a locally regular linkage
structure. In addition, larger diffusing growth factors provide
long-range links. A clustered network with each cluster hav-
ing a regular backbone is thus a plausible model for biological
tissue organization. The synchronizability of such clustered
regular networks has been studied. First, for each cluster,
a one-dimensional regular lattice with the periodic boundary
condition is generated, i.e. each node is connected with 2m of
its neighbors. For example, node i connects with nodes i−m,
i−m+1,· · ·, i−1, i+1, · · ·, i+m. Then each pair of nodes
in different clusters are connected with probability p l. Thus
pl and m are the control parameters for the number of inter-
and intra-clustered links, respectively. Numerical simulations
show that for large m and small pl, which is typical for clus-
tered networks, optimization of synchronization can also be
achieved by constraining m such that the number of inter- and
intra- links are approximately matched. For intermediate m

values, an interesting synchronization phenomenon is uncov-
ered. That is, for a locally regular clustered networks the syn-
chronizability exhibits an alternating, highly non-monotonic
behavior as a function of the intra-cluster link density. In fact,
there are distinct regions of the density for which the network
synchronizability is maximized, but there are also parameter
regions in between for which the synchronizability is dimin-
ished [59].

A basic assumption in the existing works is that all the clus-
ters in a network are on the equal footing in the sense that
their sizes are identical and the interactions between any pair
of clusters are symmetrical. In realistic applications the distri-
bution of the cluster size can be highly uneven. For example,
in a clustered network with a hierarchical structure, the size of
a cluster can in general depend on the particular hierarchy to
which it belongs. More importantly, the interactions between
clusters in different hierarchies can be highly asymmetrical.
For instance, the coupling from a cluster at the top of the hi-
erarchy to a cluster in a lower hierarchy can be much stronger
than the other way around. An asymmetrically interacting
network can in general be regarded as the superposition of a
symmetrically coupled network and a directed network, both
being weighted. A weighted, directed network is actually a
gradient network [60, 61], a class of networks for which the
interactions or couplings among nodes are governed by some
gradient field on the network. For a complex gradient net-
work, a key parameter is the strength of the gradient field (the
extent of the directness of links), denoted by g. A central is-
sue is how the network synchronizability depends on g. As
g is increased, the interactions among various clusters in the
network become more directed. From a dynamical-system
point of view, uni-directionally coupled systems often possess
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strong synchronizability [62]. Thus, intuitively, we expect to
observe enhancement of the network synchronizability with
the increase of g. The question is whether there exists an op-
timal value of g for which the network synchronizability can
be maximized. This is in fact the problem of optimizing syn-
chronization in clustered gradient networks, and our recent
findings [63] suggest an affirmative answer to the question.
In particular, we are able to obtain solid analytic insights into
a key quantity that determines the network synchronizability.
The theoretical formulas are verified by both numerical eigen-
value analysis and direct simulation of oscillatory dynamics
on the network. The existence of an optimal state for gradi-
ent clustered networks to achieve synchronization may have
broad implications for fundamental issues such as the evolu-
tion of biological networks and for practical applications such
as the design of efficient computer networks.

After all, the general observation is that the synchroniz-
ability of the clustered networks is mainly determined by the
underlying clustered structure. Insofar as there is a clustered
structure, details such as the link topology within each clus-
ter, node dynamics and parameters, etc. do not appear to have
a significant influence on the synchronization of the coupled
oscillator networks supported by the clustered backbone. A
practical usage is that, even if the details about the dynamics
of a biological system are not available, insofar as the un-
derlying network has a clustered structure, it is possible to
make predictions about synchronization of the network. Such
insights may begin to provide, for example, first principles
for the organizational dynamics of normal and abnormal (i.e.
cancer) tissue which currently remain largely unknown.

The clustered topology has also been identified in techno-
logical networks such as certain electronic circuit networks
and computer networks [43−45]. For a computer network,
the main functions include executing sophisticated codes to
carry out extensive computations. Suppose a large-scale, par-
allel computational task is to be accomplished by the network,
for which synchronous timing is of paramount importance.
Our results can provide useful clues as to how to design the
network to achieve the best possible synchronization and con-
sequently optimal computational efficiency.
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