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Abstract – Graphene-based mechanical resonators have attracted much attention due to their
superior elastic properties and extremely low mass density. We investigate the effects of mechanical
vibrations on electronic transport through graphene quantum dots, under the physically reasonable
assumption that the time scale associated with electronic transport is much shorter than that with
mechanical vibration so that, at any given time, an electron “sees” a static but deformed graphene
sheet. We find that, besides periodic oscillation in the quantum transmission at the same frequency
as that of mechanical vibrations, structures at finer scales can emerge as an intermediate state,
which may lead to spurious higher-frequency components in the current through the device.

Copyright c© EPLA, 2016

Introduction. – In the past decade graphene has at-
tracted much attention due to its peculiar electronic and
mechanical properties [1–4]. Because of its superior elastic
quality [5] and the truly two-dimensional nature (e.g., a
single layer of atoms), graphene has been recognized as an
excellent candidate material for developing high-frequency
and high-quality factor nanomechanical resonators [6–10].
Both optical [6,7] and electrical [8–10] readouts have been
exploited for the detection of mechanical motions, with the
latter being more compatible with microelectronic applica-
tions. In the electrical readout schemes, it is assumed that
the mechanical vibrations would result in an AC current
of the same frequency, and thus can be readily identified
in a current analysis. At the present our understanding
of how mechanical vibrations affect electronic transport is
incomplete, in spite of works on the electronic and/or mag-
netic responses from rippled graphene [11–13] or graphene
under strain [14,15].

A different approach to treating vibrating graphene is
to consider joint transport of coupled phonons and elec-
trons [16–18], where the mechanical part is regarded as
contributing to thermally excited phonons. However, di-
rect treatment to understand the effects of mechanical

(a)These authors contributed equally.
(b)E-mail: huangl@lzu.edu.cn

vibrations on electronic transport is still lacking, which
becomes an urgent issue in the development of graphene-
based nanoelectromechanical devices.

In this paper, we focus on the effects of mechanical vi-
brations on electronic transmission in a single graphene
sheet. For a mechanical resonator, the sheet is typi-
cally under external driving and vibrates periodically. In
general the mechanical vibration may bring ripples along
the graphene edges [19,20]. For simplicity, we consider a
quantum-dot system consisting of a rectangular graphene
sheet with all boundaries fixed similar to their circular
counterparts [7,21,22], which moves freely starting from
an initial deformation in the lowest vibrational mode.
Although in realistic cases typically only one parallel side
of the rectangle are fixed while the other two boundaries
are free to move [6,8–10], we expect that the vibrational
effects to the electron transport should be similar to our
results. For free vibration, linear interactions in graphene
are the dominant contributing factor to periodic motion.
Nonlinear interactions can be included to yield more com-
plex mechanical and electronic behaviors. Specifically,
our approach is the following. We note that, for a fixed
Fermi energy, the electronic motion is orders of magni-
tude faster than the mechanical motion. Thus, at any
time, the graphene quantum dot can be regarded as static
but deformed. The hopping energy between atoms can
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then be reevaluated, using the deformation at the time
as input. The new set of hopping energies can be uti-
lized to calculate the quantum transmission, yielding a
time-dependent transmission curve. Our computations in-
dicate that the transmission patterns can be quite com-
plex. For small-amplitude vibrations, each transmission
peak for the static graphene is extended into a trans-
mission band, which bends downwards as the graphene
sheet moves away from the flat equilibrium. As the am-
plitude is increased slightly, the bands are expanded into
plateaus, leading to transmission enhancement. However,
as the amplitude becomes larger, due to inhomogeneity
in the spatial distribution of the hopping energies, finer
structures of the bands emerge. In particular, the bands
can cross each other, leading to complex transmission pat-
terns. When nonlinear interactions are taken into account,
the vibrations are no longer periodic: higher-order modes
can be excited. In this case, due to enhanced inhomogene-
ity, the bands are braided into a net of high transmission
paths. As a result, although periodic mechanical motions
would yield periodic variation in the transmission, the fine
structures in the intermediate state can result in spurious
high frequencies, e.g., in a current analysis. Our findings
can be practically useful for developing graphene-based
nanoelectromechanical devices.

Model. – Our vibrating graphene system is shown
schematically in fig. 1. It is a rectangular graphene quan-
tum dot with fixed boundaries, where the left and right
narrow leads are made of graphene ribbon. For simplic-
ity, we focus on vibrations in the z-direction (normal to
the graphene plane). To model the mechanical motion of
graphene, we use the valence force field model [23–26]:
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where N is the total number of the atoms, i is the atom
index and j and k are indices labeling the nearest neigh-
boring atoms. The three bond vectors �rij (j = 1, 2, 3)
connect atom i to its nearest neighbors. The parameters
α, β and γ are constant and have the values of 155.9 J/m2,
25.5 J/m2, 7.4 J/m2, respectively. They have the same di-
mension as the coefficient of stiffness. The equilibrium
bond length is a0 = 1.420 Å and �Di =

∑
j=i′sn.n. �rij is

the dangling bond vector, where “n.n.” denotes the set
of nearest neighbors. The first two terms in eq. (1) rep-
resent the energy cost necessary to change the length and
angle between the covalent C-C bonds, and the last term
represents the energy needed to change the angle between
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Fig. 1: (Color online) (a) Rectangular graphene quantum dot
of fixed boundaries (red/light grey). The leads are semi-
infinite graphene ribbons. The dot is 6.9 nm (length) by 7.5 nm
(width), and the width of the lead is 0.71 nm. (b) Profile of
initial deformation in the lowest vibrational mode. (c) Profile
of hopping energies (in units of t0) under the same deforma-
tion for η0 = 0.07. The maximum bond elongation is 7.43%.
(d) The transmission coefficient vs. the Fermi energy for the
flat graphene quantum dot (a).

the pz-orbitals, which are approximately normal to the
graphene surface.

To calculate the eigenmodes associated with mechanical
vibrations, we neglect nonlinear interactions and keep only
the linear term1. Since the first mode is relatively much
easier to be excited, and it is the most common mode
used in graphene resonator application, we assume the
initial perturbation is on this particular mode to demon-
strate the complex behaviors of the transmission under
vibration. Perturbations on other modes show qualita-
tively similar behavior. The system is then perturbed
with a deformation of the shape of the lowest vibration
mode, and is allowed to move freely under the force field.
We consider two cases, where the force field is given by
(a) only the third potential term in eq. (1), which is lin-
ear under small deformations, and (b) all three terms in
eq. (1) to include both linear and nonlinear interactions.
At each time step t, from the deformation configuration
of the graphene sheet, we calculate the distance rij(t) be-
tween the nearest neighboring atoms i and j and then
the hopping energy tij(t) = t0e

−3.37(rij(t)/a0−1) [27–30],
where t0 ≈ 2.8 eV is the hopping energy between nearest
neighbors in the flat graphene [1]. Note that this equation
perfectly describes the exponential decrease of the hop-
ping energy with inter-atomic distance, which has been
confirmed with ab initio calculations [28]. For a full explo-
ration of the three-dimensional motion of graphene, the ef-
fect of local rotation of pz-orbitals [30] should be included.
While for small-amplitude vibration, the corresponding

1By considering the vibration only in the z-direction, the linear
term in the Usp2 potential is the third term U3 =

∑N
i=1 γ �Di · �Di,

and it can be simplified as
∑N

i=1 γ(
∑

j=i′sn.n. zj − 3zi)2. Define

V 3
mn = − ∂2U3

∂zm∂zn
, one can get the matrix V 3, whose eigenvectors

are the vibration eigenmodes.
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Fig. 2: (Color online) (a) Time evolution of the maximum
deformation η, where the initial deformation amplitude is
η0 = 0.07. (b) The corresponding transmission coefficient T vs.

time for E/t0 = 0.04 (dashed curve) and 0.6525 (solid curve).
(c) Fourier spectra of the corresponding transmission curves
in (b). The frequency is in units of 1/T0, with T0 = 20.64 ps
being the period of the mechanical vibration. The length of
the data for doing the Fourier transform is 20T0.

correction is small and can be neglected [31]2. With this
new set of hopping energies, we obtain a modified tight-
binding Hamiltonian, which can be used to calculate the
transmission coefficient and the local density of states via
the standard Green’s function formalism [32,33]. A crit-
ical issue of this procedure is the separation of the time
scales for the mechanical vibration and the electron mo-
tion. The period of the mechanical vibration is around
21 ps (fig. 2). The Fermi velocity of the graphene elec-
tron is vF = 106 m/s [1]. The length scale of the quantum
dot we considered is around 7 nm. If one assumes that
the electron passes the quantum dot ballistically, the time
scale would be 0.007 ps. For sharp resonances in the trans-
mission curve vs. the variation of the Fermi energy, the
electron could be trapped in the quantum dot for a much
longer time. In this case, the typical energy scale for the
resonance is ΔE ∼ 0.001t0, the corresponding time scale
is h̄/ΔE ∼ 0.25 ps, where h̄ is the reduced Planck con-
stant. Even for this case, the mechanical time scale is two
orders larger than the electron motion time scale, thus the
deformation is still static from the electron’s point of view.

Results. – To characterize the deformation of the
graphene sheet, we use the ratio η between the maximum

2The contribution from the rotation of the pz term is proportional
to the vector product of the unit vector normal to the surface at an
atom and the distance vector connecting it to its neighboring atoms.
For small-amplitude vibration, these two vectors are approximately
perpendicular to each other, thus the contribution would be small
compared to the leading term.

deformation in the z-direction and the side length of the
sheet (η0 denotes the initial deformation). The maximum
bond elongation occurred in our simulation is 9.46% when
η0 = 0.09, which is within the limits of experimental obser-
vation that the bond elongation can exceed 10% [34]. To
gain insights, we first neglect nonlinear interactions so that
the graphene sheet vibrates in its lowest mode, as shown
in fig. 1(b), where each atom vibrates sinusoidally with
amplitude determined by η0. A representative hopping-
energy profile is shown in fig. 1(c) for η = 0.07.

Figure 2 shows, the time evolutions of the maximum de-
formation η (a), for two arbitrarily chosen Fermi energies,
the transmission coefficients T (b), and (c) the Fourier
transform of the transmission curves in (b). Since the de-
formation varies periodically, the hopping energies exhibit
periodic variations, so does the transmission. However,
since the hopping energies depend only on the amount of
deformation (not on its direction), the frequency of varia-
tion in the hopping energies and transmission is twice that
of the mechanical vibration. This is very clear in fig. 2(c),
where the minimum dominant frequency in the Fourier
spectrum is 2/T0 and T0 is the period of the mechanical
vibration. Note that in general T0 depends on the shape
of the flake, and also depends on which eigenmode the
perturbation is. We also see that the transmission evolu-
tion exhibits relatively sharp changes (fig. 2(b)) instead of
smooth variations as would be naively expected in view
of the smooth and small-amplitude variations in mechan-
ical deformations and hopping energies. The origin of the
sharp fluctuations in the transmission can be understood
as follows. As the graphene sheet deforms, the C-C bond
is elongated, resulting in a smaller and position-dependent
hopping energy. The variation in the hopping energies can
be effectively characterized as the result of a local mag-
netic field [11], and electrons transporting through the de-
formed graphene sheet are scattered by this local field.
As the amount of the deformation varies, so does the lo-
cal field. At a certain point, the transmission can change
drastically due to anomalous scattering. This is consistent
with the previous finding that the transmission curve ex-
hibits dramatic, fine-scale fluctuations vs. gradual varia-
tion of the potential barriers in a graphene quantum point
contact, a relativistic quantum manifestation of Klein tun-
neling [35]. A direct consequence is that, because of the
sharp transmission fluctuations, spurious higher-frequency
components can emerge in the current through the device.
For example, for E/t0 = 0.6525, the first dominant fre-
quency in the Fourier spectrum of the transmission is at
4/T0 (fig. 2(c)), instead of 2/T0. There are many such
cases. And we have also observed that for some energies
the first dominant frequency of the Fourier spectrum can
be even at 6/T0.

To obtain a comprehensive picture of the behaviors of
the transmission, we present the contour plot of the trans-
mission vs. time and Fermi energy for the whole energy
range [0, t0] for η0 = 0.07, as shown in fig. 3(a). There
is a wave-like pattern in time with exceptions at certain
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Fig. 3: (Color online) (a) Transmission vs. time and Fermi
energy for the energy range of [0, t0]. The white rectangles
indicates the region of zoom-in in (b) and (c), where the white
horizontal lines at E/t0 = 0.04 and 0.6525 indicate the position
of the transmission curves shown in fig. 2(b). The arrows in
(a) and (c) indicate the time when the deformation amount
returns to zero, and the first time instant for zero deformation
is 5.16 ps. The initial deformation is η0 = 0.07. The LDS
patterns labeled (b1)–(b3) are for energies and time instances
marked by the circles in (b), and the LDS patterns labeled
(c1)–(c6) are marked by the circles in (c). Red (or dark grey)
means high value of LDS.

points. The reason for this feature is the following. When
calculating the transmission, the ratio E/t, where t is the
hopping energy, is a key parameter. Although the hop-
ping energy is position dependent, it decreases everywhere
with deformation. In order to maintain the ratio, the cor-
responding global Fermi energy E needs to be smaller.
The arrows in fig. 3(a) indicate the time when the de-
formation approaches zero. Starting from this point, as
the deformation becomes progressively larger (by either
going forward or backward in time), to keep the trans-
mission unchanged (the same color scale or the contour
line), the global Fermi energy needs to be reduced, thus
the pattern bends down in the figure, forming the wave-
like pattern. Besides the wave-like patterns, there are new
features caused by anomalous scattering from the effec-
tive local fields. From fig. 3(b) and (c), we see that, as
the deformation changes gradually, the transmission band

Fig. 4: (Color online) Contours of transmission in time and
Fermi energy for initial deformations η0 = 0.01 (a) and 0.09 (b),
the maximum bond elongation at t = 0 is 1.09% and 9.46%,
respectively.

varies accordingly. Furthermore, different bands change
with different rates, leading to band crossings. Although
some bands are dispersive with a finite width, there are
finer structures in the bands of small energy or time (de-
formation) scales, implying the occurrence of a series of
sharp electronic resonances.

To understand the mechanism of sharp resonances, we
examine the local density of states (LDS) as the graphene
sheet vibrates. We observe that, the LDS varies gradu-
ally but exhibits drastic changes occasionally, resulting in
sharp resonances in the transmission curve. To unveil the
formation of the narrow band structure, we analyze some
typical LDS patterns (the lower panels in fig. 3) for the se-
lected transmission bands shown in fig. 3(b), (c). We find
that, for the transmission peaks in a single band, the LDS
patterns are essentially identical (fig. 3(b1), (b2)), but
they are characteristically different from those in the sur-
rounding region or in a different band (fig. 3(b3)). From
the typical LDS patterns it can be seen that the patterns
for the narrow bands all correspond to strongly localized
states [36–38] whose occurrence requires a fine match be-
tween the Fermi energy and the deformation amount. This
gives rise to the sharp transmission peaks.

Another feature is that the transmission peak is broad-
ened in energy when deformation presents compared with
the case of zero deformation. This can be understood
by considering the case of a sharp transmission peak vs.

energy when there is no deformation. For small deforma-
tion, there is a spread in the hopping energies for differ-
ent C-C bonds. Accordingly, due to the inhomogeneity
of the distribution of the hopping energies, the Fermi en-
ergy required to maintain the transmission is broadened.
A consequence is that the region of high transmission val-
ues is increased, leaving voids in the transmission plane
at time instances with little deformation. For example, in
fig. 3(a), for t = 5.16 ps there is no deformation. In this
case, for EF /t0 ∈ [0.4, 0.8], the transmission is mostly zero
with some sharp transmission peaks. However, for t = 0
or 10.32 ps, the graphene sheet is maximally deformed,
with the broadened transmission bands, the transmission
is significantly enhanced, e.g. with more energy values
that have large transmission. This can be better visual-
ized in fig. 3(b), (c).
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Fig. 5: (Color online) (a) Evolution of η with time for η0 = 0.05
(solid curve) and 0.09 (dashed curve). (b), (c): transmission
contours in time and Fermi energy for initial deformation η0 =
0.05 and 0.09, the corresponding maximum bond elongation at
t = 0 is 5.36% and 9.46%, respectively.

We next examine the effect of the magnitude of the de-
formation. Figure 4 shows the transmission vs. time and
Fermi energy for initial deformation amount η0 = 0.01 and
0.09. For η0 = 0.01, the graphene sheet vibrates with a
small amplitude, so do the hopping energies, leading to
transmission that is nearly constant with time (fig. 4(a)).
Note that for zero deformation, especially for Fermi en-
ergies below 0.8t0, the transmission peak is very narrow,
thus for most energies the transmission is small, as indi-
cated by the dominant dark-blue region in fig. 4(a) and
fig. 4(b) at 5.16 ps. For η0 = 0.09, at t = 0 or 10.32 ps,
the graphene dot has the maximum deformation, each
transmission peak at zero deformation becomes signifi-
cantly broadened, thus for most energies the transmission
becomes large, as indicated by the light-blue regions in
fig. 4(b) at t = 0 or 10.32 ps. Therefore, the transmission
is enhanced by mechanical vibration. However, for even
larger deformation, the region of transmission plateaus can
be greatly suppressed at the maximum deformation.

The results obtained so far are based on the linear term
in the potential for mechanical vibrations and the initial
deformation is with respect to the lowest eigenmode. In
this approximation, the oscillation period of the graphene
sheet is invariant for different deformation amplitudes. At
t = nt0, where n is an integer and t0 = 5.16 ps, the
graphene sheet becomes flat for odd n values and max-
imum deformation occurs for even n values, regardless of
the deformation amplitude. When nonlinear terms are in-
corporated, the vibrational dynamics become quite intri-
cate, resulting in complicated transmission patterns. For

relatively large deformation, the vibrations are no longer
exactly periodic, but are approximately periodic with fine
structures due to the diffusion of energy from the per-
turbed mode (the lowest) to high-frequency modes. The
approximate period tends to decrease as the deformation
amplitude is increased, as can be seen from fig. 5(a). Due
to the excitation of higher modes, the largest displacement
is no longer a smooth variable, so here η is the projection
of the deformation profile to the first mode normalized by
η0. Figure 5(b) shows the transmission contours in time
and Fermi energy for η0 = 0.05. As compared with the lin-
ear case, a distinct feature is the emergence of irregularity
in time. In particular, in the linear regime a transmission
peak for zero deformation is expanded into a band or a
plateau in the plane of Fermi energy and time. However,
in the nonlinear regime, the band or plateau is distorted.
For a larger deformation, say, for η0 = 0.09, because of
the distorted deformation due to the excitation of high-
frequency modes, different transmission bands merge to
form nets that are more visible in the low energy range
as the nets have larger energy and time scales (fig. 5(c)).
Nevertheless, the enhancement of transmission in the pres-
ence of deformation is still clear, especially in the energy
range EF /t0 ∈ [0.4, 0.8]. In this case, from the curve of
transmission vs. time, one can estimate the period of the
dominant lowest-frequency mode, but this period will be-
come insignificant as more and more higher modes are
excited.

Conclusion and discussions. – To summarize,
we investigate electronic transport through rectangular
graphene quantum dots where the graphene sheet is sub-
ject to periodic mechanical vibrations. We find that
the quantum transmission coefficients exhibit periodic be-
haviors in time, providing an explanation for the time
periodic variations in the currents of graphene-based nano-
electromechanical resonators. The transmission, however,
contains more features besides the periodic variations. For
small vibrational amplitude, the local maxima and min-
ima in the curve of transmission vs. the Fermi energy are
broadened to bands and plateaus in the two-dimensional
plot of transmission vs. Fermi energy and time (defor-
mation), leading to transmission enhancement. For large
deformation amplitude, within a time period, resonant
scattering can occur, leading to sharp fluctuations in the
transmission. With nonlinear interactions, the mechan-
ical motion becomes complex, giving rise to more com-
plex transmission patterns such as nets from intertwined
transmission bands, which can potentially result in spuri-
ous higher-frequency modes in the current. The complex
transport behaviors uncovered provide insights into the
interplay between mechanical and electronic properties of
graphene in general. Note that so far we have considered
perfect situations without any disorder. Due to the con-
straints of nanofabrication, there would exist a degree of
strain inhomogeneity which could translate into random-
ness in the hopping energies beyond the changes induced

47006-p5
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by the oscillation. However, from our results (figs. 3–5),
insofar as the randomness in the bond elongation is small,
say, a few percent, the main results should be unchanged,
although the details of the transmission pattern can be
different. If the randomness is large, e.g., exceeding 5%,
then the results could be altered.
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