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Abstract – We investigate the transport fluctuations in both non-relativistic quantum dots and
graphene quantum dots with both hyperbolic and nonhyperbolic chaotic scattering dynamics in
the classical limit. We find that nonhyperbolic dots generate sharper resonances than those in the
hyperbolic case. Strikingly, for the graphene dots, the resonances tend to be much sharper. This
means that transmission or conductance fluctuations are characteristically greatly enhanced in
relativistic as compared to non-relativistic quantum systems.

Copyright c© EPLA, 2011

In the last three decades, quantum chaos, an interdis-
ciplinary field focusing on the quantum manifestations of
classical chaos, has received a great deal of attention [1].
In fact, the quantization of chaotic Hamiltonian systems
and the ensuing quantum signatures of classical chaos
are fundamental procedure and process, respectively, in
physics, having direct applications in condensed matter
physics, atomic physics, nuclear physics, optics, and
acoustics. However, most existing works on quantum
chaos are concerned with non-relativistic quantum-
mechanical systems described by the Schrödinger
equation. Since the quasi-particles of graphene are chiral,
massless Dirac fermions [2,3], the fundamental issue of
relativistic quantum manifestations of chaos in graphene
systems has attracted a great deal of recent attention.
Topics that have been studied include level-spacing
statistics, transition from regular to chaotic dynam-
ics, relativistic quantum scars, and weak localization,
etc. [4,5]. In this letter, we study the fundamental
problem of relativistic quantum scattering using graphene
chaotic billiards and compare the results with those from
non-relativistic quantum-dot systems.
In open Hamiltonian systems, there are two kinds

of dynamically relevant chaotic scattering processes:
hyperbolic and nonhyperbolic. Both are highly relevant
experimentally. In hyperbolic scattering, all the peri-
odic orbits are unstable and the particle decay law

is exponential. As a result, the magnitude squared of
the autocorrelation function of the quantum S-matrix
elements is Lorentzian, where the classical escape rate
determines its half-width [6]. The Lorentzian form has
been observed experimentally [7]. For nonhyperbolic
chaotic scattering, there are non-attracting chaotic sets
coexisting with Kolmogorov-Arnold-Moser (KAM) tori
in the phase space [8], leading to an algebraic particle
decay law. In this case, the fine-scale semiclassical quan-
tum fluctuations of the S-matrix elements with energy
difference are enhanced as compared to the hyperbolic
case [8]. We note that for a classically integrable billiard
system, Bardarson et al. [9] solved the Dirac equation and
observed sharp resonances in the conductance-fluctuation
pattern.
To uncover the relativistic quantum manifestations of

chaotic scattering, in this letter we investigate the elec-
tronic transport properties in open graphene quantum
dots (GQDs) with both hyperbolic and nonhyperbolic
scattering dynamics in the classical limit. We compare
the GQD analysis with the one we carry out for non-
relativistic quantum dot (NRQD) systems. A striking find-
ing is that GQDs generally have sharper conductance
fluctuations than NRQDs [10]. Moreover, GQDs tend
to stabilize unstable periodic orbits, which support the
hyperbolic scattering. As a result, even in the hyper-
bolic GQDs, pronounced quantum pointer states [14,15]
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exist. The resonances associated with the transmission are
characterized by the Fano profiles with the width given
by the imaginary part of the eigenenergies of the dot
Hamiltonian, where the effects of the leads are theoret-
ically described by the self-energies. Our findings not only
provide fundamental insights into relativistic quantum
chaotic scattering, but also are important for graphene-
based device applications.
To systematically investigate the quantum scattering

dynamics in open graphene quantum dots, it is desirable
to focus on a class of dot systems that can generate both
hyperbolic and nonhyperbolic chaotic scattering dynam-
ics. We choose the class of cosine billiards [11], which
is defined by two hard walls at y= 0 and y(x) =W +
(M/2)[1− cos(2πx/L)], respectively, for 0� x�L, with
two semi-infinite leads of widthW attached to the left and
right openings of the billiard. By adjusting the ratiosW/L
and M/L, the stabilities of the classical periodic orbits
can be changed, allowing the transition from nonhyper-
bolic to hyperbolic chaotic scattering. For example, for
W/L= 0.18 and M/L= 0.11, there is nonhyperbolic scat-
tering but for W/L= 0.36 and M/L= 0.22, the scatter-
ing dynamics is hyperbolic [11]. We use the tight-binding
approach and the Landauer-Büttiker formalism in combi-
nation with the non-equilibrium Green’s function method
to calculate the conductance/transmission and the local
density of states (LDS) [16,17]. All energies are given in
units of the hopping energy t.
We evaluate the transmission fluctuations for the four

combinations of quantum dots and classical scattering
dynamics: NRQD/hyperbolic, NRQD/nonhyperbolic,
GQD/hyperbolic, and GQD/nonhyperbolic. All the
quantum dots have the same maximum number of
propagating modes: Nmode = 24, and GQDs have zigzag
boundaries terminated in the horizontal direction. Typical
patterns of the transmission fluctuations are shown in
fig. 1, where the energy ranges are the same for different
cases. The results for NRQDs (fig. 1(a)) are consistent
with those from previous works, i.e., the one with nonhy-
perbolic chaotic scattering in the classical limit exhibits
sharper fluctuations, while if the classical scattering
dynamics is hyperbolic, the transmission varies much
more smoothly with the energy [11]. Similar behaviors
have been observed for GQDs, as shown in fig. 1(b),
which is consistent with the results in ref. [9]. However,
comparing figs. 1(b) and (a), we see apparently enhanced
fluctuations in the graphene case, for both hyperbolic and
nonhyperbolic chaotic scattering. Even in the hyperbolic
case, the transmission associated with the GQD contains
sharper resonances as compared with that in the NRQD.
This indicates a strong localization effect [12,13] in the
GQD.
To characterize the fluctuations, we compute the auto-

correlation function from the transmission vs. energy curve
after removing the smooth background variation. The
results are shown in fig. 2. As expected, for the GQDs, the
correlation functions decay faster than those for NRQDs,
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Fig. 1: (Color online) Transmission T vs. energy E for open
(a) non-relativistic and (b) graphene quantum dot with the
same maximum number of propagating modes: Nmode = 24.
Blue/thin (red/thick) lines are for nonhyperbolic (hyperbolic)
scattering dynamics in the classical limit. Note that, to clearly
distinguish these two lines in each figure, we shift the trans-
missions for hyperbolic ones (red/thick) down by 1. The insets
show the fitting lines (green) using eq. (1). The energy values
E0/t corresponding to the three cases are (a) 0.50581, (b/left)
0.40402, and (b/right) 0.53392.
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Fig. 2: (Color online) Autocorrelation C vs. energy difference
ΔE for different quantum dots with Nmode = 48.

indicating stronger fluctuations of the transmission or,
equivalently, a smaller energy scale over which a large
change in the transmission can occur. This is consistent
with the recent result that GQDs tend to have enhanced
conductance fluctuations in the presence of disorder, due
to the absence of back scattering [18] or to the Andreev
reflection at the graphene-superconductor interface [19].
To provide a theoretical explanation for these phenom-

ena, we examine the Fano resonances with respect to the
coupling between the eigenstates in the quantum dots and
the leads. We find that the coupling is typically much
weaker in the GQD than that in the NRQD for both
the hyperbolic and nonhyperbolic cases. In particular, in
the tight-binding paradigm, by considering the scattering
region as a closed system with Hamiltonian matrix Hc,
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the effect of the leads can be treated using the retarded
self-energy matrices, ΣR =ΣRL +Σ

R
R. The matrix Hc is

Hermitian with a set of real eigenenergies and eigenfunc-
tions {E0α, ψ0α|α= 1, . . . , N}, but ΣR(E) is in general
not Hermitian and depends on the Fermi energy E. The
effective Hamiltonian matrix Hc+Σ

R(E) thus has a set
of complex eigenenergies with the eigenfunctions: [Hc+
ΣR(E)]ψα =Eαψα and φ

T
α [Hc+Σ

R(E)] =E∗αφ
T
α , where

Eα =E0α−Δα− iγα. The self-energy matrix ΣR has only
nonzero elements in the subblock of the boundary atoms
connecting with the leads. For most of the eigenstates it
can be treated as a perturbation, thus Δα and γα are
generally small.
The Green’s function matrix can be expanded as

GR(E) =
∑
β [ψβ(E)φβ(E)

†]/[E−Eβ(E)]. For a partic-
ular eigenstate {Eα, ψα}, when E is close to Eα,
GR can be rewritten as GR =GR0 (E)+G

R
1 (E), where

GR0 (E) =
∑
β �=α[ψβ(E)φβ(E)

†]/[E−Eβ(E)] varies slowly
since |E−Eβ | is large and GR1 (E) = [ψα(E)φα(E)†]/[E−
Eα(E)] changes fast as E is in the vicinity of Eα. The
self-energy ΣR is a slow variable, so is the coupling matrix
ΓRL,R = i[Σ

R
L,R− (ΣRL,R)†]. Thus in the expression of the

transmission T =Tr[ΓRLG
RΓRR(G

R)†], only GR1 (E) is a fast
variable. All the others can be treated approximately as
constants and be evaluated at an arbitrary energy E0 close
to Eα. Choosing E0 =Eα, we get the transmission in the
vicinity of Eα as T (E)≈ T0(E0)+ΔT (1− 2qε)/(ε2+1),
where T0 =Tr[Γ

R
LG

R
0 Γ
R
R(G

R
0 )
†], Δ= T (E0)−T0(E0), q=

Im(Tr[ΓRLG
R
1 Γ
R
R(G

R
0 )
†])/ΔT , and ε= (E−Re(Eα))/γα.

We thus have

T (E)≈ T0(E0)−ΔT +ΔT
(ε− q)2
ε2+1

+ΔT
2− q2
ε2+1

. (1)

As shown in fig. 1, this formula agrees with numerical
results very well, which represents a generalized Fano
resonance, and is consistent with previous works on
Fano resonance profiles of conductance by calculating the
scattering matrix elements [13,20]1. Thus the transmission
curve has a resonance at Re(Eα), where the width is on the
order of γα. Since Σ

R depends on the energy E, Δα and γα
are also functions of E. Thus the above picture is valid only
for eigenstates whose values of Re(Eα) are close to E [17].
The above analysis requires γα to be much smaller

than the level spacing between the adjacent energy levels,
i.e., for separated and localized states. For large γα, the
resonances are broadened and it then becomes difficult
to distinguish them from the background variations.
This is the reason that, for NRQDs with nonhyperbolic
scattering dynamics, a similar analysis can be valid
only when strong localizations on stable periodic orbits

1In the Fano formula, (ε+ q)2/(ε2+1), the quantity q usually
takes on real values. However, as pointed out in ref. [20], when
characterizing conductance fluctuations, q can generally be complex:
q= q′+ iq′′. In this case, the Fano profile becomes |ε+ q|2/(ε2+1) =
[(ε+ q′)2+ q′′2]/(ε2+1), which is the same as eq. (1) when q′2+
q′′2 = 2. A similar relation was observed in a previous experimental
study [21].
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Fig. 3: (Color online) The real and imaginary part of the
eigenstates Eα for (a) GQD/nonhyperbolic, (b) NRQD/
nonhyperbolic, (c) GQD/hyperbolic, and (d) NRQD/
hyperbolic. The energy values E0 in (a)–(d) are 0.2, 1, 0.2 and
1, respectively.

occur [13]. For GQDs, our computations have revealed
sharp conductance resonances (figs. 1 and 2) for both
hyperbolic and nonhyperbolic classical scattering dynam-
ics, leading to small values of γα. Figure 3 shows the
eigenenergies Eα in the complex plane in a proper energy
range. The energy for which the self-energy matrix is
evaluated is E0 = 0.2t for GQDs and E0 = t for NRQDs.
In principle, the plots are only accurate for the eigenen-
ergies where Re(Eα) is close to E0 but we find that, even
if Re(Eα) is far from E0, it is still a good approximation.
We have also examined larger systems with the same
shapes. For a larger system, there are more points in the
plots, but the distribution of the points remains the same.
These results verify those in fig. 2 in that the system
with smaller γα values decreases faster in the correlation
function. From fig. 3, we see that, the four cases have
the common feature that they all possess a continuous
line shape about γα ∼ 10−2t. These values contribute to
the conductance variations on energy scales of 10−2t to
10−1t and hence to the smooth conductance variations
in the background. For NRQDs, only the hyperbolic case
has this part, but the nonhyperbolic case has relatively
lower values in the range 10−4t to 10−2t (fig. 3(b)),
which correspond to the localized states. The separation
between the two parts is not sharp, due to the hetero-
geneous, mixed phase-space structure associated with
nonhyperbolic chaotic scattering [12]. For GQDs, for both
the hyperbolic and nonhyperbolic cases, the distributions
of the eigenenergies contain two parts: one with and the
other without localized states. For the nonhyperbolic
case, the two parts are well separated and the lower part is
several orders of magnitude smaller than that associated
with the nonhyperbolic NRQD, as shown in fig. 3(a),
indicating much sharper transmission fluctuations.
Furthermore, the hyperbolic GQD also contains such a
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Fig. 4: (Color online) Quantum pointer states for (a) GQD/
hyperbolic, (b) GQD/nonhyperbolic, (c) NRQD/hyperbolic,
and (d) NRQD/nonhyperbolic. Darker region means higher
local density of states (LDS). The minimum and maximum
LDS values of the patterns are (2.59× 10−3, 0.641), (5.84×
10−4, 1.39), (8.50× 10−3, 7.35× 10−2), (1.40× 10−2, 0.284) for
(a)–(d), respectively. The color scale has been normalized for
each panel for better visualization.

lower part (figs. 3(c)), providing an explanation for the
observed sharp resonances in fig. 1(b).
Although the classical scattering dynamics are purely

chaotic and the quantum manifestations are expected of
those situations where there is no strong localization, the
same quantum dot filled with graphene shows character-
istically different behaviors. For example, we find that
relativistic quasiparticles in graphene tend to stabilize
themselves on the classically unstable periodic orbits. This
can be demonstrated directly from the LDS patterns.
Figure 4 shows a typical pattern for each of the four combi-
nations. For nonhyperbolic NRQD and GQD, the LDS
patterns are well localized, but the patterns for the GQD
are much sharper than those for the NRQD. For the hyper-
bolic cases, again the patterns associated with the NRQD
are not so sharp, as exemplified by fig. 4(c), but for the
GQD, there are still many well-pronounced pointer states,
as the one shown in fig. 4(a). Since a graphene billiard has
two nonequivalent Dirac points and the abrupt boundary
introduces coupling between them, the observed transmis-
sion fluctuations and the tendency to stabilize unstable
periodic orbits can be originated from both effects: rela-
tivistic motion of the pseudo-particle in graphene and the
coupling between the two Dirac points.
A key to understanding the distinct characteristics of

the transmission in NRQDs and GQDs with different types
of chaotic scattering in the classical limit is the relation
between the LDS patterns and the width of the reso-
nances. We have calculated the first-order approximation
of γα. In the absence of magnetic field, Hc is real symmet-
ric, so {ψ0α|α= 1, . . . , N} forms a set of orthogonal and
complete basis. Generally, we have ψα =ψ0α− δrψαr −
iδiψαi, where δr and δi are small quantities. Substituting
Eα and ψα back into the eigenequation [Hc+Σ

R]ψα =
Eαψα, keeping only the first-order terms and taking into
account the orthogonality of ψ0α, we have Δα+ iγα ≈
−〈ψ0α|ΣR|ψ0α〉. Thus, γα =−〈ψ0α|Im(ΣR)|ψ0α〉. That is,
the width of the transmission resonance (γα) is deter-
mined by the imaginary part of the self-energy and the

corresponding wave function of the closed system. Since
ΣR only has nonzero elements at the boundary atoms
connecting with the leads, only the values of ψ0α on the
same set of atoms contribute to γα. Since the wave func-
tion is normalized, localized states that assume a large
value on a subset of atoms, say, atoms on a particu-
lar stable orbit, will have small values on the boundary
atoms, resulting in small values of γα. For dispersive states
where ψ0α takes similar values on all atoms, the value on
the boundary atoms are of the order of 1/

√
N . Thus γα

depends mainly on ΣR. For cases of identical leads, ΣR is
the same, thus γα ∼ 1/N . Nonhyperbolic QDs have about
twice the number of atoms as the hyperbolic QDs, so γα
is about half the value, which has been verified numeri-
cally. We note that the effect caused by the system size
changes the results by a factor of 2, while the features of
localization (the structure of the phase space, i.e., whether
it has KAM-tori and the ratio of the regular KAM-tori
vs. chaotic sea) can contribute to the difference in γα by
several orders of magnitude. Since the eigen-wavefunctions
are highly correlated with the LDS patterns, the above
discussion should also be valid for LDS patterns, or pointer
states.
In summary, we have examined the transport fluctua-

tions for GQDs and NRQDs that exhibit both hyperbolic
and nonhyperbolic chaotic scattering in the classical
limit. For each type of QDs, the one with classical
nonhyperbolic scattering dynamics exhibits enhanced
transmission fluctuations with sharp resonances compared
to that with hyperbolic dynamics, which is consistent with
previous results in quantum chaotic scattering. However,
in GQDs, the fluctuations are much stronger with smaller
energy scales as compared with NRQDs. By examining
the width of the transmission resonances, we find a
theoretical explanation for the enhanced fluctuations in
GQDs: scarring of quantum states in the graphene system
are more pronounced, resulting in weaker coupling with
the leads as compared with NRQDs. Computation of
the LDS supports this theory. From another point of
view, since the width of the transmission resonance is
typically smaller than the level spacing ΔE (eq. (1)), the
non-constant density of states for GQDs, in contrast to a
constant level spacing for NRQD, can be responsible for
the sharp conductance fluctuations. In general, we expect
then the transmission (or scattering-matrix elements)
to exhibit characteristically enhanced fluctuations in
relativistic compared to those in non-relativistic quantum
mechanics.
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