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We report on the experimental investigation of the properties of the eigenvalues and wavefunctions and the fluctuation
properties of the scattering matrix of closed and open billiards, respectively, of which the classical dynamics undergoes
a transition from integrable via almost integrable to fully chaotic. To realize such a system, we chose a billiard with a
60◦ sector shape of which the classical dynamics is integrable, and introduced circular scatterers of varying number, size,
and position. The spectral properties of generic quantum systems of which the classical counterpart is either integrable or
chaotic are universal and well understood. If, however, the classical dynamics is pseudo-integrable or almost-integrable,
they exhibit a non-universal intermediate statistics, for which analytical results are known only in a few cases, e.g., if it
corresponds to semi-Poisson statistics. Since the latter is, above all, clearly distinguishable from those of integrable and
chaotic systems, our aim was to design a billiard with these features which indeed is achievable by adding just one scatterer
of appropriate size and position to the sector billiard. We demonstrated that, while the spectral properties of almost-
integrable billiards are sensitive to the classical dynamics, this is not the case for the distribution of the wavefunction
components, which was analyzed in terms of the strength distribution, and the fluctuation properties of the scattering matrix
which coincide with those of typical, fully chaotic systems.
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1. Introduction
The main focus of the field of quantum chaos is the search

for signatures of classical chaos in properties of the eigenval-
ues and wavefunctions of the corresponding bounded quantum
system or those of the scattering matrix in open ones. While
the characteristics are well understood by now for the former,
many questions remain open for scattering systems. Planar
billiards — bounded, simply connected domains in which a
pointlike particle moves freely and is reflected back specu-
larly on impact with the boundary — provide a suitable system
for the investigation of manifestations of classical chaos in the
corresponding quantum system, since their classical dynamics
only depends on their shape.[1–3] Examples for integrable sys-
tems are rectangular, circular, and elliptic billiards, whereas
the classical dynamics of the Bunimovich stadium[4] or the
Sinai billiard[1] is chaotic except for a set of measure zero in
phase space.

It is known by now and has been confirmed numerically
and also experimentally that the spectral properties of generic
integrable and fully chaotic systems are universal. Those of
the former are well described by those of random numbers
generated in a Poisson process[5] and coincide for the latter
with those of the eigenvalues of random matrices from the

Gaussian orthogonal ensemble (GOE) for generic quantum
systems with a fully chaotic classical dynamics and preserved
time-reversal invariance.[6–9] Furthermore, the spectral prop-
erties of the systems with mixed regular-chaotic dynamics may
posses generic features and accordingly be described by ran-
dom matrix ensembles interpolating between the two extreme
cases.[10–13]

Billiards with the shapes of rational polygonals contain-
ing corners with angles α 6= π/n, where n is an integer,[14–19]

and of an integrable one containing pointlike scatterers [20–30]

or, in general, an obstacle of a size which is much smaller
than the billiard area and smaller or comparable to the wave-
length of the quantum particle trapped in it, are pseudo-
integrable and almost-integrable, respectively. Pseudo-
integrable and almost-integrable systems exhibit an interme-
diate spectral statistics,[31,32] which generally is non-universal.
In Refs. [33]–[40], the spectral properties of billiards with the
shape of an integrable one containing a δ -function potential,
called singular billiards, were investigated theoretically and
experimentally, revealing that they exhibit a non-universal sin-
gular statistics.

These drastical changes of the spectral properties, caused
by introducing a singular scatterer or a δ -function potential,
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were at first sight surprising because their classical dynamics
is integrable or almost-integrable in the sense that the trajec-
tories which hit the singular vertices or the pointlike scatterer
are of measure zero or negligibly small in phase space, re-
spectively, and have been investigated intensively theoretically
and also experimentally. However, the properties of scatter-
ing systems of which the internal dynamics is nonchaotic have
been scarcely investigated.[41] The focus of the present article
is their experimental investigation using a microwave billiard.

In Section 2, we will outline how we realize a quantum
billiard with integrable, almost-integrable, and chaotic dynam-
ics. In Section 3, the experimental setup will be introduced. In
Section 4, the experimental results for the spectral properties
will be presented, finally, in Section 5, those for the fluctua-
tion properties of the associated scattering matrix will be dis-
cussed.

2. Quantum billiard
In order to achieve a quantum system with integrable,

almost-integrable, and chaotic dynamics, we use a billiard
with the shape of a 60◦ circle sector and introduce circularly-
shaped scatterers of increasing size and number. The classical
dynamics of a circle-sector shaped billiard[42] is integrable,
the constants of motion being energy and angular momentum.
The Schrödinger equation of the corresponding quantum bil-
liard is given by the Laplacian in polar coordinates (r,ϕ) in-
side the bounded domain Ω with Dirichlet conditions along
the boundary ∂Ω ,[

∆r,ϕ + k2]
ψ (𝑟 ∈Ω) = 0, ψ(𝑟 ∈ ∂Ω) = 0,

Ω = {(r,ϕ) : 0≤ r < R, 0 < |ϕ|< θ} . (1)

The wavefunctions are given in terms of Bessel functions

ψm,ν(r,ϕ) = sin
(mπ

θ
ϕ

)
Jmπ

θ
(km,ν r), (2)

with k denoting the wavevector. They are defined such that
they vanish along the straight part of the sector-shaped bound-
ary. The eigenwavevectors km,ν are determined by imposing
the Dirichlet boundary condition on the curved part, ψm,ν(r =
R,ϕ), yielding the eigenvalue equation

Jmπ

θ
(km,ν R) = 0. (3)

We turn the classical dynamics of the sector billiard into an
almost-integrable one by inserting a pointlike circular scatterer
with Dirichlet boundary conditions along the walls, which cor-
responds to a pointlike hole, at a suitable position. Our aim
was to achieve a quantum billiard with the spectral proper-
ties exhibiting intermediate statistics. To be more explicit,
we seeked a quantum billiard of which the spectral prop-
erties exhibit intermediate statistics close to semi-Poisson

statistics,[30,31] and thus were well distinguishable from Pois-
son and GOE statistics. Furthermore, for this case, analytical
expressions are available for the relevant statistical measures.
A quantum system of which the spectral properties are close
to GOE statistics was realized by adding three circular scatter-
ers to the sector billiard. We performed numerical simulations
to find appropriate sizes and positions of the scatterers and ac-
cordingly selected those listed in Tables 1 and 2, respectively.
The positions of the scatterers were chosen in the vicinity of
the curved boundary where the wavefunctions are generally
non-vanishing, and thus will be affected by the scatterer.

Table 1. Sector billiard with one scatterer. Radius and position (x,y)
of the circular scatterer are given. It was inserted into the 60◦-sector
billiard in order to achieve an almost-integrable dynamics, such that the
spectral properties of the corresponding quantum billiard were close to
semi-Poisson statistics. The radius of the sector equaled R = 800 mm.

Billiard 1st 2nd 3rd 4th

Radius 0.025R 0.03R 0.03R 0.025R
(x,y)/mm (640,80) (640,80) (640,400) (640,400)

Table 2. Sector billiard with three scatterers. Radii and positions (x,y)
of the circular scatterers are given. They were inserted into the 60◦-
sector billiard in order to achieve a quantum billiard of which the spec-
tral properties follow GOE statistics.

Billiard (x,y)/mm (640,400) (520,520) (640,80)

1st Radii 0.02R 0.03R 0.05R
2nd Radii 0.02R 0.04R 0.05R
3rd Radii 0.01R 0.04R 0.05R

(x,y)/mm (640,400) (520,520) (520,80)
4th Radii 0.02R 0.04R 0.05R
5th Radii 0.025R 0.04R 0.05R

(x,y)/mm (680,200) (520,520) (520,80)
6th Radii 0.025R 0.04R 0.05R

To attain a scattering system, the quantum billiard
is coupled to its environment via single-mode scattering
channels.[43–45] Before studying the fluctuation properties of
the scattering matrix describing the associated scattering pro-
cess, we analyzed the spectral properties of the empty sector
billiard and those containing one or three circular scatterers.
Here, the positions and radii of the scatterers were chosen such
that the quantum billiard was almost-integrable and exhibited
intermediate statistics close to semi-Poisson statistics,[31] or
such that the spectral properties were close to those typical for
chaotic systems, i.e., following GOE statistics, respectively.

For the analysis of spectral properties and the compar-
ison with random matrix theory (RMT) predictions applica-
ble to generic systems exhibiting universal properties, the sys-
tem specific properties need to be extracted, that is, the eigen-
wavevectors need to be unfolded such that the spectral density
is uniform and thus the mean spacing is constant. In quantum
billiards, this is achieved with Weyl’s law for the integrated
spectral density, i.e., the number of eigenwavevectors below a
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given value k

NWeyl(k) =
A

4π
k2 +

L

4π
k+C, (4)

where A and L denote the area and the perimeter of the bil-
liard, respectively. The eigenwavevectors were unfolded to
unity by means of εn = N(kn) with k1 ≤ k2 ≤ ·· · denoting the
sorted-by-size eigenwavevectors of Eq. (4). For the character-
ization of the spectral properties, we considered the distribu-
tion P(s) of nearest-neighbor spacings sn = εn+1− εn and the
cumulative nearest-neighbor spacing distribution I(s) in order
to attain information on short range correlations. For random
matrices from the GOE, P(s) is very well approximated by the
Wigner distribution

PWigner(s) =
π

2
se−

π
4 s2

, (5)

whereas for Poissonian random numbers, it is given by

PPoisson(s) = e−s. (6)

These distributions reflect an inherent difference between
generic integrable and fully chaotic systems, namely, the prob-
ability that the spacing between two eigenvalues is zero or
much less than the mean spacing is maximal for the former
ones and vanishingly small for the latter ones. For large
spacings, on the other hand, P(s) decays exponentially and
Gaussian-like, respectively. These features, namely, the lin-
ear increase for s ' 0 and the exponential decay for s→ ∞

are combined in the case of semi-Poisson statistics, where the
nearest-neighbor spacing distribution is given by

P(s) = 4se−2s. (7)

We also analyzed long-range correlations in terms of the num-
ber variance Σ 2(L) = 〈(N(L)−L)2〉 in an interval of length L,
where due to the unfolding 〈N(L)〉= L and the Dyson–Mehta
statistics,

∆3(L) =
〈

min
a,b

∫ E+L/2

E−L/2
[N(E)−a−bE]2 dE

〉
,

which provides a measure for the spectral rigidity.

3. Experimental setup
The experiments were performed with a flat, metallic

microwave resonator with the shape of a 60◦ sector. Here
we employ the equivalence of the Helmholtz equation gov-
erning it and the non-relativistic Schrödinger equation of the
quantum billiard of corresponding shape. This analogy holds
for frequencies f of the microwaves inside the cavity be-
low a cutoff frequency f ≤ fmax = c0/2h, with c0 denot-
ing the velocity of light and h the height of the resonator,
where the electric field vector is perpendicular to the top and

bottom plates, so that the Helmholtz equation for 𝐸(𝑟) =

Ez(x,y)𝑒z becomes scalar and is mathematically identical with
the Schrödinger Eq. (2). Accordingly, we refer to such res-
onators as microwave billiards.[46,47] Due to this analogy, the
eigenwavevectors kn and wavefunctions ψn(𝑟) of a quantum
billiard can be determined experimentally from the eigenfre-
quencies fn =

c0kn
2π

and the electric field distribution Ez,n(x,y)
at frequency f = fn. Figures 1 and 2 show a photograph and a
schematic view of the microwave billiard, which had the shape
of a 60◦ circle sector. It was composed of three parts, a top
plate, a bottom plate, and a frame defining the shape of the
resonator which were made from copper. Note that in distinc-
tion to previous experiments,[48,49] where the top and bottom
plates where screwed together through holes along the frame
of the resonator in order to achieve a good electrical contact,
our construction avoids the screw holes and uses screw clamps
instead so that other billiard shapes may be realized by simply
replacing the frame.

(a)

(b)

Fig. 1. (a) Photograph of the bottom plate and (b) the frame defining
the walls of the microwave billiard (top) and of the resonator (bottom)
which is composed of the frame squeezed between the bottom and top
plates as sketched in Fig. 2. All three parts are made from copper. The
size of the plates is 1260 mm×860 mm×5 mm. The frame has the shape
of a 60◦ circle sector of radius 800 mm and height 20 mm corresponding
to a cutoff frequency fmax ' 7.5 GHz. In order to ensure a good electri-
cal contact, all parts were squeezed together tightly with screw clamps
as illustrated in the bottom figure. Furthermore, a rectangular frame of
the same size as the plates and the same height as the frame, and the
top and bottom plates were firmly screwed together along their edges
through screw holes in order to improve the electrical contact. For the
measurement of the resonance spectra, two antennas were attached to
the resonator and coupled to the VNA via cables visible in the figure.
The resonator rested on a frame and a positioning unit recognizable in
the left bottom part guided the perturbation body with a magnet which
was attached to it from underneath the resonator along the bottom plate.

The eigenfrequencies correspond to the positions of
the resonances in the reflection and transmission spectra of
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the microwave billiard. They were measured by attach-
ing two antennas at two of four possible ports located at
the positions marked in Fig. 2 which were connected to an
Agilent N5227A vector network analyzer (VNA) via SU-
COFLEX126EA/11PC35/1PC35 coaxial-cables emitting mi-
crowave power into the resonator via one antenna and receiv-
ing it at the same or the other one, respectively. The VNA
yielded as output the relative phases φba and the ratios of the
microwave power, Pout,b

Pin,a
= |Sba|2 of the rf signal sent into the

resonator at antenna a and coupled out at antenna b, and thus
the complex scattering matrix element Sba = |Sba|e iφba de-
scribing this scattering process.[50–52] In the vicinity of an iso-
lated or weakly overlapping resonance at f = fn, Sba is well
described by the complex Breit–Wigner form

Sba = δba− i
√

ΓnaΓnb

f − fn +
i
2Γn

. (8)

Here, Γna and Γnb are the partial widths associated with anten-
nas a and b, and Γn is the total width of the resonance which
is given by the sum of the partial widths of the emitting and
receiving antennas and the width Γabs due to the absorption in
the walls of the resonator, Γn =Γna+Γnb+Γabs which, actually,
provides the dominant contribution in measurements at room
temperature. We would like to emphasize that, only if the res-
onances are at most weakly overlapping, that is, as long as
equation (8) is applicable to the resonance spectra, the eigen-
frequencies of the microwave billiard coincide with the eigen-
values of the closed quantum billiard of corresponding shape.

o x

yz

Fig. 2. Schematic view of the three parts forming the microwave bil-
liards. A rectangular frame of the same size as the top and bottom plates
was added and all three parts were screwed together through holes in
order to improve the electrical contact. The sector frame had grooves
along the inner rim of its top and bottom surfaces into which wire of sol-
der was placed to ensure this in the whole frequency range.[48] Seven
antenna ports were fixed to the top plate of which four, marked by num-
bers, were used in the experiments.

The eigenfrequencies, and thus the eigenvalues of the
corresponding quantum billiard, are determined by fitting the
complex Breit–Wigner form Eq. (8) to the measured scatter-
ing matrix elements. For this to be feasible, it is crucial that

the widths of the resonances are small compared to the av-
erage spacing between adjacent resonances. Consequently, a
cavity with a high-quality factor Q of the resonator is a prereq-
uisite. The Q factor depends on the material of the resonator,
or to be more explicit, on the size of the absorption of mi-
crowave power in its walls, which leads to a broadening of the
widths of the resonances and thus to an overlapping of neigh-
boring ones. High Q factors of up to Q' 107 were achieved in
measurements at liquid-helium temperature TLHe = 4 K with
microwave billiards made from niobium or coated with lead,
which are superconducting at this temperature.[53] Our exper-
iments, however, were done at room temperature and thus we
had to cope with overlapping resonances. To reduce absorp-
tion, we constructed the cavity from high quality copper. The
Q value, in addition, is proportional to the ratio of the volume
to the surface of the resonator, that is, essentially to its height
h. Yet, the analogy between the quantum and microwave bil-
liard is lost at frequencies above fmax = c0/2h and, according
to Weyl’s law, Eq. (4) the number of resonances is propor-
tional to the area of the resonator and increases quadratically
with frequency below fmax. Thus, we needed to find a compro-
mise between a large number of eigenfrequencies and a high
Q factor. Accordingly, we designed a sector microwave bil-
liard with radius R = 800 mm and height h = 20 mm, corre-
sponding to a cutoff frequency fmax = 7.5 GHz. Thereby, we
achieved quality factors of several 1000th and thus were able
to determine, e.g., for the microwave billiard containing three
scatterers ≈ 550 eigenvalues. This was possible, because it
exhibits GOE statistics implying that resonance spacings close
to zero are most unlikely (see Eq. (5)), whereas for the empty
microwave billiard, the eigenfrequencies can be very close to
each other in comparison to the average resonance spacing as
the associated nearest-neighbor spacing distribution Eq. (6) is
maximal for spacing zero, so that we could identify only 220
ones. Figure 3 shows a part of a transmission spectrum which
contains isolated and weakly overlapping resonances.

The electric field intensity distribution was measured with
the perturbation body method,[54,55] which is based on Slater’s
theorem[56] stating that the frequency shift caused by introduc-
ing a metallic perturbation body into a microwave resonator
leads to a frequency shift that depends on the difference of the
squared electric and magnetic fields

∆ f (x,y) = f (x,y)− f0 = f0
(
c1E2

z (x,y)− c2𝐵
2(x,y)

)
. (9)

Here, c1 and c2 depend on the geometry and material of the
perturbation body and f0 denotes the resonance frequency of
the resonator before introducing it. We were interested in the
distribution of Ez(x,y) and, therefore, removed the contribu-
tion of 𝐵(x,y) by choosing a cylindrical perturbation body
which was made from magnetic rubber (NdFeB).[48] The elec-
tric field intensity distribution was measured by moving the
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perturbation body along the resonator plane with an external
magnet which was fixed to a positioning unit, as illustrated in
Fig. 4. Note that with this method only the modulus of Ez(x,y)
is accessible. To determine the phase, the perturbation body
would need to be replaced by an antenna.[57]

f/GHz f/GHz f/GHz

f/GHz

S
2
1


S
2
1


S
2
1


S
2
1


Fig. 3. Part of a transmission spectrum of the empty microwave sec-
tor billiard. The positions of the resonances yield the eigenfrequencies
of the microwave billiard, that is, the eigenvalues of the corresponding
quantum billiard. The zooms into the spectrum show two isolated reso-
nances (left and right) and a pair of weakly overlapping ones (middle).
The measurement of the electric field intensity distribution at either of
the two eigenfrequencies of the latter yields a superposition of both dis-
tributions. Therefore, we only measured distributions at isolated reso-
nances like those depicted in this figure.

Df↼x↪y↽

↼x↪y↽

Df

x
y

Fig. 4. Schematic view of the experimental setup which was used for
the measurement of the electric field intensity distributions at the eigen-
frequencies of isolated resonances. A cylindrically shaped perturbation
body made of magnetic rubber was inserted into the resonator, thereby
causing a frequency shift ∆ f (x,y), which according to the Slater the-
orem is proportional to the squared electric field at its position. The
electric field intensity distribution E2

z (x,y) was determined by moving
the perturbation body along the bottom plate of the resonator with an
external guiding magnet, which was fixed to a positioning unit, and
measuring ∆ f (x,y).

4. Spectral fluctuation properties and wavefunc-
tions
The spectra were measured for frequencies f ≤ fmax '

7.5 GHz in steps of 100 kHz. As mentioned above, the eigen-
frequencies were determined by fitting the complex Breit–
Wigner form Eq. (8) to the measured scattering matrix ele-
ments Sba, a, b ∈ {1,2}. For this to be feasible, their precise

experimental determination is indispensable, that is, all sys-
tematic errors need to be removed. The dominant contribu-
tions come from the coaxial cables connecting the VNA with
the cavity, which attenuate and reflect the rf signal. These ef-
fects were removed by a proper calibration of the VNA be-
fore each measurement.[58] The experiments were performed
at room temperature so that we had to deal with absorption,
that is, weakly overlapping resonances. The fitting procedure
might fail in cases where the overlap is too strong or where two
eigenfrequencies are lying too close to each other. To reduce
these effects, we optimized the quality factor of the cavity as
outlined above. Still, since according to Eq. (4) the average
resonance spacing decreases ∝ 1/ f , we could resolve the res-
onances only for frequencies below a frequency which was
smaller than fmax. Another cause for missing resonances is
situations where the electric field strength is zero at the posi-
tion of an antenna so that they cannot be excited. To avoid
this, we performed the measurements for various positions of
the antennas. In order to locate missing eigenfrequencies, we
looked at the fluctuating part of the integrated spectral density
Nfluc( fn), that is, the difference of the number of identified
eigenfrequencies below fn and the expected number Eq. (4),
NWeyl( fn). At a missing eigenfrequency, its local average ex-
hibits a jump of '−1. Then, we carefully inspected all reflec-
tion and transmission spectra in the corresponding frequency
regions to check whether we oversaw a resonance because of
the overlap with neighboring ones which would lead to a bump
in a resonance curve. By this procedure and due to the above
listed provisions we were able to identify all except less than
4% of the eigenfrequencies in the integrable case and less than
2% in the other two cases.

One example for Nfluc( fn), obtained from the eigenfre-
quency spectrum of an empty microwave billiard, is shown
in Fig. 5. Since the corresponding classical dynamics is inte-
grable, there are many close lying eigenfrequencies. There-
fore, we could resolve them only in the frequency range of
0.3–4.6 GHz and found about 220 eigenfrequencies, corre-
sponding to 8 missing ones. For this case, the eigenvalues and
wavefunctions are known. We computed them using Eqs. (2)
and (3) and compared their spectral properties with those of
the experimental data. The resulting curves shown in Fig. 6
are close to each other. In order to reduce the deviations of
the theoretical curves from Poisson behavior, several 1000th
of eigenvalues would be required. The observed, yet small,
deviations between theory and experiment may have several
causes. They cannot be attributed to missing levels since their
effect on the spectral properties is negligible for quantum sys-
tems exhibiting Poisson statistics because the eigenvalues are
either uncorrelated or only very weakly correlated. However,
the Helmholtz equation of the empty microwave billiard in-
cluding the antennas, which reached 8 mm into the cavity and
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thus were long and corresponded to two-dimensional dipoles
with a frequency-dependent coupling to the resonator modes,
is mathematically identical to the Schrödinger equation of a
singular quantum billiard with the antennas corresponding to
δ -function potentials.[39,40] Their effect, nevertheless, is weak
in the low-frequency range considered for the analysis of the
spectral properties and thus causes only small deviations from
the theoretical results as observed in Fig. 6.

f/GHz

N
fl
u
c
↼f
↽

Fig. 5. The fluctuating part of the integrated resonance density,
Nfluc( f ) = N( f )−NWeyl( f ) in the frequency range of 0.3–4.6 GHz (red
dots). For better visibility, they are connected by a black line.

LL

s s

P
↼s
↽

I
↼s
↽

Σ
2
↼L
↽

∆
3
↼L
↽

(a) (b)

(c) (d)

Fig. 6. Fluctuation properties of the unfolded eigenfrequencies of the
empty microwave billiard: (a) the nearest neighbor spacing distribution
P(s), (b) the cumulative nearest-neighbor spacing distribution I(s), (c)
the number variance Σ 2(L), and (d) the Dyson–Mehta statistics ∆3(L).
The solid, dashed, and dash-dotted black lines show the curves for Pois-
son, GOE, and semi-Poisson statistics, respectively. The red histograms
and diamonds show the curves deduced from the measurements, the
green histograms and solid lines were obtained from the computed
eigenvalues; see Eq. (3).

In order to attain an almost-integrable system exhibiting
intermediate statistics close to semi-Poisson statistics, we in-
serted a copper disk, which had the same height as the res-
onator, into the microwave billiard. Rectangular quantum bil-
liards containing finite-size circular scatterers were studied in
detail in Ref. [25]. They demonstrated that the spectral prop-
erties may be similar to those of a pointlike scatterer, that is, of
a quantum billiard containing a δ -function potential, when the
area of the scatterer is much smaller than that of the billiard

and the wavelengths are longer than the size of the scatterer
so that they cannot resolve the shape of the scatterer. With
increasing size of the scatterer, wave chaos sets in at smaller
and smaller energy values. This is to be expected, because it is
well known that the classical dynamics of the Sinai billiard,[1]

or generally, of billiards with integrable shapes containing a
finite-size scatterer[30] is chaotic except for non-generic con-
tributions resulting from waves which never hit the scatterer.

s s

P
↼s
↽

I
↼s
↽

(a) (b)

LL

Σ
2
↼L
↽

∆
3
↼L
↽

(c) (d)

Fig. 7. Fluctuation properties of the unfolded eigenfrequencies of the mi-
crowave billiard containing one disk: (a) the average over the nearest neigh-
bor spacing distribution P(s), (b) the cumulative nearest-neighbor spacing
distribution I(s), (c) the number variance Σ 2(L), and (d) the Dyson–Mehta
statistics ∆3(L) for the different measurments listed in Table one. The solid,
dashed, and dash-dotted black lines show the curves for Poisson, GOE, and
semi-Poisson statistics, respectively. The red histograms and diamonds show
the curves deduced from the measurements.

The sizes and positions of the disks used in the experi-
ments are listed in Table 1. All positions were chosen in the
region of the curved boundary, because there most of the wave-
functions are non-vanishing, whereas in the region around the
tip of the sector only J0-type ones are non-vanishing below
fmax. Identifying eigenfrequencies was easier than in the in-
tegrable case, because the probability to find close-lying res-
onances was small, as clearly visible in the nearest-neighbor
spacing distribution shown in Fig. 7. We determined them
up to 6.94 GHz, however, because there were a few missing
ones (less than 2%), we split the eigenfrequency sequences
into several complete ones before analyzing the spectral prop-
erties. The total number of eigenfrequencies thus ranged be-
tween 300 and 500, which is sufficient to obtain statistically
relevant results. In order to confirm that P(s) indeed corre-
sponds to semi-Poisson and not to a distribution intermediate
between Poisson and GOE, we plotted it in a log–log plot,
which clearly demonstrated that the decay indeed is exponen-
tial and not Gaussian-like. All statistical measures agree well
with semi-Poisson statistics, as desired. Yet, we would like
to emphasize that this is not necessarily the case for almost-
integrable or pseudo-integrable systems.[25,36] Finally, in or-
der to realize a quantum billiard exhibiting GOE statistics,
we added three copper disks of the same height as the res-
onator. To obtain an ensemble of such systems, we varied both
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size and position of the disks, as listed in Table 2. Eigenfre-
quency sequences were identified up to 7 GHz and then, as
in the previous case, they were split into complete sequences
comprising ≈ 300–550 levels. The spectral properties indeed
agree well with the corresponding GOE curves, as illustrated
in Fig. 8.

s s

P
↼s
↽

I
↼s
↽

(a) (b)

LL

Σ
2
↼L
↽

∆
3
↼L
↽

(c) (d)

Fig. 8. Same as Fig. 7 for the experiments with three disks listed in Table 2.

We also measured the electric field intensity distribu-

tions for a few eigenfrequencies corresponding to wavefunc-
tions solving Eq. (2), where we tuned the frequency to that of
well isolated resonances and then used the perturbation body
method as outlined in Section 2. The first column in Fig. 9
shows the computed wavefunctions for the 60◦-sector billiard
and the second one the corresponding electric field distribu-
tions. They agree very well, and thus demonstrate the preci-
sion of the wavefunction measurements and corroborate our
assumption that the microwave billiard can be considered as
a closed system even though it is a scattering system. In or-
der to illustrate the effect of finite-size scatterers on the wave-
functions, we compare the electric field distributions of the
empty microwave cavity shown in the third column to those
obtained after inserting one copper disk of small size. The
size of the scatterer, marked by a white circle in the latter,
was much smaller than the billiard area. Nevertheless, it al-
ready shows a clearly visible effect at low frequencies, leading
to increasing distortion of the wavefunctions with increasing
eigenfrequency, that is, decreasing wavelength. When adding
three scatterers, the electric field intensity pattern of the empty
microwave billiard, shown in the fifth column, is changed con-
siderably, as illustrated for the corresponding distributions in
the sixth column.

f=2.806 GHz

f=2.861 GHz

f=3.247 GHz f=3.247 GHz

f=3.938 GHz f=5.308 GHz f=5.318 GHz f=3.159 GHz f=3.171 GHz

f=2.983 GHz f=2.793 GHzf=2.973 GHz

f=3.928 GHz

f=2.861 GHz f=2.761 GHz f=2.797 GHz

f=3.077 GHz

f=2.772 GHz f=2.761 GHz

f=2.806 GHz

Fig. 9. Measured electric field intensities. The first column shows the computed wavefunctions, the second one the corresponding
measured electric field intensities. The fourth and sixth columns show the electric field distributions for a microwave billiard containing
one (1st setup in Table 1) and three (5th setup in Table 2) scatterers, respectively. The corresponding distributions measured with no
scatterer are shown in the third and fifth columns.

Because the wavefunction measurements are extremely

time-consuming, we only measured four of them for each of

the three cases, i.e., for the microwave billiards containing no,

one, and three copper disks, respectively. However, for the sta-

tistical analysis of the distribution of the wavefunction com-

ponents and their correlations, larger data sets are required.

Nevertheless, we may obtain information on the properties of

the wavefunctions from the widths and the amplitudes of the

scattering matrix, which can be determined from the fit of the

Breit–Wigner form Eq. (8) to the experimental spectra. In-

deed, the partial widths associated with the emitting and re-

ceiving antennas, Γna and Γnb are proportional to the electric

field intensity at their positions. They enter Eq. (8) via the am-

plitudes
√

ΓnaΓnb and the resonance width Γn, yet may not be
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determined individually[58] because of the nonnegligible con-
tribution of absorption to Γn. As in this reference we therefore
studied instead the distribution of the strengths yba = ΓnbΓna

to gain insight into the statistical properties of the wavefunc-
tion components. For fully chaotic systems, they are Gaussian
distributed, and, accordingly, the partial widths have a Porter–
Thomas distribution,[58–60] implying that their product has a
K0 distribution, where K0 is the zero-Bessel function of imag-
inary argument,

P(y) =
K0

(√
y

τaτb

)
π

√
y

τaτb

1
τaτb

, (10)

with τaτb denoting the expectation value of y. Since P(y)
diverges for y → 0, we transformed y to z = log10

(
y

τaτb

)
.

We determined the experimental strengths distributions by
proceeding as in Ref. [58]. As expected,[61] the results
for the empty microwave cavity (histogram) shown in the
top panel of Fig. 10 clearly deviate from a K0 distribu-
tion. However, both for the almost-integrable (black) and
the fully chaotic (red) cases shown in the bottom panel, we
find a good agreement with the K0 distribution. This im-
plies that while the spectral properties of almost-integrable
systems depend sensitively on the features of the classi-
cal dynamics, their strength distribution is close to that ex-
pected for typical, fully chaotic systems. Yet, in Ref. [58]
clear deviations from the K0 distribution were found for sys-
tems with a mixed regular-chaotic dynamics. This implies
that the insertion of a scatterer of which the size is much

z

z

P
↼z
↽

P
↼z
↽

(a)

(b)

Fig. 10. Experimental strength distribution (histogram) for the empty
cavity (a) and for one (black dots) and three (red squares) added scat-
terers (b) in comparison to the GOE result (solid black line).

smaller than the area of the billiard into the quantum or mi-
crowave billiard already induces in the low-frequency range,
that is the long-wavelength region, strong distortions in the
wavefunctions, which indeed are visible in Fig. 9, leading to
features typical for chaotic systems. Note that while the dis-
tributions of the wave functions of almost-integrable systems
were predicted to coincide with those of fully chaotic systems,
this must not be the case for their spatial correlations.[20,22]

5. Fluctuation properties of the scattering ma-
trix
Another focus of interest was the fluctuation properties

of the scattering matrix of open systems with an integrable
or almost-integrable dynamics in the scattering zone. Actu-
ally, since the resonance spectra are measured by emitting mi-
crowave power into the resonator via one antenna, thereby ex-
citing an electric field mode in its interior and receiving it at the
same or another one, microwave billiards can also be viewed
as scattering systems. Here, the antennas act as single-mode
channels which couple the resonator modes to the exterior,
and the resonator corresponds to the scattering zone, respec-
tively. The scattering matrix formalism describing microwave
resonators was shown to be identical with that for compound-
nucleus reactions.[43,62] This analogy has been employed in
the previous group of one of the authors (BD) in a sequence
of experiments[50–52,63–66] to investigate the universal proper-
ties of the scattering matrix for compound-nucleus reactions
and, generally, for quantum scattering processes with intrinsic
chaotic dynamics, that is, to verify the analytical results de-
rived on the basis of the supersymmetry and RMT approach.

The scattering matrix approach[62] used for the derivation
of RMT-based analytical expressions characterizing the fluctu-
ation properties in the reflection and transmission spectra of a
chaotic scattering system was developed by Mahaux and Wei-
denmüller in the context of compound-nucleus reactions. The
associated scattering matrix is given by

Sba( f ) = δba−2π i
[
Ŵ †
(

f𝐼− Ĥeff
)−1

Ŵ
]

ba
. (11)

Here, a and b refer to the antenna channels and Ĥeff = Ĥ −
iπŴŴ † with Ĥ simulating the spectral fluctuation proper-

ties of the Hamiltonian of the closed resonator or quantum
billiard and Ŵ accounting for the coupling of the resonator
modes to their environment. If the shape of the resonator co-
incides with that of a classically fully chaotic billiard, Ĥ is re-
placed by a random N×N-dimensional matrix from the GOE.
The matrix elements Waµ and Wbµ describe the couplings of
the antenna modes to the resonator modes. Furthermore, ab-
sorption in the wall of the resonator is modeled [51,52] by Λ

fictitious channels Wcµ . In the microwave experiments, the
frequency-averaged S-matrix was diagonal, 〈Sba〉 = 〈Saa〉δba,
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that is, direct processes were negligible. This property is ac-
counted for in the RMT model through the orthogonality prop-
erty ∑

N
µ=1 WcµWc′µ = Nv2

cδcc′ . For c = a, b, the parameter v2
c

corresponds to the average strength of the coupling of the res-
onances to channel c, that is the average size of the electric
field at the position of the antenna. The input parameters of
the RMT model Eq. (11) are the transmission coefficients

Tc = 1−|〈Scc〉 |2, (12)

which provide a measure for the unitarity deficit of the av-
erage scattering matrix 〈S〉. They are related to v2

c via Tc =
4π2v2

c/d
(1+π2v2

c/d)2 with d =
√

2
N 〈H2

µµ〉 π

N denoting the mean reso-
nance spacing.

The transmission coefficients Ta and Tb associated with
antennas a and b are obtained according to Eq. (12) from the
measured reflection spectra, whereas those related to the fic-
titious channels, i.e., absorption, accounted for through the
parameter τabs = ΛTc, need to be determined by fitting ana-
lytical results for the fluctuation properties like the two-point
correlation function given in Ref. [67] or for the distribution of
the scattering matrix elements[52,64] to the corresponding ex-
perimentally determined one.[52] Because in the RMT model
Eq. (11) the coupling matrix Ŵ is assumed to be frequency
independent, we needed to ensure in the analysis of the exper-
imental data that the resonance widths are approximately con-
stant. Accordingly, we needed to divide the frequency range
into windows of 0.5 GHz.[52] An analytical expression was
derived for the two-point correlation function of the scattering
matrix elements[67]

Cab(ε) = 〈Sab( f )S∗ab( f + ε)〉− |〈Sab( f )〉|2. (13)

Furthermore, analytical expressions were derived for the dis-
tributions of the modulus |Sba| and phase φba of the scattering
matrix elements Sba = |Sba|e iφba in Refs. [52], [64], and [68].
In order to determine the absorption parameter τabs and to ver-
ify the values of the transission coefficients associated with the
antennas computed with Eq. (12), we compared these analyt-
ical expressions to the corresponding experimental curves ob-
tained for the microwave billiard containing three disks since
its spectral properties follow GOE statistics. Figure 11 depicts
the transmission coefficients associated with the antennas for
the microwave billiards containing no (green dots), one (black
squares), and three (red triangles) disks. Their values barely
differ from each other below 5 GHz. Also the parameter τabs

should be similar in all three cases, as the absorption in the
walls of the disks is negligibly small as compared to that in
the walls of the cavity. Therefore, it makes sense to compare
the RMT results obtained for the case with three disks with
those for the cavities with no and one disk.

f/GHz

T
ra

n
sm

is
si

o
n
 c

o
e
ff
ic

ie
n
ts

Fig. 11. Variation of the transmission coefficients Tc associated with the
antennas with frequency. They are nearly equal for both antennas and
for varying number, positions, and sizes of the scatterers. Therefore,
the average over the respective ensembles composed of the realizations
with, respectively, one and three disks, is shown for the average trans-
mission coefficients for the cavities with no disk (green dots), one added
disk (black squares), and three added disks (red triangles). To guide the
eye of the reader the symbols are connected by dashed lines.

We, actually, determined the absorption parameter by fit-
ting the analytical expression for the distribution of the mod-
ulus and phase of the reflection matrix elements Saa to the
experimental results and then inserted it into the other ana-
lytical expressions and RMT simulations based on Eq. (11).
The resulting curves are shown as dashed turquoise lines in
Fig. 12 together with the experimental distributions for the
empty cavity for three different frequency ranges in panel (a),
and for the cases with one (black histogram) and three disks
(red histogram) in panel (b). The transmission coefficients as-
sociated with the antennas were approximately the same and
equaled Ta' Tb = 0.091, 0.119, 0.165 in the frequency ranges
[3.0,3.5], [3.5,4.0], [4.0,4.5] GHz, respectively. Figure 13
exhibits the corresponding results for the transmission matrix
elements Sba. Here, we performed RMT simulations using
Eq. (11), since the analytical expressions for the distributions
are even more complex for transmission than they are for re-
flection. In all cases, the distributions for the empty cavity de-
viate considerably from the analytical ones, as expected,[61]

because the corresponding classical dynamics is integrable,
whereas the RMT-based results are applicable to fully chaotic
systems. Yet, both the curves for one disk and for three disks
agree well with the analytical results, even though the classi-
cal dynamics of the former is almost-integrable and not fully
chaotic. In Fig. 14, we show the autocorrelation function for
the cases with no (panel (a)), and one (black) and three (red)
disks (panel (b)) together with the analytical result which was
obtained by inserting the values of Ta, Tb, and τabs deduced
from the analysis of the distributions of the scattering matrix
elements for the case with three disks (turquoise dashed line).
Again, there is no agreement between the analytical and ex-
perimental results for the integrable case, whereas the curves
lie on top of each other for the almost-integrable and chaotic
ones. From these observations, we may conclude that already
for a disk of a size which is small compared to the billiard area,
the fluctuation properties of the scattering matrix are strongly
affected, as is the strength distribution.
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(a) (b)

Fig. 12. Experimental distribution of the modulus of the reflection matrix elements r = |Saa| for (a) the empty cavity (black histogram) and
for (b) one (black histogram) and three (red histogram) added scatterers in comparison to the GOE result (turquoise dashed lines) obtained
from a fit of the analytical distribution to that for the cavity with three disks. The transmission coefficients associated with the antennas were
approximately the same and equaled Ta ' Tb = 0.091, 0.119, 0.165 in the frequency ranges [3.0,3.5], [3.5,4.0], [4.0,4.5] GHz, respectively.

(a) (b)

Fig. 13. Same as Fig. 12 for the transmission matrix elements r = |Sba|, a 6= b.

(a) (b)
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Fig. 14. Experimental two-point S-matrix correlation functions for (a) the empty cavity (black histogram) and for (b) one (black histogram)
and three (red histogram) added scatterers in comparison to the GOE result (turquoise dashed lines).
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6. Conclusions
We experimentally investigated the properties of the

eigenvalues, wavefunctions and of the scattering matrix of mi-
crowave billiards corresponding to billiards with integrable,
almost-integrable, and chaotic dynamics. For this, we chose
a billiard with the shape of a 60◦ circle sector and added one
and three disks respectively. For the almost-integrable case,
we chose the size and position of the disk such that the spec-
tral properties of the corresponding quantum system agreed
well with semi-Posson statistics. While the spectral properties
of pseudo-integrable and almost-integrable systems have been
investigated extensively during the last two decades, the prop-
erties of the scattering matrix for an open system of which
the dynamics in the scattering zone is pseudo-integrable[41]

or almost integrable are not yet fully understood. Yet, mi-
crowave billiards provide an ideal system for such investi-
gations since they correspond to scattering systems with the
antennas acting as single-scattering channels and the classi-
cal dynamics in the scattering zone defined by its shape.[52]

Accordingly, we analyzed the fluctuations in the transmission
and reflection spectra, that is, of the associated scattering ma-
trix, which are known to be universal if the dynamics in the
scattering zone is fully chaotic, and also the strength distribu-
tion which provides information on the statistical properties of
the wavefunction components. For this we employed analyti-
cal results, which were obtained in the context of compound-
nucleus reactions, and compared them first to the correspond-
ing experimental results for the chaotic case in order to obtain
the parameters characterizing the fluctuation properties of the
scattering matrix, and then compared them to the integrable
and almost-integrable cases. Large deviations were observed
in the former case, whereas good agreement was found for
the latter one. This implies that the change from integrable
to almost-integrable by introducing a singular scatterer turns
the fluctuation properties of the scattering matrix from those
typical for integrable systems to those for fully chaotic ones.
These findings imply that the fluctuation properties of the scat-
tering matrix and also of the strength distribution may not
serve as a measure to distinguish between almost-integrable
and chaotic classical dynamics based on purely quantum prop-
erties, whereas the spectral properties clearly discriminate be-
tween them.
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