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We propose a scheme to modulate quantum transport in nanostructures based on classical chaos.

By applying external gate voltage to generate a classically forbidden region, transient chaos can

be generated, and the escape rate associated with the underlying non-attracting chaotic set can

be varied continuously by adjusting the gate voltage. We demonstrate that this can effectively

modulate the quantum conductance-fluctuation patterns. A theory based on self-energies and

the spectrum of the generalized non-Hermitian Hamiltonian of the open quantum system is

developed to understand the modulation mechanism. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.3690046]

When electrons pass through a nanostructure, the con-

ductances can depend sensitively on electronic and system

parameters.1 For example, as the Fermi energy of the con-

ducting electron changes, the conductance can exhibit strong

fluctuations.2 Conceivably, there are applications in nano-

science and nanotechnology where severe conductance fluc-

tuations are to be eliminated to achieve stable device

operation. An outstanding question is then: Can practical and

experimentally feasible schemes be devised to modulate the

quantum conductance fluctuations? The purpose of this letter

is to propose, demonstrate, and understand that classical

transient chaos can be used to effectively modulate quantum

transport. While previous works elucidated the basic physics

underlying the effect of chaos on quantum transport,2 our

proposed scheme can be implemented experimentally to sys-

tematically modulate quantum transport dynamics. As will

be shown, our proposed scheme of a Sinai-type of open bil-

liard quantum dot, where the size of the central circular

region can be experimentally modulated in a systematic

manner, is one such design. We will demonstrate computa-

tionally for both non-relativistic two-dimensional electron

gas (2DEG) and relativistic (graphene3) quantum-dot (QD)

systems that when the radius of the central potential region is

varied so that the characteristics of the corresponding chaotic

dynamics are modified, the quantum conductance-fluctuation

patterns are effectively modulated. To our knowledge,

although controlling chaos4 has been studied for more than

two decades, prior to our work there were no reports on

exploiting chaos for systematic control/modulation of quan-

tum transport.5 We will develop a physical theory based on

the complex spectrum of the device Hamiltonian, which is

non-Hermitian, to understand the modulation mechanism.

Intuitively, why classical chaos can be exploited to mod-

ulate quantum transport can be argued as follows. Sharp con-

ductance fluctuations are typically caused by quantum

pointer states, which are resonant states of finite but long life-

time formed inside the nanostructure.6 For example, for a

closed quantum-dot system whose classical dynamics is reg-

ular or contains a significantly regular component, there are

stable periodic orbits in the classical limit. When leads are

attached to the QD, some periodic orbits can still survive,

leading to quantum pointer states. As a result, narrow

resonances can form around the eigenenergy values in the

corresponding closed system. When some variations to the

dot geometry are introduced so that the underlying classical

dynamics becomes fully chaotic, no stable periodic orbits

can exist. While scars can still be formed around these orbits

in the closed system,7 the corresponding resonant states in

the open system generally will have much shorter lifetimes,

effectively eliminating the narrow resonances in conductance

fluctuations. Since the system is open, chaos is transient,

which is supported by a non-attracting chaotic set in the

phase space.8 If the intrinsic characteristics of the set can be

adjusted in an experimentally feasible way, the correspond-

ing quantum conductance fluctuations may be modulated.

Our idea is to generate a region around the center of the

nanostructure with high potential so that it prohibits classical

particles from entering. Consider a rectangular QD, a proto-

typical model in semiconductor-based, two-dimensional elec-

tron gas (2DEG) systems. The classical dynamics is

integrable so that extremely narrow resonances can arise in

the quantum transport dynamics of the open-dot system. Now

imagine applying a gate voltage to generate a circular, classi-

cally forbidden region around the center of the dot, which we

call black region [Fig. 1(a)]. Classically, the closed system is

thus a Sinai billiard, which is fully chaotic. Quantum mechan-

ically, we thus expect to observe progressively smooth varia-

tions in the conductance with, e.g., the Fermi energy.

We use the tight-binding paradigm and the Landauer-

Büttiker formalism in combination with the non-equilibrium

Green’s function method to calculate the transmission and

the local density of states (LDS).1 To demonstrate the work-

ing of our modulation scheme, we consider four different

QD geometries: rectangular QD, rectangular QD with a rec-

tangular black region, and Sinai QDs of radii R¼ 0.14 lm
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and R¼ 0.28 lm, where the classical dynamics is integrable

for the first two cases and fully chaotic for the latter two

cases. In all cases, we assume that the dot systems are of ei-

ther semiconductor 2DEG [Fig. 1(b)] or graphene [Fig. 1(c)].

Qualitatively, we observe the appearance of sharp resonan-

ces in the transmission curves for the integrable QDs, while

the curves appear smooth in the chaotic cases. This can be

better seen by calculating the autocorrelation decay curves

associated with the transmission fluctuation patterns [Fig.

1(d)], which decays faster for the integrable cases but slower

for the chaotic cases. As the radius of the black region is

increased, there is continuous improvement in the smooth-

ness of the fluctuation patterns. These results also illustrate

that generating a black region in the center of the rectangular

dot is not necessarily effective in removing the narrow

resonances in the quantum transmission curve (e.g., compar-

ing the integrable cases: the two lower blue and red curves).

It is chaos which is effective in eliminating the resonances

(the two upper black and green curves). Similar behaviors

have been observed for the graphene QDs [Fig. 1(c)].

To develop a physical theory to understand the mecha-

nism of chaos-based modulation of quantum transport, we

note that under the tight-binding paradigm, the QD can be

regarded as a closed system of Hamiltonian matrix Hc and

the leads be treated by retarded self-energy matrices RR. The

matrix Hc is Hermitian with a set of real eigenenergies and

eigenfunctions fE0a;w0ag, but RRðE0Þ, in general, is not Her-

mitian and depends on the Fermi energy E0. The effective

Hamiltonian matrix Hc þ RRðE0Þ thus has a set of complex

eigenenergies with the eigenfunctions: ½Hc þ RRðE0Þ�wa

¼ Eawa, where Ea ¼ E0a � Da � ica, Da is a shift in the eige-

nenergy induced by RR, and ca characterizes the energy scale

of the transmission resonance caused by wa.1,10 We then cal-

culate the first-order approximation of Da þ ica, which is

given by Da þ ica � �hw0ajRRjw0ai.10 We obtain Ea ¼
E0a � Da � ica � E0a þ hw0ajRRjw0ai [Eq. (1)]. In general,

RR can be expressed as1 RR ¼ �t
P

L

P
m2L vm;Lexp

ðikmaÞv†

m;L, where L is the lead index and vm;L is the trans-

verse mode m in lead L. Since RR only has nonzero elements

at the boundary points of the QD connecting with the leads,

only the values of w0a on the same set of discrete points,

w0a;L, contribute to ca. Since fvm;Lg form a complete and or-

thogonal basis, w0a;L can be expanded as w0a;L ¼
P

m cmvm;L.

Substituting this into Eq. (1) and taking into account the mir-

ror symmetry of the system, we obtain Ea � E0a �
2t
P

m jcmj2expðikmaÞ [Eq. (2)].

For validation, we consider one small rectangular QD of

0.2 lm � 0.2 lm. Since RR depends on E0, Da and ca are

also functions of E0. Thus, our theory is precise only for

eigenstates close to E0.1 In this example, we use E0 ¼
2.5293 meV. We observe a good correspondence of the posi-

tions of the transmission resonances and their widths to the

real and imaginary parts of the eigenenergies of Hc þ
RRðE0Þ (crosses), respectively, as shown in Fig. 2. The

eigenstates whose values of ca are approximately 10�1 meV

contribute to the smooth, background conductance varia-

tions. However, eigenstates whose ca values are in the range

10�3 meV to 10�2 meV correspond to localized states; for

example, the four states indicated by the dash-dotted lines. A

good agreement between theory and simulation is obtained.

FIG. 1. (Color online) (a) Schematic of

proposed experimental setup to modu-

late quantum transport through 2DEG

formed at a GaAs/Al0.3Ga0.7As hetero-

structure, which is on nþ Si substrate

(purple/light shaded), covered by

300 nm SiO2 (blue/dark), and contacted

by Au/Cr (yellow/white). The square

quantum-dot region has the side length

of 1.0 lm, and the circular potential

applied at the central region of the dot

has a radius varying between 0.1 lm and

0.4 lm. (b) Quantum conductance ver-

sus Fermi energy for four semiconductor

2DEG QD systems (bottom to top): rec-

tangular QD, rectangular QD with a rec-

tangular black region of area 0.25

lm� 0.25 lm, and Sinai QDs of radii

R¼ 0.14 lm and R¼ 0.28 lm. (c) Con-

ductance fluctuation patterns for gra-

phene QDs of the same geometry as in

(b).9 (d) Autocorrelation corresponding

to the four cases in (b).
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Our chaos-based modulation mechanism can then be

understood as follows. First, the degree of the conductance

fluctuations can be inferred from the distribution of ca val-

ues. In particular, smaller ca values indicate more severe

(sharper) resonances. Fig. 3 shows the distribution of ca in a

proper energy range, where RR is evaluated at E0 ¼
2.7862 meV. In particular, in Fig. 3(a), the values of ca

spread out far below 5� 10�4 meV, even to 10�6 meV,

which correspond to the localized states in the rectangular

QD. However, for the chaotic Sinai QDs, most values of ca

are concentrated above 5� 10�4 meV, as shown in Figs.

3(c) and 3(d). Note that the integrable QD with a central rec-

tangular black region [Fig. 3(b)] has approximately the same

number of eigenstates as the chaotic Sinai QD with

R¼ 0.14 lm [Fig. 3(c)] but the distributions of ca values are

different for the two cases in that there are significantly more

localized states in the integrable QDs. For the chaotic QD, as

the radius of the central black region is increased, there is a

progressive disappearance of eigenvalues with extremely

small imaginary parts and, hence, resonances of extremely

narrow width, leading to more smooth fluctuation patterns.

Second, since RR for all the QDs considered are the same for

a given energy E0, the difference in the values of ca is solely

determined by the quantity cm, which is the projection of the

eigenfunction coupled to the lead, w0a;L, onto the transverse

modes of the lead, vm;L. For the integrable QDs, there are

localized states corresponding to the marginally stable orbits.

As a result, these states couple to the leads only weakly,

leading to small cm. For the chaotic QDs with relatively large

escape rates, unstable periodic orbits dominate, so the reso-

nant states are not as pronounced as for the regular QDs.

These considerations can be demonstrated directly from the

LDS patterns, as shown in Figs. 3(e)–3(h). For the integrable

QDs without and with central rectangular black region [Figs.

3(e) and 3(f)], the LDS patterns associated with the resonant

states are well localized, which correspond to the classical

“bouncing-ball” orbits. For the chaotic Sinai QDs, the LDS

patterns are strongly affected by the central circular black

region, in which they appear much less localized and rela-

tively more uniform than those in the integrable QDs, which

results in a strong coupling to the leads.

In summary, we have proposed and validated a scheme

of quantum modulation based on classical transient chaos.

The key physics underlying our method is that chaos in the

classical limit has a profound effect on the resonant or

pointer states in the corresponding quantum transport sys-

tem. We have provided a self-consistent theoretical argument

to fully explain our chaos-based modulation scheme, with

strong numerical support (Fig. 3) (in contrast, in our recent

work,10 we focused on Fano-resonance formula and the com-

parison of features of scarring between non-relativistic quan-

tum and graphene systems). The chaos-based quantum

modulation scheme is conceptually appealing and experi-

mentally feasible, and further interest and effort are war-

ranted to explore this idea for significant applications in

nanoscience and nanotechnology.

FIG. 3. (Color online) Real and imaginary parts of the eigenenergies Ea for (a) rectangular QD, (b) QD with a rectangular black region, (c) Sinai QD with

R¼ 0.14 lm, and (d) Sinai QD with R¼ 0.28 lm, where E0 ¼ 2.7862 meV for all cases. The eye-guiding dashed lines indicate ca ¼ 5� 10�4 meV. (e)-(h)

Typical quantum pointer states for different QDs, where Fermi energies (meV) are 0.3213, 0.9668, 0.5522, and 1.1680, respectively.

FIG. 2. (Color online) (a) Conductance versus energy for one small QD of 0.2

lm� 0.2 lm (see text); (b) the corresponding real and imaginary parts of eige-

nenergy Ea of Hc þ RRðE0Þ (cross), calculated from Eq. (1) (square) and Eq.

(2) (circle). The Fermi energy is E0 ¼ 2.5293 meV, as indicated by the arrow.
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