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ABSTRACT

Networks with a community (or cluster) structure underlie many social and biological phenomena.

In such a network, individuals tend to form sparsely linked local communities, each having dense internal

connections. This dissertation explores the different dynamics of complex clustered networks, revealing a

new set of rules that show how the dynamic properties are affected by the clustered structures.

The dynamics of information propagation on clustered networks is studied by using a three-state epi-

demic model with a unit spreading rate. A resonance-like phenomenon is uncovered: the information lifetime

on the network can be maximized by the number of clusters.

Synchronization in complex, clustered random networks is found to be determined by the interplay be-

tween inter-cluster and intra-cluster links. The network is most synchronizable when the numbers of the two

types of links are approximately equal. In the presence of a mismatch, increasing the number of intra-cluster

links, while making the network distance smaller, can suppress or even destroy the synchronization. For

clustered networks with regular subnetworks, as the density of intra-cluster links is increased, the network

exhibits strong and weak synchronizability in an alternating manner. A theory based on analyzing the eigen-

values and eigenvectors of the coupling matrix is provided to explain this phenomenon. For gradient clustered

networks, the synchronizability can be optimized by the strength of the gradient field. A remarkable finding

is that, if the gradient field is sufficiently strong, synchronizability of the network is mainly determined by the

properties of the subnetworks in the two largest clusters.

A model of cascading in complex clustered networks based on physical analysis and numerical com-

putations is developed for the key ingredients of traffic dynamics in typical clustered networks. An effective

strategy is proposed for preventing cascading breakdown.

By focusing on network synchronizability, it is found that globally coupled networks and random net-

works are scalable, but locally coupled regular networks are not. Scale-free networks are scalable for certain

types of node dynamics. For a typical clustered network, as its size is increased, the synchronizability can be

maintained or even enhanced but at the expense of deterioration of the clustered characteristics.

iii



This dissertation is dedicated to my family

iv



ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Ying-Cheng Lai, for his insights on selecting topics, and for

his persistent help and support that made everything that I have achieved toward my PhD degree possible.

Also, his open mind, precise insights and meticulous attitude on doing research have educated me with good

disciplines that would help a lot in my future works.

I also owe a lot of thanks to Qingfei Chen, Kwangho Park, Rui Yang, Xiaojuan Ma, Yan Wang, Lin Du,
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9. Synchronization boundary of the coupled Rössler oscillators on a 2-cluster network. The

dotted line is the numerically obtained boundary from the computation of Psyn, the solid line

is from theoretical analysis [Eq. (4.1)] where λ2 is calculated numerically. The horizontal

dashed line indicates the position of the cross section of Psyn shown in Fig. 10. Simulation

parameters are N = 100 and M = 2, δ = 0.01, T0 = 104, and ε = 0.5. Each data is the

result of averaging over 1000 network realizations. The data for this figure was obtained with

5 Pentium-IV 2.80GHz CPUs for about 2 weeks. . . . . . . . . . . . . . . . . . . . . . . . 33

xi



Figure Page

10. Synchronization probability Psyn versus ps for pl = 0.2 of a clustered network of Rössler
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1 . INTRODUCTION

1.1. Concept of complex clustered networks

Networks with a community structure, or clustered networks, are relevant to many social and biological

phenomena [1–6]. A clustered network consists of a number of groups, where nodes within each group

are densely connected but the linkage among the groups is sparse. Such is indeed the case in many social

networks, where individuals in a society tend to form groups according to their social characteristics. Within

a group, each member is directly connected to most other members, but connections among different groups

are relatively rare.

Viewing biological cells in terms of their underlying network structure is a useful concept and has at-

tracted much attention recently [7–11]. Over the past several years, network science has been developed and

mathematical treatments have been employed to understand the relation between the topological structure of

networks and their functions [11–15]. Organizing biological information using the network idea has been

fundamental to utilizing various systems-level approaches to understanding biological function. A key orga-

nizational feature in many biological systems is the tendency to form a clustered network structure [2,3,5,16].

For example, proteins with a common function are usually physically associated via stable protein-protein in-

teractions to form larger macromolecular assemblies. These protein complexes (or clusters) are often linked

together by extended networks of weaker, transient protein-protein interactions to form interaction networks

that integrate pathways mediating the major cellular processes [3,16]. As a result, a protein-protein interaction

network can be viewed naturally as an assembly of interconnected functional clusters, or a complex clustered

network. Another example is the metabolic network of organisms. It has been found that various metabolic

networks are organized into many small, highly connected clusters that combine in a hierarchical manner into

larger, less cohesive units. For example, within the Escherichia coli, the uncovered hierarchical modularity

is highly correlated with known metabolic functions. It is possible that the clustered network architecture is

generic to system-level cellular organization [2].

Complex multicellular organisms such as the human body require multi-scale organizational structures,

including formation of organs from large numbers of cells and integration of many organs into the systemic

structure necessary for individual survival and proliferation. The organs typically consist of large numbers
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of multicellular functional units such as crypt in the colon, nephron in the kidney, lobule in the liver, and

alveolus in the lung, etc. While extensive recent work has focused on the structure and dynamics of intracel-

lular molecular networks [17–21], there has been little effort to extend this kind of analysis to the interactions

among cells within functioning multicellular organs which allow, for example, the human liver to synchro-

nize as many as 1012 individual cells into a single functioning unit. There are two general methods by which

cells can communicate with each other. Locally, cells usually establish their mutual communication chan-

nels through transmembrane pathways such as gap junctions that allow small molecules to pass between two

cells in both directions. At a larger scale, cells communicate with each other through diffusing signals with

cell-specific receptors. The interaction is usually directed in the sense that signals such as growth factors are

produced by some, but not all cells, and can be received only by other cells that express the appropriate recep-

tors. Despite the fact that many of the specific pathways by which cells communicate have been reasonably

well characterized, remarkably little is known about the organizational principles that govern communications

among large numbers of cells and permit synchronized function over substantial distances [22, 23].

Since cells communicate with each other using the two general methods described above, an

intercellular-information network contains two essential features: a locally regular topology based on local

communication with neighbors via membrane structures such as gap-junction and integrins [24] and globally

random, directional couplings based on long-range diffusing signals and the corresponding cell membrane

receptors. To better distinguish between local and global interactions, it is useful to assume that local inter-

actions are confined within clusters, and global interactions occur among the clusters. The result is a class

of complex clustered networks with a regular subnetwork in each cluster but with random, sparse couplings

among clusters.

The above considerations assume identical cluster size and uniform interactions between clusters. In

particular, we assume that in these works all clusters in a network are on the equal footing in the sense that

their sizes are identical and the interactions between any pair of clusters are symmetrical. In realistic appli-

cations the distribution of the cluster size can be highly uneven. For example, in a clustered network with a

hierarchical structure, the size of a cluster can in general depend on the particular hierarchy to which it belong.
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More importantly, the interactions between clusters in different hierarchies can be highly asymmetrical. For

instance, the coupling from a cluster at a top hierarchy to a cluster in a lower hierarchy can be much stronger

than the other way around. An asymmetrically interacting network can in general be regarded as the superpo-

sition of a symmetrically coupled network and a directed network, both being weighted. A weighted, directed

network is a gradient network [25, 26], a class of networks for which the interactions or couplings among

nodes are governed by a gradient field. Our interest is then the synchronizability and the actual synchronous

dynamics on complex clustered networks with a gradient structure.

Given the above clustered network topologies, we will focus on spreading dynamics, synchronization

of coupled oscillators with such clustered structures, and the issue of security due to traffic jamming caused

cascadings.

Research on epidemic in networks started with the work of Sudbury [27] on completely random net-

works and has received increasing attention [13, 28–41] after the discoveries of complex networks such as

the small-world [42] and the scale-free [43] networks. The problem of epidemic deals with whether an ini-

tially localized seed infection can spread to a substantial part of the network [44, 45]. The pioneering work

by Pastor-Satorras and Vespignani [28] considered a two-state model, where nodes can be either susceptible

(S) or infected (I). A susceptible node can become infected and an infected node can recover and return to

the susceptible state - hence the SIS model. They found that for scale-free networks, there is no intrinsic

epidemic threshold in the thermodynamic limit. The result was extended by May and Lloyd [29] to the SIR

model, a three-state model where a node in the network can be in one of the three states: susceptible, in-

fected, and refractory (R), and an infected node can become refractory and is no longer susceptible to the

infection. In Chapter 2, we investigate the SIR dynamics on clustered networks. Our interest is in information

propagation, which may be particularly important for social networks. The information can be, for instance,

rumor, news, or facts. In general, once an “ignorant” is contacted with a piece of information, there is a

high probability that the individual will spread the information. In the SIR framework, a convenient way to

model this situation is to set the spreading rate to be one, which is the probability that a susceptible node is

infected when contacted. This situation also applies to a very virulent epidemic where a contacted individual
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is almost certainly infected. In the SIR framework, the work of Zanette [30] and Newman et al [35] suggested

the existence of propagation threshold for small-world networks but clustered networks typically possess the

small-world feature [1–3]. Our focus here is on for how long a piece of information on a clustered network

may last. A key parameter characterizing a clustered network is the number of modules, M . Intuitively, one

would expect the information lifetime to increase with M . However, we find, surprisingly, that the lifetime

can be maximized for a specific value of M . In particular, as M is increased initially, the time increases but

reaches a maximum for some value of M , and then decreases as M is increased further, which is basically

a resonant phenomenon [46]. The implication can be quite striking: the information lifetime is relatively

short for clustered networks having either small or large number of modules. In the case of the spread of an

extremely virulent disease in a human society, assuming the size of a city is proportional to the number of

modules in the underlying social network, the epidemic may last long not for cities of small or large size, but

for those of medium size! In the remaining of this Chapter we shall present analysis and numerical evidence

to substantiate our finding.

Recent years have witnessed a growing interest in the synchronizability of complex networks [47–59].

Generally, complete synchronization is considered for coupled identical oscillators on a network, where each

node is an oscillator and the coupling is via the network links. Using the master stability function formalism,

Pecora et al [60] showed that under certain conditions, the synchronization problem, where dynamics and

topological connections interweaved together, can be separated into two parts: the dynamic part and the

topological part. Then whether the oscillator network is synchronizable is determined by the conditions

relating these two parts. Thus for a given local dynamic, only examining the connection topology will yield

the synchronizability of the oscillator network. Earlier works [47–53] suggest that small-world [42] and scale-

free [43] networks, due to their small network distances, are generally more synchronizable than regular

networks. It has been found, however, that heterogeneous degree distributions typically seen in scale-free

networks can inhibit their synchronizability [54], but adding suitable weights to the network elements can

enhance their chances to synchronize with each other [55–58]. In Chapters 3-5, we will study systematically

the synchronizability of complex clustered networks. In Chapter 3, we present a new set of rules that govern
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the synchronizability in clustered networks when each cluster is a random graph [61]. Chapter 4 provides

validation of this set of rules under more general conditions, such as different coupling schemes and different

local dynamics, and also examines different network structures in each cluster [62]. Chapter 5 reveals a new

phenomena of alternating synchronizability in clustered networks when each cluster is a regular network [63].

In Chapter 6, we investigate synchronization in complex gradient clustered networks, where the size of the

clusters can be different and a coupling gradient from one cluster to its neighboring cluster may exist [64].

Cascading breakdown [65–67] in complex networks has received considerable attention recently [68–

71]. The phenomenon is referred to as an avalanching type of process, where the failure of a single or of a

few nodes can result in a large-scale breakdown of the network. In particular, in a physical network nodes

carry and process certain loads, such as electrical power, and their load-bearing capacities are finite. When

a node fails, the load that it carries will be redistributed to other nodes, potentially triggering more failures

in the network as a result of overloading. This process can propagate through the entire network, leading to

its breakdown. Indeed, cascading breakdown appears to be particularly relevant for large-scale failures of

electrical power grids, and efforts have been made to understand the dynamical origin of such failures [72].

From the standpoint of network security, scale-free networks [43], where a small subset of nodes (hubs)

possess substantially more links than those of an average node and therefore carry disproportionally more

loads, are especially vulnerable to cascading breakdown, as attack on one of the hub nodes can cause a

significant load redistribution [66, 69]. In this regard, a strategy for protecting scale-free networks against

cascading breakdown has been proposed [70], where a selective set of “unimportant” nodes that process little

but contribute relatively large loads to the network are pre-emptively removed so as to reduce the overall

load in the network. In Chapter 7, we investigate cascading breakdown in complex clustered networks. We

uncover a specific pattern of traffic flow, based on which we propose a control strategy to prevent global scale

cascading.

The above issues focus on certain particular network properties. Next we consider the scalability prob-

lem of functional networks, for both clustered networks and network without clustered structures. In par-

ticular, if a dynamical phenomenon of interest occurs in networks of size N1, can the same phenomenon be
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anticipated in networks of size N2, where N2 is substantially larger than N1? More importantly, does the

scalability so defined depend on the network topology? To address the issue of network scalability, we focus

on synchronization, a fundamental type of collective dynamics in biological systems [73], and investigate

the interplay between synchronization-based scalability and network topology. Chapter 8 discusses the scal-

ability of networks without clustered structures, say, regular networks including full-connected network and

ring network, and random network and scale-free networks. Scalability of clustered networks is discussed in

Chapter 9.

Finally, to justify the master stability function approach employed in the dissertation and also many

recent papers, we provide in Appendix A the master stability functions for several the typical chaotic oscilla-

tors with different single-component couplings. The results ascertain the generality of the interested class of

coupled dynamics, where the master stability function is negative only in a finite interval of the normalized

coupling parameter.

1.2. Linear stability analysis for coupled identical oscillators

Here we briefly review the techniques of linear stability analysis, which provides criteria of synchro-

nization for coupled identical oscillators.

1.2.1. Coupled discrete map system

The diffusively coupled maps on networks can be generally written as [74]

xi
m+1 = f(xi

m) + ε
1
ki

∑

j

AijH(f(xj
m)− f(xi

m))

= f(xi
m)− ε

∑

j

GijH(f(xj
m)). (1.1)

where xm+1 = f(xm) is a k-dimensional discrete dynamical system, H is a linear coupling function, G is

the coupling matrix such that Gij = −Aij/ki for j 6= i, and Gii = 1. ki is the degree (number of links) of

node i, and A is the adjacent matrix of the network that Aij = 1 if node i is connected to node j andAij = 0

otherwise. Since the rows of the coupling matrix G have zero sum, Eq. (1.1) permits an exact synchronized

solution: x1
m = x2

m = . . . = xN
m = sm, where sm+1 = f(sm). The variational equations governing the time
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evolution of the set of infinitesimal vectors δxi ≡ xi − s are

δxi
m+1 = Df(s)δxi

m − ε
∑

j

GijDH(f(sm))Df(sm)δxj
m, (1.2)

where DF and DH are the Jacobian matrices of the corresponding vector functions evaluated at sm and

f(sm) respectively. Diagonalizing the Laplacian matrix G yields a set of eigenvalues λi, i = 1, · · · , N . Since

Gij 6 0 for j 6= i and Gii = 1 = −∑
j 6=i Gij , the eigenvalues of G are nonnegative (by Gerschgorin

Theorem). Thus we can sort the eigenvalues as 0 = λ1 ≤ λ2 ≤ . . . ≤ λN and the associated normalized

eigenvectors e1, e2, . . . , eN . The transform δy = O−1 · δx, where O is a matrix whose columns are the set

of eigenvectors, leads to the block-diagonally decoupled form of Eq. (1.2):

δyi
m+1 = [I− ελiDH(f(sm))]Df(sm)δyi

n. (1.3)

The system is stable if for any i, 2 ≤ i ≤ N , that

lim
m→∞

1
m

ln
|δyi

m|
|δyi

0|
= lim

m→∞
1
m

ln
m−1∏

j=0

|δyi
j+1|

|δyi
j |

< 0. (1.4)

Usually, H is a linear function, thus DH is a constant matrix. If the system is one dimensional, DH = H ′ is

just a constant, say, γ. The above equation becomes:

ln |1− ελiγ|+ lim
m→∞

1
m

ln
m−1∏

j=0

|f ′(sj)| < 0. (1.5)

Recall that the second term of the above equation is just the Lyapunov exponent µ of a single map, thus

ln |1− ελiγ|+ µ < 0, (1.6)

which is

|eµ(1− ελiγ)| < 1, i = 2, . . . , N. (1.7)

For coupled logistic maps, f(x) = 1− ax2, H(f) = f , γ = 1, Eq. (1.7) reads (Ref. [74]):

|eµ(1− ελi)| < 1, i = 2, . . . , N. (1.8)
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The above inequality will hold for all the is if it holds for i = 2 and i = N . For the above coupling matrix

G, 0 < λ2 ≤ 1 and 1 ≤ λN ≤ 2, thus the condition (1.8) can be further simplified as:

λ2 >
1
ε
(1− e−µ), (1.9)

λN <
1
ε
(1 + e−µ). (1.10)

The boundary of the synchronization region in the phase diagram can be determined by setting λ2 = 1
ε (1 −

e−µ) and λN = 1
ε (1 + e−µ). In our simulation in the dissertation, we use a = 1.9, and the corresponded

Lyapunov exponent of the logistic map is µ = 0.55, thus λ2 = 0.423/ε, and λN = 1.577/ε. If the coupling

function H is nonlinear, DH[f(sm)] will depend on the value of f(sm) and it is difficult to obtain explicit

boundaries for λ2 and λN .

1.2.2. Continuous-time oscillators

We consider the synchronization condition of coupled continuous-time identical chaotic oscillators [60].

Each oscillator, when isolated, is described by:

dx
dt

= F(x), (1.11)

where x is a d-dimensional vector and F(x) is the velocity field. The parameters of the oscillator are chosen

such that it oscillates chaotically. The dynamics of N coupled oscillators are described by

dxi

dt
= F(xi)− ε

N∑

j=1

GijH(xj), (1.12)

where H(x) is a linear coupling function, ε is global coupling parameter, and G is the coupling matrix

describing the connection topology. The matrix G satisfies the condition
∑N

j=1 Gij = 0 for any i, where N

is the network size, therefore the system permits an exact synchronized solution: x1 = x2 = . . . = xN = s,

where ds/dt = F(s).

For the system described by Eq. (1.12), the variational equations governing the time evolution of the set

of infinitesimal vectors δxi(t) ≡ xi(t)− s(t) are

dδxi

dt
= DF(s) · δxi − ε

N∑

j=1

GijDH(s) · δxj , (1.13)
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where DF(s) and DH(s) are the d× d Jacobian matrices of the corresponding vector functions evaluated at

s(t). Diagonalizing the connection matrix G yields a set of eigenvalues {λi, i = 1, · · · , N} and the corre-

sponding normalized eigenvectors are denoted by e1, e2, . . . , eN . The eigenvalues are real and nonnegative

and can be sorted as 0 = λ1 < λ2 ≤ · · · ≤ λN [74]. The transform δy = O−1 · δx, where O is a matrix

whose columns are the set of eigenvectors, leads to the block-diagonally decoupled form of Eq. (1.13):

dδyi

dt
= [DF(s)− ελiDH(s)] · δyi.

Letting K = ελi (i = 2, . . . , N ) be the normalized coupling parameter, we can write

dδy
dt

= [DF(s)−KDH(s)] · δy. (1.14)

The largest Lyapunov exponent from Eq. (1.14) is the master-stability function Ψ(K) [60]. If Ψ(K) is

negative, a small disturbance from the synchronization state will diminish exponentially, thus the system is

stable and can be synchronized; if Ψ(K) is positive, a small disturbance will be magnified and the system

cannot be synchronized.



2 . INFORMATION PROPAGATION ON CLUSTERED NETWORKS

2.1. Background

Networks with a community structure, or clustered networks, are relevant to many social and biological

phenomena [1–6]. A clustered network consists of a number of groups, where nodes within each group

are densely connected but the linkage among the groups is sparse. Such is indeed the case in many social

networks, where individuals in a society tend to form groups according to their social characteristics. Within

a group, each member is directly connected to most other members, but connections among different groups

are relatively rare. Among the many outstanding problems concerning clustered networks, the propagation of

information, such as rumor, news, or facts, is of great interest.

Research on epidemic in networks started with the work of Sudbury [27] on completely random net-

works and has received increasing attention [13,28–41] after the discoveries of complex networks such as the

small-world [42] and the scale-free [43] networks. The problem of epidemic deals with whether an initially

localized seed infection can spread to a substantial part of the network [44, 45]. The pioneering work by

Pastor-Satorras and Vespignani [28] considered a two-state model, where nodes can be either susceptible (S)

or infected (I). A susceptible node can become infected and an infected node can recover and return to the

susceptible state - hence the SIS model. They found that for scale-free networks, there is no intrinsic epidemic

threshold in the thermodynamic limit. The result was extended by May and Lloyd [29] to the SIR model, a

three-state model where a node in the network can be in one of the three states: susceptible, infected, and

refractory (R), and an infected node can become refractory and is no longer susceptible to the infection. For

comprehensive review on epidemic in complex networks, see Refs. [13, 41].

In this Chapter we investigate the SIR dynamics on clustered networks [46]. Our interest is in infor-

mation propagation, which may be particularly important for social networks. The information can be, for

instance, rumor, news, or facts. In general, once an “ignorant” is contacted with a piece of information, there

is a high probability that the individual will spread the information. In the SIR framework, a convenient way

to model this situation is to set the spreading rate to be one, which is the probability that a susceptible node is

infected when contacted. This situation also applies to a very virulent epidemic where a contacted individual

is almost certainly infected. In the SIR framework, the work of Zanette [30] and Newman et al [35] suggested
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the existence of propagation threshold for small-world networks but clustered networks typically possess the

small-world feature [1–3]. Our focus here is on for how long a piece of information on a clustered network

may last. A key parameter characterizing a clustered network is the number of modules, M . Intuitively, one

would expect the information lifetime to increase with M . However, we find, surprisingly, that the lifetime

can be maximized for a specific value of M . In particular, as M is increased initially, the time increases but

reaches a maximum for some value of M , and then decreases as M is increased further, which is basically a

resonant phenomenon. The implication can be quite striking: the information lifetime is relatively short for

clustered networks having either small or large number of modules. In the case of the spread of an extremely

virulent disease in a human society, assuming the size of a city is proportional to the number of modules

in the underlying social network, the epidemic may last long not for cities of small or large size, but for

those of medium size! In the remaining of this Chapter we shall present analysis and numerical evidence to

substantiate our finding.

2.2. Model setup

We consider a clustered network with N À 1 nodes and M modules, where M ¿ N . Each module

is thus a subnetwork of n = N/M À 1 nodes, which can be either scale-free, small-world, or random. For

convenience, each module is assigned an integer, say, from 1 to M , and all modules are placed on a topological

ring with the periodic boundary condition. For each pair of adjacent modules, one node is chosen randomly

from each module and a link is added between the two nodes. At this stage all modules are connected through

next-neighbor type of links. Links of short-cut type are generated by randomly selecting pairs of modules

of distance l apart along the ring according to the probability P (l) ∼ e−αl and linking them, where α is

a control parameter. For α ∼ 0, random long-range links are highly probable, making the whole clustered

network small-world like. Since the linkage among the modules is sparse comparing with the linkage within

each module, and since for α not close to zero the links among modules are mostly local or diametrical,

large-scale propagation is more unlikely in these cases. It thus makes sense to focus attention on networks

with α ∼ 0.

The SIR dynamics for information propagation is implemented on the network, as follows. Initially all
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nodes are susceptible. At t = 0, a piece of information is generated at a randomly chosen node (seed). At the

next time step, one of its neighbors is randomly picked up, and becomes “infected ” with the information if

it is susceptible; otherwise, the original infected node itself becomes refractory. This process continues until

there is no longer any infected node in the network, and the time the whole process takes is the information

lifetime T . The number of refractory nodes for t ≥ T thus represents the number of nodes in the network that

have been infected.

2.3. Critical spreading depending on the intercluster link densities

For a piece of information to spread on a clustered network, the number of links among the modules

needs to be large. The minimally required average number of intercluster links can be estimated, as follows.

First, recall that each module is effectively a subnetwork that can be random, small-world, or scale-free.

For a random network, the mathematical theory of SIR dynamics with unit spread rate [27] indicates that

the fraction of nodes that can be infected approaches a universal constant of about 0.8 as the number of

nodes goes to infinity. For scale-free networks and more general networks that contain both random and

scale-free components, there is numerical evidence that the fraction is slightly below 0.8 [38]. In any case,

given a network of reasonably large size, the fraction of nodes that can be infected under the SIR dynamics is

approximately a constant r0 . 0.8. Next, let kM be the average number of short-cut type of links. Taking into

account the next-neighbor type of connections between the modules and the fact that n À kM , the average

number of nodes in a module with links going outside is ke = 2kM +2. Thus, within an infected module, the

average number of such nodes that carry the information is r0ke. Finally, let 〈k〉 be the average number of

internal links per node in the subnetwork. If a node with an outgoing link is infected, the probability that the

link is chosen to spread the information is 1/(〈k〉+ 1). Thus, on average, the number of nodes that carry the

information and spread it to a different module is r0ke/(〈k〉 + 1). For information to spread over the entire

network, we must have r0ke/(〈k〉+ 1) ≥ 1, yielding kmin
M = (〈k〉+ 1)/(2r0)− 1. For instance, if 〈k〉 = 10,

using r0 = 0.8 we obtain kmin
M = 6. This agrees quite well with numerics, as shown in Fig. 1, where the

fraction of infected nodes on the whole clustered network is calculated as a function of kM , for 6 different
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Fig. 1. For clustered network with a ring topology, the fraction of infected nodes versus kM . Parameters are

α = 0, 〈k〉 = 10, and n = 200. The six curves correspond to network size of N = 5 × 103 (squares), 104

(circles), 2× 104 (up triangles), 4× 104 (down triangles), 8× 104 (diamonds), and 16× 104 (left triangles),

respectively. Each data point is the result of averaging over 104 random realizations of the network. The inset

shows the dr/dkM versus kM , which is indicative of a continuous phase transition.

values of N . Apparently, the fraction becomes substantial for kM ≥ 6, indicating a large scale information

spread on the clustered network.

2.4. Resonant behavior of information lifetime

2.4.1. Resonant phenomena

We now examine the dependence of the lifetime T on the number of modules. Figures 2(a) and 2(b)

show, for a network of N = 4 × 104 nodes, the fraction r of infected nodes and T versus M , respectively.

The subnetwork in each module is random. We see that as M varies over two orders of magnitude (from 10

to 1000), r remains approximately constant (about 0.54). Since r is substantially above zero, a large-scale
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information spread on the network occurs. The surprising phenomenon is that the lifetime T , as shown in

Fig. 2(b), is apparently nonmonotonic and in fact exhibits a bell-shape behavior. There exists a value of M

for which the time reaches maximum, indicating a resonance-type of phenomenon. The phenomenon persists

when each subnetwork is scale-free as shown in Figs. 2(c) and 2(d).

In Fig. 2, squares are the data for fixed 〈k〉 and kM . As the number of module M is increased, the

average degree of the network k = 〈k〉 + 2(kM + 1)M/N also increases. One may wonder whether the

resonance is caused by this increase. To address this issue, we fix the value of k by reducing (kM + 1)M

inner edges, i.e., edges that connect nodes in the same module, while keeping the network fully connected.

The results for fixed k and kM are also shown in Fig. 2 (circles). We see that the results for fixed 〈k〉 and for

fixed k are essentially the same, indicating that the observed resonant phenomenon is not a numerical artifact,

but more likely an intrinsic property of clustered networks.

2.4.2. Theory

To establish the credence and the generality of the observed resonant phenomenon, we seek for a the-

oretical explanation. To gain insight, we consider the spread of information from a seed node on a two-

dimensional square lattice. By the assumptions of the SIR dynamics, once a node is infected, it will become

refractory or stay infected, and cannot be infected again. Assume that a node at the point r = (x, y) is infected

at time t − τ from the node at (x, y − a), where τ and a are the time step and lattice constant, respectively.

At time t this newly infected node infects one of its nearest-neighbor nodes, if it is susceptible. If all nearest-

neighbor nodes of the newly infected nodes are susceptible except for the node at (x, y−a), the probability for

any of these susceptible nodes to be infected at time t+τ is 1/3. Let P (r, t) be the probability that a node at the

point r is infected at time t. We have P (r, t) = (1/3)[P (x+a, y, t+τ)+P (x−a, y, t+τ)+P (x, y+a, t+τ)].

Subtracting P (r, t + τ) from both sides and dividing by τ , we get, in the continuum limit a → 0 and τ → 0,

∂P (r, t)/∂t = D∂2P (r, t)/∂x2 + µ∂P (r, t)/∂y, where D = −a2/3τ and µ = −a/3τ . Since |D| ¿ |µ|,

the diffusion term can be neglected, yielding ∂P (r, t)/∂t ≈ µ∂P (r, t)/∂y. In this equation, the term on

the right-hand side is derived by taking into account only the unidirectional spreading of the information

along the y-axis. Since unidirectional spreading can also occur in the x-direction, the equation governing the
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Fig. 2. For clustered network with a ring topology, (a) the fraction of infected nodes and (b) the information

lifetime T versus the number of modules, for random subnetworks. Squares: 〈k〉 = 10, the average degree k

varies as M increases; circles: k = 10. Other parameters are α = 0, N = 4× 104, and kM = 10. Each data

point is the average over 104 random network realizations. (c) and (d) are the corresponding plots when the

subnetwork within each module is scale-free.



16

propagation of infection in the two-dimensional lattice is

∂P (r, t)
∂t

= ν
[∂P (r, t)

∂x
+

∂P (r, t)
∂y

]
, (2.1)

where ν is a constant. Equation (2.1) is invariant under the scaling transformation r = (x, y) → lr =

(lx, ly), t → lzt and P (r, t) → lαP (r, t), where l is a dilatation factor. Comparing all terms in Eq. (2.1)

under the transformation, we have z = 1. This means that, if the seed node is at r = 0 and t = 0, there is a

nonzero probability that a node at distance L will be infected at time T , where T ∼ L. For a complex network,

although we were not able to derive a similar equation, the basic dynamical process for infection spreading

is the same. Since the relevant distance is the network diameter d, we expect the information lifetime to be

proportional to d: T ∼ d, which has been confirmed numerically for both random and scale-free networks, as

shown in Fig. 3(a).

Now consider a clustered network of M modules, where the subnetwork of n nodes within each module

is either random or scale-free. The average network diameter of each subnetwork is of the order of lnn

[75, 76]. Assume that the links among the modules are randomly distributed. If each module is regarded as

a node in a network, the network diameter is of the order of lnM . For two randomly selected nodes in the

clustered network, on average their distance is of the order of DM (a1 + a2 lnn), where DM is the average

number of modules that the shortest path between the two nodes passes, which is of the order of lnM , and a1

and a2 are constants. The diameter of the clustered network can thus be written as d = (a3 + a4 lnM)(a1 +

a2 lnn), where a3 and a4 are constants. Since n = N/M , we have

d = a + b lnM + c(lnM)2, (2.2)

where a, b, and c are constants. A numerical verification of Eq. (2.2) is shown in Fig. 3(b). The quadratic

dependence of the network diameter d on M , together with the linear relation between the information lifetime

and the diameter, suggests a quadratic relation (resonant behavior) between the lifetime and the number of

modules, as observed numerically.
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Fig. 3. (a) Relation between information lifetime T and network diameter d for both random (lower trace) and

scale-free (upper trace) networks. For both networks, the average degree is 10 and the size varies from 100

to 2× 104. Each value of d is obtained from 10 network realizations and each value of T is the average over

105 realizations. (b) For a ring clustered network of N = 4 × 104 nodes, the relation between the network

diameter and the number of modules. Parameters are α = 0, 〈k〉 = 10, and kM = 10. Each data point is the

average over 10 random network realizations. The solid curve is the theoretical fit.
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Fig. 4. For Zachary network of N = 52000 nodes, the resonant behavior between the information lifetime

and the number of modules for three cases: (a) scale-free subnetworks and preferential intercluster links, (b)

random subnetworks and preferential intercluster links, and (c) random subnetworks and random intercluster

links. In each subgraph, squares: 〈k〉 = 10, the average degree k varies as M increases; circles: k = 10.

Other parameters are β = 0 and kM = 10. Each data point is obtained by averaging the lifetime over 104

random network realizations.
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2.4.3. Resonance on more realistic clustered networks

Can the resonant behavior occur in more realistic clustered networks? To address this question we have

also studied another class of clustered networks, the Zachary networks [77], which were originally proposed

as a model of social networks. To construct a Zachary network of N nodes, we first divide all nodes into M

modules, each having n À 1 nodes. Next, the modules are organized into levels, where each group in level

1 consists of two modules, and each level-2 group consists of two level-1 groups, and so on. Finally, random

links among modules are added according to the probability P (l) ∼ e−βl, where l ≥ 0 is the level distance

between two random nodes in the network and β ≥ 0 is a control parameter. In particular, a node (say, node

i) is chosen randomly and a link is added between this node and another node from a different module (target

module) according to P (l). Once the target module is determined, the node (say, node j) in the module to

which node i will connect is determined either randomly or by a preferential attachment rule within the target

module. For the latter, the probability that node j is picked up is proportional to kj , the number of links

this node already has within the module. The process is repeated until the number of links among modules

reaches the prescribed number kMM . Implementing the SIR dynamics on the Zachary network, we have

again observed the resonant phenomenon, as shown in Fig. 4, where squares are for fixed 〈k〉 and circles are

for fixed k. Note that there is essentially no difference between the two cases, suggesting that the resonant

phenomenon is generic for clustered networks.

In summary, our investigation of the SIR dynamics on complex, clustered networks leads to the finding

of an interesting resonance-like phenomenon: the information lifetime typically exhibits a quadratic depen-

dence on the number of modules. Thus, a piece of information will last shorter for networks having either

a small number or a large number of modules. The same result holds for extremely virulent epidemics. In

particular, our result may be useful for a social network where such an epidemic has just emerged. Knowing

for how long the epidemic can potentially last can help in key decision making such as resources distribution

in order to suppress the epidemic.



3 . ABNORMAL SYNCHRONIZATION IN COMPLEX CLUSTERED NETWORKS

3.1. Background

There has been a growing interest in the synchronizability of complex networks [54, 78, 79]. Earlier

works [78] suggest that small-world [42] and scale-free [43] networks are generally more synchronizable

than regular networks. While heterogeneous degree distributions can inhibit synchronization [54], adding

suitable weights to the network elements can enhance their chances to synchronize with each other [79]. In

general, given a complex network with a fixed number of nodes, its synchronizability can be improved by

increasing the number of links. This is intuitive as a denser linkage makes the network more tightly coupled

or, “smaller,” thereby facilitating synchronization.

In this Chapter, we present a counterintuitive finding about the synchronizability of clustered net-

works [61]. A clustered network consists of a number of groups, where nodes within each group are densely

connected, but the linkage among the groups is sparse [80]. These networks have recently been discovered in

important areas of biological physics [2,81]. A complex clustered network is typically small-world so that its

average distance is small. Moreover, its degree distribution can be made quite homogeneous. The surprising

phenomenon is that more edges (links), which make the network smaller, do not necessarily lead to stronger

synchronizability. There can be situations where more edges can even suppress synchronization if placed im-

properly. In particular, we find that the synchronizability of a clustered network is determined by the interplay

between the inter-connections (links among clusters) and intra-connections (links within clusters) of the net-

work. Strong synchronizability requires that the numbers of the inter-links and intra-links be approximately

matched. In this case, increasing the number of links can indeed enhance the synchronizability. However, if

the matching is deteriorated, synchronization can be severely suppressed or even totally destroyed.

Our finding can have potential impacts on real network dynamics. In particular, there is mounting

evidence that several types of biological networks possess a clustered structure, such as the metabolic net-

works [2] and the protein interaction graphs [81]. In biology, synchronization is fundamental, on which many

biological functions rely. Our result implies that, in order to achieve robust synchronization for a clustered

biological network, the characteristics of the links are more important than the number of links. Simply

counting the number of links may not be enough to determine its synchronizability. Instead, links should be
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distinguished and classified to predict synchronization-based functions of the network. Clustered structure

has also been identified in technological networks such as electronic circuit and computer networks [82].

Suppose a large-scale, parallel computational task is to be accomplished by a computer network, for which

synchronous timing is of paramount importance. Our result can provide clues as to how to design the network

to achieve the best possible synchronization and consequently optimal computational efficiency.

Our approach is to introduce nonlinear dynamics on each node in the network and then perform stability

and eigenvalue analyses [60, 74]. The theoretical derivation yields the stability regions for synchronization

in the two-dimensional parameter space defined by the numbers of the two types of links. The analytic

predictions are verified by numerical simulations.

3.2. Abnormal synchronization

We consider a random clustered network model: N nodes are classified into M groups, where each

group has n = N/M nodes. In a group, a pair of nodes is connected with probability ps, and nodes belonging

to different groups are connected with probability pl. For a clustered network, the number of inter-connections

is typically far less than the number of intra-connections. As a result, the parameter region of small pl values

is more relevant. To be concrete, we first study the following general class of coupled-map networks: xi
m+1 =

f(xi
m)−ε

∑
j GijH[f(xj

m)], where xm+1 = f(xm) is a d-dimensional map, ε is a global coupling parameter,

G is the Laplacian matrix, and H is a coupling function. For convenience we choose Gij = −Aij/ki for

j 6= i and Gii = 1, where ki is the degree of node i and Aij is an element of the adjacent matrix A of the

network. Since the rows of the coupling matrix G have zero sum, the system permits an exact synchronized

solution: x1
m = x2

m = . . . = xN
m = sm, where sm+1 = f(sm). To gain insight, we set f(x) to be the logistic

map f(x) = 1 − ax2 (0 < a ≤ 2) and choose H(x) = x. If the system is synchronizable, starting from

a random initial condition, it will approach the synchronization state. In the simulation, synchronization is

defined as 〈|xi − 〈xi〉|〉 < 10−10, where 〈·〉 denotes average over the network. The average time T required

for the system to become synchronized can be used to characterize the ability of the system to synchronize.

If the system is unsynchronizable, T is infinite. Figure 5 shows the behavior of T in the two-dimensional

parameter space (pl, ps) for networks with 2 clusters (a) and 10 clusters (b). This gives the synchronizable
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Fig. 5. Contour plot of the synchronization time T (on a logarithmic scale log10 T ) in (pl, ps) space for

coupled logistic-map network with (a) N = 100, M = 2, and (b) N = 500, M = 10. ε = 1, a = 1.9.

The line segments defining the boundaries between the synchronizable and unsynchronizable regions are

determined by theory. Each data point is the result of averaging over 100 network realizations.
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Fig. 6. Contour plot of λN (a)(c) and λ2 (b)(d) in the (pl, ps) plane, for N = 100 and M = 2 (a)(b) and

N = 500 and M = 10 (c)(d).

region (grey regions in Fig. 5) in the parameter space that the system is able to synchronize within a certain

time, and the unsynchronizable region (white regions in Fig. 5). The shape of the figure depends on the

coupling strength ε and on the contour lines of λ2 and λN (see Fig. 6). For 2-cluster networks, if ε = 1, the

shape appears to be symmetric, while if ε < 1, the boundary is asymmetric. Figure 5(a) demonstrates that for

a given pl (e.g., 0.2), as ps is increased from 0.2, synchronization time T is also increased. At a certain point

(about 0.75 in this case), the system becomes unsynchronizable. That is, too many intra-links tend to destroy

the global synchronization [83].
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For the coupled-map network, the synchronization condition is λ2 > 1
ε (1 − e−µ) and λN < 1

ε (1 +

e−µ) [Eqs. (1.9) and (1.10)]. The boundaries of the synchronization regions in the parameter space can be

determined by setting λ2 = (1− e−µ)/ε and λN = (1 + e−µ)/ε. In our simulations, we have used a = 1.9

(µ ≈ 0.55). Thus we have λ2 ≈ 0.4 and λN ≈ 1.6 for ε = 1, the contour lines of which are shown in Fig. 5.

There is a good agreement between the theory and numerics.

3.3. Eigenvalue analysis

To better understand the abnormal behavior of the dependence of synchronizability on ps, we analyze

the eigenvalues of the Laplacian matrix of a general clustered network. Figure 6 shows the contour plots of

the λN and λ2 in the parameter space, for 2 (a,b) and 10 (c,d) clusters. There is an apparent similarity between

some of the contour lines and the stability boundaries in Fig. 5. From Fig. 6 we can see that, for a given value

of pl, λN decreases as ps increases, so it is easier to synchronize the network. However, for large values of

ps, λ2 decreases as ps increases, thus synchronization becomes more difficult. We see that the behavior of

λ2 accounts for the abnormal synchronizability behavior shown in Fig. 5. In the following, we shall derive a

theoretical formula to understand the dependence of λ2 on pl and ps for small values of pl ( typical parameter

regime of clustered networks).

For a clustered network, the components of the eigenvector e2 have approximately the same value

within any cluster, while they can vary among clusters, as demonstrated in Fig. 7. Thus, we can

write e2 ≈ [ẽ1, ẽ1, · · · , ẽ1, ẽ2, · · · , ẽ2, ẽ3, · · · , ẽM ]T , where [∗]T denotes the transpose, and for each I ,

1 6 I 6 M , there are n ẽI ’s in e2. By definition, G · e2 = λ2e2 and e2 · e2 = 1, we have

λ2 = eT
2 · G · e2 =

∑N
i,j=1 e2iGije2j , where e2i is the ith component of e2. Expanding the summation

in j yields λ2 =
∑N

i=1 e2i{Gi1ẽ1 + Gi2ẽ1 + · · · + Ginẽ1 + Gin+1ẽ2 + · · · + GiN ẽM}. If i and j belong

to the same cluster, Gij equals −1/ki with probability ps and 0 with probability 1 − ps; while if i and j

belong to different clusters, Gij equals−1/ki with probability pl and 0 with probability 1− pl. We thus have

λ2 =
∑N

i=1 e2i[N(pl/ki)ẽI − n(pl/ki)
∑M

J=1 ẽJ ], where ẽI is the component associated with the cluster

that contains node i, and the equality 1 − nps/ki = (N − n)pl/ki has been used. For a randomly clustered

network, the degree distribution has a narrow peak centered at k = nps + (N − n)pl, implying ki ≈ k. This
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Fig. 7. A typical profile of components of the eigenvector e2. Parameters are N = 500, M = 5, pl = 0.01,

and ps = 0.8.

allows us to carry out the summation over i. We obtain λ2 ≈ N(
∑M

I=1 nẽ2
I)pl/k−(n

∑M
J=1 ẽJ)2pl/k. Since

∑M
I=1 nẽ2

I ≈
∑N

i=1 e2
2i = 1, and n

∑M
J=1 ẽJ =

∑N
i=1 e2i, we have

λ2 =
Npl

nps + (N − n)pl
− (

N∑

i=1

e2i)2
pl

k
. (3.1)

As the normalized eigenvector e1 associated with λ1 describes the synchronized state, its components

are identical: e1 = [1/
√

N, · · · , 1/
√

N ]T . If G is symmetric, its eigenvectors are orthogonal to each other:

ei · ej = δij , where δij = 1 for i = j and 0 else. Taking i = 1, j = 2 we have
∑N

i=1 e2i = 0. If G is slightly

asymmetric (as for a weighted network),
∑N

i=1 e2i is nonzero but small, and the second term in Eq. (3.1) can

be neglected. These approximations lead to

λ2 ≈ Npl

nps + (N − n)pl
. (3.2)

For pl ¿ ps, the above equation agrees well with the numerics. This provides an analytic explanation for the
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observed abnormal behavior. Furthermore, the fact that λ2 depends only on the ratio of pl/ps explains the

straight-line patterns in Fig. 5 and in Fig. 6 (b)(d) for ps > pl.

The above analysis can be extended to more general clustered networks, i.e., those with different clus-

ter sizes or heterogeneous degree distributions in each cluster, by replacing n with nI—the size of the Ith

cluster—for each I , and using the degree distribution PI(k) in the summation over 1/k. In this case, ps and

pl can be regarded as effective parameters, and may vary for different clusters. A formula similar to Eq. (3.2)

can be obtained, because even in such a case, the contribution of the second term in Eq. (3.1) is small.

In conclusion, we have uncovered a phenomenon in the synchronization of complex clustered networks,

namely, the balance between the numbers of the inter-cluster and intra-cluster links plays a key role in the

global synchronizability of the network [84]. The network has the strongest synchronizability only when these

numbers match. Mismatch can weaken and even destroy the synchronizability. Clustered networks have been

increasingly recognized to be important for real network systems. Our work may provide fresh insight into

the functionings of such networks.



4 . OPTIMIZATION OF SYNCHRONIZATION IN COMPLEX CLUSTERED NETWORKS

4.1. Background

Recent years have witnessed a growing interest in the synchronizability of complex networks [47–

59]. Earlier works [47–53] suggest that small-world [42] and scale-free [43] networks, due to their small

network distances, are generally more synchronizable than regular networks. It has been found, however, that

heterogeneous degree distributions typically seen in scale-free networks can inhibit their synchronizability

[54], but adding suitable weights to the network elements can enhance their chances to synchronize with

each other [55–58]. Synchronizability of complex clustered networks has begun to be studied only recently

[61,85]. In particular, the dependence of synchronizability on the number of clusters in the network has been

investigated in Ref. [85], with the result that a network can become more synchronizable with the number

of clusters if there are random, long-range links. In the absence of such links, the synchronizability would

deteriorate continuously as more clusters appear in the network.

Viewing biological cells in terms of their underlying network structure is a useful concept and has at-

tracted much attention recently [7–11]. Over the past several years, network science has been developed and

mathematical treatments have been employed to understand the relation between the topological structure of

networks and their functions [11–15]. Organizing biological information using the network idea has been

fundamental to utilizing various systems-level approaches to understanding biological function. A key orga-

nizational feature in many biological systems is the tendency to form a clustered network structure [2,3,5,16].

For example, proteins with a common function are usually physically associated via stable protein-protein in-

teractions to form larger macromolecular assemblies. These protein complexes (or clusters) are often linked

together by extended networks of weaker, transient protein-protein interactions to form interaction networks

that integrate pathways mediating the major cellular processes [3,16]. As a result, a protein-protein interaction

network can be viewed naturally as an assembly of interconnected functional clusters, or a complex clustered

network. Another example is the metabolic network of organisms. It has been found that various metabolic

networks are organized into many small, highly connected clusters that combine in a hierarchical manner into

larger, less cohesive units. For example, within the Escherichia coli, the uncovered hierarchical modularity

is highly correlated with known metabolic functions. It is possible that the clustered network architecture is
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generic to system-level cellular organization [2]. Recent works have also revealed that the clustered topology

is fundamental to many types of social and technological networks [1, 4, 6].

In biology, synchronization is one of the most fundamental dynamics [73]. For examples, fireflies in

Southeast Asia, stretching for miles along the river bank, by adjusting the rhythms on receiving signals from

others, can flash synchronously [86]. The heart’s pacemaker, the so-called sinoatrial node, consists of about

10000 synchronous cells, and generates the electrical rhythm that commands the rest of the heart to beat [87].

Other examples include the rhythmic activity of cells of the pancreas [88] and of neural networks [89]. As

the complex, clustered network topology is necessary for describing and understanding the dynamics and

function of some key biological systems, it is important to study the synchronizability of such networks.

Given a complex network with a fixed (large) number of nodes, it is believed that its synchronizability

can be improved by increasing the number of links. This is intuitive as a denser linkage makes the network

more tightly coupled or, “smaller,” thereby facilitating synchronization. However, in Chapter 3 we have pre-

sented a phenomenon that apparently contradicts this intuition. In particular, a complex clustered network is

typically small-world so that its average distance is small. Moreover, its degree distribution can be made quite

homogeneous. The surprising phenomenon is that more edges (links), which make the network smaller, do

not necessarily lead to stronger synchronizability. There can be situations where more edges can even sup-

press synchronization if they are placed improperly. We find that the synchronizability of a clustered network

is largely determined by the interplay between the inter-cluster and the intra-cluster connections of the net-

work. Strong synchronizability requires that the numbers of the inter-links and intra-links be approximately

matched. In this case, increasing the number of links can indeed enhance the synchronizability. However, if

the number of one type of links is fixed while the number of the other type is changed so that the matching is

deteriorated, synchronization can be severely suppressed or even totally destroyed.

The oscillator models employed in Chapter 3 are discrete-time maps. In biological and technological

systems, however, continuous-time oscillator models are more realistic. One aim of this contribution is to

address whether synchronization can be optimized in continuous-time oscillator networks with a clustered

structure [62]. Another aim is to generalize our finding by considering an alternative coupling scheme that has
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not been treated previously. We shall develop a theory based on analyzing the spectral properties the network

coupling matrix, which are the key to the network’s ability to synchronize. Direct numerical simulations

of a class of actual oscillator clustered networks provide strong support for the theory. From the viewpoint

of computation, most previous works on network synchronization [47–59] are focused on the eigenvalue

properties of the underlying networks. The numerical results in this Chapter are from direct assessment of

whether or not the underlying oscillator network can achieve synchronization, which involves quite intense

computations. Our results imply that, in order to achieve robust synchronization for a clustered biological or

technological network, the characteristics of the links are more important than the number of links. Simply

counting the number of links may not be enough to determine its synchronizability. Instead, links should be

carefully distinguished and classified to predict possible synchronization-related functions of the network.

In Sec. 4.2, we show the master stability function for a typical coupled continuous-time oscillator

system. In Sec. 4.3, we develop theory and present numerical results for optimization of synchronization

in complex clustered networks. To be as general as possible, two types of coupling schemes have been

considered. An extensive discussion of the main result and its biological implications is offered in Sec. 4.4.

4.2. Model setup and master stability function for Rössler oscillators

The approach we take to establish the result is to introduce nonlinear dynamics on each node in the

network and then perform stability and eigenvalue analyses [60, 74]. The theoretical derivation yields the

stability regions for synchronization in the two-dimensional parameter space defined by the probabilities of

the two types of links. The analytic predictions are verified by direct numerical simulations of the dynamical

network. To be specific, in this Chapter we consider the following general clustered network model: N nodes

are classified into M groups, where each group has n = N/M nodes. In a group, a pair of nodes is connected

with probability ps, and nodes belonging to different groups are connected with probability pl. This forms a

clustered random network. For a clustered network, the number of inter-connections is typically far less than

the number of intra-connections. As a result, the parameter region of small pl values is more relevant.

For the Rössler oscillators we used in the simulation, an example of the master stability function is

shown in Fig. 8. The function Ψ(K) is negative in the interval [K1,K2], where K1 ≈ 0.2 and K2 ≈ 4.62.
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Fig. 8. For the Rössler oscillator network, an example of the master stability function Ψ(K) calculated

numerically from Eq. (1.14).
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Thus, for K1 < K < K2, all eigenvectors (eigenmodes) are transversely stable and the network can be

synchronized, which gives the condition of the boundary of synchronization region:

λ2 ≥ K1

ε
, (4.1)

λN ≤ K2

ε
. (4.2)

The boundaries determined by these equations and the numerical simulation results are shown in Fig. 9 for

type-I coupling and Fig. 14 for type-II coupling. The analysis and the numerical result agree well.

4.3. Synchronization in continuous-time oscillator clustered networks

We shall consider two types of distinct coupling schemes for complex clustered networks and develop

theoretical analysis for synchronization.

4.3.1. Type-I coupling

For type-I coupling, we consider a normalized coupling matrix: for any i (1 6 i 6 N ), Gii = 1,

Gij = −1/ki if there is a link between node i and j, and Gij = 0 otherwise, where ki is the degree of node i

(the number of links). The coupling matrix G is not symmetric since Gij = −1/ki while Gji = −1/kj . De-

pending on the initial conditions and the network realization, the Rössler system may have desynchronization

bursts [90, 91]. It is thus necessary to characterize the network synchronizability in a statistical way. Define

Psyn as the probability that the fluctuation width of the system W (t) is smaller than a small number δ (chosen

somewhat arbitrarily) at all time steps during a long observational period T0 in the steady state, say, from T1

to T1+T0, where W (t) = 〈|x(t)−〈x(t)〉|〉, and 〈·〉means average over the nodes of the network. If δ is small

enough, the system can be deemed as being synchronized in the period T0, thus Psyn is in fact the probability

of synchronization of the system in the period T0, with Psyn = 1 if the networks for the given parameters

can synchronize. Practically, Psyn can be calculated by the ensemble average, i.e., the ratio of the number of

synchronized cases over the number of all random network realizations. In addition, the ensemble average

and time average of fluctuation width 〈〈W 〉T0〉e can be a direct indicator of the degree of synchronization

too. Since Psyn changes drastically from 0 to 1 in a small region in the parameter space, it is possible to

define the boundary between synchronizable region and unsynchronizable region as follows: for a fixed ps,
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the boundary value plb is such that the quantity ‖∇Psyn(ps, pl)‖ ≡
√

(∂Psyn/∂ps)2 + (∂Psyn/∂pl)2|(ps,pl)

is maximized at (ps, plb). Figure 9 shows the synchronization boundary in the parameter space (ps, pl) from

both numerical calculation and theoretical prediction of Eqs. (4.1) and (4.2). It can be seen that the two results

agree with each other. If the number of inter-cluster connections is fixed, say, pl = 0.2 (the dashed line in

Fig. 9), as the number of intra-cluster links exceeds a certain value (as ps exceeds 0.78), the system becomes

desynchronized. Figure 10 shows the synchronization probability Psyn on the dashed line in Fig. 9. When

ps is small, e.g. around 0.2, the number of the inter-cluster connections and the number of the intra-cluster

connections are approximately matched, and the networks are synchronized. As ps becomes larger and larger,

the matching condition deteriorates, the networks lose their synchronizability, even though their average dis-

tances become smaller. That is, too many intra-cluster links tend to destroy the global synchronization. The

same phenomenon persists for different parameter values. One remark concerning the physical meaning of

the result, as exemplified by Figs. 9 and 10, is in order. Consider two clustered networks where (A) the two

types of links are approximately matched and (B) there is a substantial mismatch. Our theory would predict

that network A is more synchronizable than network B. This statement is meaningful in a probabilistic sense,

as whether or not a specific system may achieve synchronization is also determined by many other factors

such as the choice of the initial condition, possible existence of multiple synchronized states, and noise, etc.

Our result means that, under the influence of these random factors, there is a higher probability for network

A to be synchronized than network B.

Figure 11 shows the dependence of λN and λ2 on the network parameters (pl,ps) for the 2-cluster

network. The shape of the boundary in Fig. 9 depends on the coupling strength ε [Eqs. (4.1) and (4.2)] and on

the contour lines of λ2 and λN . For the clustered network of Rössler oscillators, Eq. (4.2) is always satisfied.

Thus λ2 determines the synchronizability of the system. In the following, we shall derive a theoretical formula

to understand the dependence of λ2 on pl and ps for small values of pl, which is the typical parameter regime

of clustered networks.

For a clustered network, the components of the eigenvector e2 have approximately the same value within

any cluster, while they can be quite different for different clusters, as demonstrated in Fig. 12. Thus, we can
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Fig. 9. Synchronization boundary of the coupled Rössler oscillators on a 2-cluster network. The dotted line is

the numerically obtained boundary from the computation of Psyn, the solid line is from theoretical analysis

[Eq. (4.1)] where λ2 is calculated numerically. The horizontal dashed line indicates the position of the cross

section of Psyn shown in Fig. 10. Simulation parameters are N = 100 and M = 2, δ = 0.01, T0 = 104,

and ε = 0.5. Each data is the result of averaging over 1000 network realizations. The data for this figure was

obtained with 5 Pentium-IV 2.80GHz CPUs for about 2 weeks.
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with N = 100 and M = 2. δ = 0.01, T0 = 104 and ε = 0.5. Each data is the result of averaging over 1000

network realizations.
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Each data is averaged over 100 realizations.
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and ps = 0.9.
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write e2 ≈ [ẽ1, · · · , ẽ1, ẽ2, · · · , ẽ2, · · · , ẽM , · · · , ẽM ]T , and for each I , 1 6 I 6 M , there are n ẽI ’s in e2.

By definition, G · e2 = λ2e2 and e2 · e2 = 1, we have λ2 = eT
2 ·G · e2 =

∑N
i,j=1 e2iGije2j , where e2i is

the ith component of e2. Expanding the summation in j yields

λ2 =
N∑

i=1

e2i{Gi1ẽ1 + Gi2ẽ1 + · · ·+ Ginẽ1

+Gin+1ẽ2 + · · ·+ GiN ẽM}. (4.3)

Recall that Gii = 1; and if i and j belong to the same cluster, Gij equals −1/ki with probability ps and 0

with probability 1−ps; while if i and j belong to different clusters, Gij equals−1/ki with probability pl and

0 with probability 1− pl, where ki is the degree of node i. Thus,

λ2 =
N∑

i=1

e2i{−n
pl

ki
ẽ1 − n

pl

ki
ẽ2 + · · ·

+ẽI − n
ps

ki
ẽI + · · · − n

pl

ki
ẽM},

where ẽI is the value corresponding to the cluster that contains node i. Noting that 1−nps/ki = (N−n)pl/ki,

we have

λ2 =
N∑

i=1

e2i{(N − n)
pl

ki
ẽI − n

pl

ki

M∑

J 6=I

ẽJ}

=
N∑

i=1

e2i{N pl

ki
ẽI − n

pl

ki

M∑

J=1

ẽJ}.

For the clustered random network models, the degree distribution has a narrow peak centered at k = nps +

(N − n)pl, thus ki ≈ k. The summation over i can now be carried out in a similar manner,

λ2 ≈
M∑

I=1

nẽI{N pl

k
ẽI − n

pl

k

M∑

J=1

ẽJ}

= N
pl

k

M∑

I=1

nẽ2
I − (n

M∑

J=1

ẽJ)2
pl

k
.

Note that
∑M

I=1 nẽ2
I ≈

∑N
i=1 e2

2i = 1, and n
∑M

J=1 ẽJ =
∑N

i=1 e2i, thus we have

λ2 =
Npl

nps + (N − n)pl
− (

N∑

i=1

e2i)2
pl

k
. (4.4)

The normalized eigenvector e1 of λ1 corresponds to the synchronized state, thus its components have constant

values: e1 = [1/
√

N, · · · , 1/
√

N ]T . If G is symmetric, then eigenvectors for different eigenvalues are
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orthogonal: ei · ej = δij , where δij = 1 for i = j and 0 else. Take i = 1 and j = 2, we have
∑N

l=1 e2l = 0.

Although the coupling matrix G is slightly asymmetric,
∑N

i=1 e2i is nonzero but small, and the second term

in Eq. (4.4) can be omitted, leading to the final form:

λ2 ≈ Npl

nps + (N − n)pl
. (4.5)

Since n = N/M , the above equation can be rewritten as

λ2 ≈ Mpl

ps + (M − 1)pl
,

or

λ2 ≈ Mpl/ps

1 + (M − 1)pl/ps
. (4.6)

Figure 13(a) shows for several fixed pl values, the dependence of λ2 on ps, from direct numerical cal-

culation (symbols) and Eq. (4.5) (curves). For fixed pl and large ps, λ2 decreases as ps increases, thus the

network becomes more difficult to be synchronized. This provides an analytic explanation for the numerically

observed abnormal behavior in the network synchronizability. For small ps, when ps ∼ pl, the network be-

comes a single random network, thus λ2 approximately follows the formula for random networks, which is an

increasing function of ps [92]. This makes clear the increasing behavior of λ2 at small ps cases. Furthermore,

since λ2 depends only on the ratio of pl/ps, this explains the straight-line patterns in Fig. 11(b) for ps > pl.

From Eq. (4.6), we can see that λ2 is determined by the number of clusters M ; it does not depend on

the network size N , or the size of each cluster n, insofar as M is given. Figure 13(b) shows λ2 versus M .

The symbols are form direct numerical simulations and the curves are from theory [Eq. (4.6)] for two values

of the ratio pl/ps: 0.05/0.8 and 0.1/0.8. Two cluster sizes (n = 50 and n = 200) are used. One can see

that numerics agrees with the theory well for all cases. The larger cluster size case (crosses) agrees with the

theory better. Since the synchronization boundaries is mainly determined by λ2, it can be inferred that the

synchronization boundary changes with the number of clusters. Even though, the straight-line pattern of λ2

in the (pl, ps) plane persists, thus the synchronization boundary in the plane will have a similar straight-line

pattern as for the M = 2 case, and our result that large ps can deteriorate synchronization persists.
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Fig. 13. (a) λ2 vs ps for a network with 2 clusters. From bottom to top, pl = 0.01 (squares), pl = 0.03

(circles), and pl = 0.05 (up triangles). N = 100 and n = 50. (b) λ2 vs the number of clusters M for n = 50

(pluses) and n = 200 (crosses). ps = 0.8; pl = 0.05 for the lower set of data and pl = 0.1 for the upper set

of data. Note that the network size N = Mn is changed with M . The symbols are obtained numerically and

each data point is the average of 100 network realization. The curves are from theory [Eq. (4.5)].
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For large M values (M À 1), λ2 can be approximated as λ2 ≈ Mpl/(ps + Mpl). For a given ps

value, the density of links within a cluster is fixed. Suppose the dynamical model of each node is also given,

thus the critical value of λ2 for synchronization is fixed. As a result, for networks with many clusters, the

probability of inter-cluster connections pl required for achieving synchronization decreases as 1/M . Note

that n2(M − 1)pl ≈ n2Mpl is the average number of inter-cluster links per cluster. This means, insofar

as the average number of inter-cluster links per cluster is larger than certain critical value (depending on the

dynamics), the network is always synchronizable, regardless of the number of clusters (the network size).

This result is consistent with that in Ref. [74], which states that for random networks, one can have chaotic

synchronization for any arbitrarily large network size, if the average degree is larger than some threshold.

The above analysis can be extended to more general clustered networks, i.e., those with different cluster

sizes or heterogeneous degree distributions in each cluster, by replacing n with nI - the size of the Ith cluster

- for each I , and using the degree distribution PI(k) of the Ith cluster in the summation over 1/k. In this

case, ps and pl can be regarded as effective parameters, and may vary for different clusters. A formula similar

to Eq. (4.5) can be obtained, because even in such a case, the contribution of the second term in Eq. (4.4)

to λ2 is small. This justifies that the observed abnormal synchronization phenomenon is due to the clustered

network structure, and does not depend on the details of the dynamics.

4.3.2. Type-II coupling

For type-II coupling, the coupling matrix is defined as: for any i (1 6 i 6 N ), Gii = ki, Gij = −1 if

there is a link between node i and j, and Gij = 0 otherwise. The simulation results are shown in Fig. 14. In

this case, we fix pl = 0.1 (so the number of inter-cluster connections is fixed), and examine the synchroniz-

ability of the system versus ps. When ps is small, there are frequent desynchronization bursts [90, 91], thus

the average fluctuation width 〈〈W 〉T0〉e is large and the system has a lower synchronization probability Psyn.

As ps increases, the system becomes more synchronizable and the intermittent desynchronization bursts be-

come rare, and finally it stays synchronized in the whole time interval T0 (about ps = 0.1). As ps is increased

further passing through a stable range (0.1, 0.8), the system becomes unstable. For even larger values of ps,

the system diverges for almost every network realization tested, which accounts for a small synchronization
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probability Psyn. The vertical lines in Fig. 14 show the positions of the synchronization boundaries ob-

tained from Eqs. (4.1) and (4.2). It can be seen that the theory agrees well with the numerical simulations.

The eigenvalues have been obtained numerically, and contour plots of λN and λ2 in the network parameter

space (pl, ps) are shown in Fig. 15. Therefore, under the stability boundary conditions Eqs. (4.1) and (4.2),

the phenomenon that the synchronizability is deteriorated and destroyed in the presence of the mismatch in

the numbers of inter-cluster and intra-cluster links for type-II coupling is also originated from the clustered

structure and does not depend on the details of dynamical oscillators.

For type-II coupling, both λN and λ2 will affect the synchronizable region, therefore we shall provide

a theoretical approach for λN and λ2 in terms of ps and pl for the case of pl ¿ ps. For pl ¿ ps, the largest

eigenvalue of the system λN is on the same order of magnitude as the largest eigenvalue of one cluster λn,

thus it is reasonable to write λN = λn +δ, where δ depends on pl. Let us first consider λn. Since each cluster

is a random network with size n and connecting probability ps, λn is the largest eigenvalue of the coupling

matrix of this random subnetwork Gn. Gn can be decomposed as Gn = Dn −An, where Dn is a diagonal

matrix and (Dn)ii = ki, and An is the adjacency matrix of the random subnetwork defined as (An)ij = 1

if there is a link between node i and node j and 0 otherwise. It is known that the largest eigenvalue of An

approaches nps for large n, and the spectra density of the other eigenvalues satisfies a semicircle law [93–96]:

ρ(λ) =
{ (2πσ2)−1

√
4σ2 − λ2 if |λ| < 2σ

0 otherwise
,

where σ =
√

nps(1− ps). Thus the eigenvalues of −An have a minimum value of −nps and the others are

approximately distributed in (−2σ, 2σ). Since the degree distribution of the random network is binomial with

mean value of nps and standard variation σk = σ =
√

nps(1− ps), which is much smaller than the mean

value nps, Dn can be approximated as Dn ≈ npsIn, where In is the identity matrix of order n. Adding Dn

to −An only shifts all the eigenvalues of −An by the amount nps, and moves the minimum eigenvalue of

−An to 0, which is λ1 of Gn. Therefore the largest eigenvalue of Gn is

λn(ps) = nps + 2σ = nps + 2
√

nps(1− ps). (4.7)
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Fig. 14. Properties of the coupled Rössler system for type-II coupling. (a) the synchronization probability

Psyn versus the intra-cluster connectivity probability ps; (b) ensemble averaged and time averaged fluctuation

width 〈〈W 〉T0〉e, where pl = 0.1, T0 = 20000, δ = 0.001, ε = 0.083, N = 100, and M = 2. Vertical lines

indicate the positions of the synchronization boundaries obtained from Eq. (4.1) and Eq. (4.2) where the

eigenvalues are calculated numerically. The absence of data points for large ps in (b) means the system

variables diverge. Each data point is the result of averaging over 1000 network realizations. The data for this

figure were obtained with 10 Pentium-IV 2.80GHz CPUs for about 2 weeks.
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Fig. 15. Contour plots of λN (a) and λ2 (b) in the (pl, ps) space for type-II coupling, N = 100 and M = 2.

Each data is averaged over 100 realizations.
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To assess δ, note that when pl is small, δ approximately depends on pl only, i.e., ∂δ/∂pl À ∂δ/∂ps. Thus

δ(pl, ps) ≈ δ(pl), which can be estimated at the point ps = pl:

δ(pl) = λN (pl, pl)− λn(pl).

For ps = pl, the whole system is a homogeneous random network with connecting probability pl, thus the

largest eigenvalue can be obtained from Eq. (4.7): λN (pl, pl) = Npl + 2
√

Npl(1− pl). We have

δ(pl) = (N − n)pl + 2(
√

N −√n)
√

pl(1− pl),

and the largest eigenvalue of the random clustered network can be expressed as:

λN (pl, ps) = λn(ps) + δ(pl)

= nps + (N − n)pl + 2
√

nps(1− ps)

+2(
√

N −√n)
√

pl(1− pl). (4.8)

Figure 16(a) shows the simulation results (symbols) of λN for different cases. The curves are from Eq. (4.8).

It can be seen that the two fit well. Note that Eq. (4.8) is valid only for pl ¿ ps. For pl > ps, the clustered

structure vanishes and the decomposition of λN into λn is invalid.

We now turn our attention to λ2. The corresponding eigenvector has a similar structure for type-II

coupling as that for type-I coupling (see Fig. 12), therefore we have the same equation as Eq. (4.3). The

coupling matrix is different from that of type-I coupling. In particular, Gii = ki, and if i and j belong to

the same cluster, Gij equals −1 with probability ps and 0 with probability 1− ps, while if i and j belong to

different clusters, Gij equals −1 with probability pl and 0 with probability 1− pl. We can thus write λ2 as

λ2 =
N∑

i=1

e2i{−nplẽ1 − nplẽ2 + · · ·

+kiẽI − npsẽI + · · · − nplẽM},

where ẽI is the value corresponding to the cluster that contains node i. Noting that ki ≈ k = nps+(N−n)pl,
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Fig. 16. For type-II coupling, (a) the largest eigenvalue λN versus ps for pl = 0.01 and N = 100, 200, 400

from bottom to top, where M = 2. Symbols are from direct numerical simulation, curves are from Eq. (4.8).

(b) The smallest nontrivial eigenvalue λ2 versus ps for N = 200, M = 2 and pl = 0.01, 0.02, 0.03 from

bottom to top. Symbols are from direct numerical simulation, the solid lines are from Eq. (4.9). Each data is

averaged over 100 realizations.
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under similar manipulations to those for type-I coupling, we have

λ2 =
N∑

i=1

e2i{(N − n)plẽI − npl

M∑

J 6=I

ẽJ}

=
N∑

i=1

e2i{NplẽI − npl

M∑

J=1

ẽJ}

≈
M∑

I=1

nẽI{NplẽI − npl

M∑

J=1

ẽJ}

= Npl

M∑

I=1

nẽ2
I − (n

M∑

J=1

ẽJ)2pl.

Note that
∑M

I=1 nẽ2
I ≈ ∑N

i=1 e2
2i = 1, and n

∑M
J=1 ẽJ =

∑N
i=1 e2i = 0 (G is symmetric for type-II

coupling), finally we have

λ2 ≈ Npl. (4.9)

Figure 16(b) shows the dependence of λ2 on ps. The theory [Eq. (4.9), curves] agrees well with the numerical

simulations (symbols). The analytical results about λN and λ2 [Eqs. (4.8) and (4.9)] explain the patterns in

Fig. 15 for the pl < ps region. Since λN increases with ps, for large ps, λN could be too large, leading to an

instability in the corresponding eigenmode of the system. This explains that too many intra-cluster links can

depress the synchronizability of the system.

4.4. Discussions

In conclusion, we have presented theory and numerical evidence that optimal synchronization of

continuous-time oscillator clustered networks can be achieved by matching the probabilities of inter-cluster

and intra-cluster links. That is, at a global level, the network has the strongest synchronizability when these

probabilities are approximately equal. Overwhelmingly strong intra-cluster connection can counterintuitively

weaken the network synchronizability. This can be better understood by the following considerations. Net-

work synchronizability is usually characterized by the spread of the nontrivial eigenvalues. What our analyti-

cal formulae suggest is that spread becomes minimal when the two probabilities are approximately matched.

For instance, when the inter-cluster linking probability pl is fixed, increasing the intra-cluster connection

probability ps could result in desynchronization. On the other hand, for realistic clustered networks, pl is

always smaller than ps, and is usually much smaller. Our analysis indicates that, insofar as the network is
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clustered (ps > pl), a larger pl will lead to better synchronizability. To give another example, consider a

particular set of (pl, ps) values for which the network cannot be synchronized. Then, increasing pl while

decreasing ps (so as to keep the average degree fixed) can lead to synchronization (Figs. 11 and 15). While

our theory gives a general picture for the network synchronizability in the two-dimensional parameter plane

(pl, ps), the optimal cases where the two probabilities match approximately do not seem to occur in realistic

situations, where pl is usually much smaller than ps.

While our network model is somewhat idealized, we have argued that similar phenomena should persist

in more general clustered networks. In real biological or technological systems with a clustered structure,

if global synchronization is the best performance of the system, special attention needs to be paid to dis-

tinguishing the inter-connections and intra-connections as in this case, a proper distribution of the links is

more efficient than adding links blindly. For biological networks, such as the metabolic network and the

protein-protein interaction network, certain nodes may have many more links than the others, which forms a

hierarchical clustered structure [11]. This indicates a power-law distribution of the degree k: P (k) ∼ k−γ .

Therefore it is interesting to study clustered scale-free networks, networks where each cluster contains a

scale-free subnetwork. We have studied the synchronizability of such clustered networks. In particular, for

each cluster, the subnetwork was generated via the preferential attachment rule [43]. Initially, there is a fully

connected small subset of size m0, then a new node is added with m links, and the probability that a previous

node i is connected to this new node is proportional to its current degree ki. New nodes are continuously

added until a prescribed network size n is reached. In our simulation, we take m0 = 2m + 1 so that the aver-

age degree of this network is 2m. M such scale-free subnetworks are generated. Then we connect each pair

of nodes in different clusters with probability pl. For this model, pl controls the number of inter-cluster links,

and m controls the number of intra-cluster links. We have carried out numerical simulations, and found that

the patterns for the eigenvalues λN and λ2 are essentially the same as that for the clustered network where

each cluster contains a random subnetwork (Figs. 11 and 15). In fact, we have compared the simulation

results to Eq. (4.5) for the type-I coupling, where we took ps = 2m/n. The mean field theory Eq. (4.5) fits
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reasonably well with the simulation results. This indicates that optimization of synchronization by matching

different types of links is a general rule.

The general observation is that the synchronizability of the clustered networks is mainly determined by

the underlying clustered structure. Insofar as there is a clustered structure, details such as how nodes within

a cluster connect to each other, what kind of dynamics are carried by the network and what the parameters

are, do not appear to have a significant influence on the synchronization in the coupled oscillator networks

supported by the clustered backbone. A practical usage is that, even if the details about the dynamics of a

realistic system are not available, insofar as the underlying network has a clustered structure, we can expect

similar synchronization behaviors as presented in this Chapter.

An interesting issue about the synchronization dynamics on a clustered network is how it desynchro-

nizes. As discussed in Ref. [90, 91], when desynchronization occurs, the deviation from the synchronization

state, xi − 〈xi〉, will have the same form as the unstable eigenmodes (eigenvectors). As a result, if the desyn-

chronization is caused by λ2’s being too small [violation of condition (4.1)], the desynchronized dynamics

will have a clustered structure, due to a clustered structure in the corresponding eigenvector e2: nodes within

a cluster have approximately the same dynamical variables, while they can be quite different among clusters.

That is, desynchronization occurs among clusters. However, if the desynchronization is caused by λN ’s be-

ing too large [violation of condition (4.2)], the deviation xi − 〈xi〉 will not have a clustered structure, since

eN typically does not exhibit any clustered features. In this case, desynchronization occurs both among and

within clusters.

The clustered topology has also been identified in technological networks such as computer networks

and certain electronic circuit networks [97–99]. For a computer network, the main functions include executing

sophisticated codes to carry out extensive computations. Suppose a large-scale, parallel computational task

is to be accomplished by the network, for which synchronous timing is of paramount importance. Our result

can provide useful clues as to how to design the network to achieve the best possible synchronization and

consequently optimal computational efficiency.



5 . ALTERNATING SYNCHRONIZABILITY OF COMPLEX CLUSTERED NETWORK WITH

REGULAR LOCAL STRUCTURE

5.1. Background

Synchronization in complex networks has attracted much attention recently [6,54,61,85,100–102]. Ear-

lier works have found that random [103], small-world [42], and scale-free [43] networks, due to their small

network distances, are generally more synchronizable than regular networks [100]. However, small network

distance alone is not a guarantee for strong synchronizability. For example, for a scale-free network, the ex-

istence of hubs contributes to a small network distance but the underlying heterogeneous degree distribution

can cause a wide spread in the eigenvalues of the coupling matrix, which can actually inhibit network syn-

chronization [54]. More recent works have found that, by assigning larger weights to the hubs or introducing

a gradient field from hub nodes to small degree nodes, scale-free networks can be more synchronizable than

random networks [101]. Modifying local connecting structure, if done properly, can also change the synchro-

nizability significantly [102]. Synchronizability of complex clustered networks has begun to be investigated

only recently [6, 61, 85].

In this Chapter, we investigate the synchronizability of locally regular, complex clustered networks [63]

(see Sec. 5.2 for motivations from systems biology). A clustered network consists of a number of groups,

where nodes within each group are densely connected, but the linkages among the groups are sparse. In fact,

the tendency to form a clustered network structure appears to be a key organizational feature in biological

systems, such as protein-protein interaction networks [3,5,16] and metabolic graphs [2]. Previous works have

also revealed that the clustered topology is fundamental to many types of social and technological networks

[104]. Our recent work [61] on the synchronizability of clustered networks with random subnetworks has

revealed an interesting phenomenon, namely, more links, which make the network smaller, do not necessarily

lead to a stronger synchronizability. There can be situations where extra links, if placed improperly, can

suppress synchronization. Realistic considerations stipulate that the globally random connections among

clusters be sparse. Thus a key question is what can happen to network synchronizability when the density of

intra-cluster links is varied. We find that, for a typical locally regular clustered network, its synchronizability

exhibits an alternating, highly non-monotonic behavior as a function of the intra-cluster link density. In fact,
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there are distinct regions of the density for which the network synchronizability is maximized, but there are

also parameter regions in between for which the synchronizability diminishes. We show that, while surprising,

this phenomenon of alternating synchronizability can be fully explained theoretically based on analyzing the

behavior of the eigenvalues and eigenvectors of the coupling matrix. A feature that makes our theoretical

analysis feasible is that, due to the locally regular topology of the network, some key eigenvectors within

each individual cluster exhibit periodic wave patterns. Both numerical eigenvalue calculations and direct

simulation of the actual synchronization dynamics of the underlying oscillator network provide firm support

for the theory. One implication is that, in order to achieve robust synchronization, the density of the local

connections within a cluster needs to be appropriately tuned since both high density and low density can

hinder synchronization.

Considerations from systems biology that motivate our work are described in Sec. 5.2. A detailed

theoretical treatment of the synchronizabilities of clustered networks with regular subnetworks is provided in

Sec. 9.2. In particular, we begin with relatively simple networks of two clusters and then extend the analysis

to networks with multiple clusters. The issue of robustness of the alternating-synchronization behavior will

also be addressed. Direct numerical support from actual simulations of synchronous dynamics is provided in

Sec. 5.4. Discussions are presented in Sec. 9.4.

5.2. Biological motivations

Complex multicellular organisms such as the human body require multi-scale organizational structures,

including formation of organs from large numbers of cells and integration of many organs into the systemic

structure necessary for individual survival and proliferation. The organs typically consist of large numbers

of multicellular functional units such as crypt in the colon, nephron in the kidney, lobule in the liver, and

alveolus in the lung, etc. While extensive recent work has focused on the structure and dynamics of intracel-

lular molecular networks [17–21], there has been little effort to extend this kind of analysis to the interactions

among cells within functioning multicellular organs which allow, for example, the human liver to synchro-

nize as many as 1012 individual cells into a single functioning unit. There are two general methods by which

cells can communicate with each other. Locally, cells usually establish their mutual communication chan-
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Fig. 17. Schematic illustration of our clustered network model with regular subnetworks.

nels through transmembrane pathways such as gap junctions that allow small molecules to pass between two

cells in both directions. At a larger scale, cells communicate with each other through diffusing signals with

cell-specific receptors. The interaction is usually directed in the sense that signals such as growth factors are

produced by some, but not all cells, and can be received only by other cells that express the appropriate recep-

tors. Despite the fact that many of the specific pathways by which cells communicate have been reasonably

well characterized, remarkably little is known about the organizational principles that govern communications

among large numbers of cells and permit synchronized function over substantial distances [22, 23].

Since cells communicate with each other using the two general methods described above, an

intercellular-information network contains two essential features: a locally regular topology based on local

communication with neighbors via membrane structures such as gap-junction and integrins [24] and globally
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random, directional couplings based on long-range diffusing signals and the corresponding cell membrane

receptors. To better distinguish between local and global interactions, it is useful to assume that local interac-

tions are confined within clusters, and global interactions occur among the clusters, as shown in Fig. 17. The

result is a class of complex clustered networks with a regular subnetwork in each cluster but with random,

sparse couplings among clusters. We shall address the issue of synchronization on this class of networks.

This is reasonable because there are two basic biological requirements for such a network: (1) there must be

a sufficient degree of synchronization to permit the entire organ to function as a single unit, so as new cells

are “added” during growth and repair, their precise locations and differentiated phenotypes are specified with

nearly perfect accuracy; and (2) the synchronization must be robust so that lost cells (due, for example, to a

wound) can be replaced and the system is resistant to cascading failure, enabling isolation of infections such

as viruses to prevent rapid, global spread.

5.3. Synchronizability via spectral analysis

We consider the following network structure: N nodes are grouped into M clusters, where each cluster

contains n = N/M nodes. In each cluster, the nodes are ordered on a ring so that the subnetwork is regular.

Each node connects to m nearest neighbors. Each pair of nodes in different clusters is connected with prob-

ability p. While biological considerations stipulate that the long-range links, i.e. links between clusters, be

directional, to be as general as possible we shall treat both bi-directional and directional coupling cases. To

facilitate analytic derivation and understanding, we first consider a network consisting of two clusters with

bi-directional inter-cluster links and then generalize the theory to M -cluster networks for M > 2.

The standard approach to addressing the synchronizability of a complex network is to consider a cor-

responding coupled oscillator network [100], where one nonlinear oscillator is placed on each node of the

network. The dynamical system can be described by

dxi

dt
= F(xi)− ε

N∑

j=1

GijH(xj), i = 1, 2, · · · , N, (5.1)

where ε is a global coupling parameter, G is the coupling matrix determined by the network topology, and

H(x) is a coupling function. The coupling matrix G is defined as Gij = −1/ki if there is a link between
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Fig. 18. Typical configurations of e2 for a two-cluster network of parameters N = 200 and p = 0.2 [(a)

m = 52 and (b) m = 80] and for a five-cluster network with N = 500 and p = 0.3 [(c) m = 40 and (d)

m = 80].

node i and j, where ki is the degree (the number of links) of node i, Gii = 1, and Gij = 0 otherwise. For a

bi-directional network, the eigenvalues of G are real and non-negative, and can be sorted as 0 = λ1 < λ2 ≤

· · · ≤ λN [74]. The coupled system is synchronizable only if the effective coupling strength K = ελi (i > 1)

falls into a certain interval (K1, K2), or K1 < ελ2 and K2 > ελN , where K1 and K2 depend only on the

dynamics of a single oscillator [60]. For typical oscillators the second condition can be easily satisfied, so

the synchronization condition is λ2 > K1/ε [61]. The goal of our analysis is to derive a formula for λ2 for

clustered networks with a regular local structure.
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5.3.1. Networks with two clusters

The transpose of a matrix and the matrix itself have the same set of eigenvalues. Let ei be the normalized

eigenvector such that GT · ei = λiei, where [∗]T denotes the transpose. Since
∑

j Gij = 0, we have

∑
j ei,j = 0 if λi 6= 0 [105]. It is known that for a one-dimensional ring network, the eigenvector e2

associated with λ2 has a sinusoidal wave form: e2,i ∼ sin (2πi/n), where n is the total number of nodes on

the ring. For two coupled ring subnetworks, we find numerically that, when the inter- and intra-connections

are not too dense, components in e2 have a similar wave pattern for each subnetwork, although the mean

values can be different, as shown in Fig. 18. Since the two subnetworks are identical, the amplitudes of

the periodic waves are the same. The zero-sum property of e2 requires that the mean values of the two

sinusoidal waves have opposite signs. To characterize such a wave pattern, we define A to be the amplitude

of the sinusoidal waves, and B as the positive mean value, as indicated in Fig. 18(a). Thus e2 can be written

approximately as

e2 = [{B + A sin(2πi1/n + φ1)}i1 ,

{−B + A sin(2πi2/n + φ2)}i2 ]
T ,

where i1, i2 = 1, 2, · · · , n, and φ1 and φ2 are the phases of the first node in each cluster. We can relabel the

nodes so that φ1 = φ2 = 0, thus have

e2 = [{B + A sin(2πi1/n)}i1 , {−B + A sin(2πi2/n)}i2 ]
T .

The normalization condition eT
2 e2 = 1 gives

n∑

i1=1

[B + A sin(
2πi1
n

)]2 +
n∑

i2=1

[−B + A sin(
2πi2
n

)]2 = 1,

which yields

2nB2 + nA2 = 1. (5.2)

For a network whose e2 has a periodic wave pattern in each cluster, the corresponding eigenvalue λ2 can

be calculated analytically. Likewise, if e2 is constant within each cluster, λ2 can be obtained analytically
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as well [61]. The key observation is that, as the intra-cluster link density is increased, there is a transition

from the former to the latter. That is, there exists a critical value mt, where for m < mt, the eigenvector

e2 possesses a periodic wave pattern in each cluster but, for m > mt, e2 is approximately constant in each

cluster. Our effort below will then be to obtain mt, based on which the eigenvalue λ2 can be calculated.

To proceed, we note that, from the definition GT · e2 = λ2e2, we have

λ2 = eT
2 ·GT · e2 =

N∑

i,j=1

Gije2,ie2,j .

The coupling matrix G has the structure that, for i−m/2 ≤ j < i and i < j ≤ i + m/2, Gij = −1/ki, and

for j belonging to different clusters, Gij = −1/ki with probability p. The degree ki follows approximately a

Gaussian distribution: P (k) ∼ N(m+pn,
√

pn), thus we can use the mean value k ≡ m+pn to approximate

ki. As a result, λ2 can be expanded as

λ2 =
n∑

i1=1

[B + A sin(
2πi1
n

)]
{

[B + A sin(
2πi1
n

)]

−1
k

m/2∑

l=−m/2,l 6=0

[B + A sin(
2π(i1 + l)

n
)]

+
n∑

i2=1

Gi1(n+i2)[−B + A sin(
2πi2
n

)]
}

+ cc,

where cc stands for the summation for the second cluster, i.e. with i1 and n + i2 interchanged. Since the

clusters are identical, the two summations are the same. The first term in the summation for the first cluster,

which is eT
2 ·e2/2, gives 1/2. For the third term, note that Gi1(n+i2) equals−1/k with probability p. Because

of this randomness, the summation over A sin(2πi2/n) vanishes, and

n∑

i1=1

[B + A sin(2πi1/n)] = nB.

Thus the third term equals nB(−1/k)np(−B) = n2pB2/k. The second term, when expanded, gives

−1
k

{ n∑

i1=1

[B + A sin(
2πi1
n

)]
m/2∑

l=−m/2

[B

+A sin(
2π(i1 + l)

n
)]−

n∑

i1=1

[B + A sin(
2πi1
n

)]2
}

.
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Since
n∑

i1=1

m/2∑

l=−m/2

sin
2π(i1 + l)

n
=

m/2∑

l=−m/2

n∑

i1=1

sin
2π(i1 + l)

n
= 0,

the second term can be simplified as

−1
k

{
n(m + 1)B2

+A2
n∑

i1=1

sin(
2πi1
n

)
m/2∑

l=−m/2

sin [
2π(i1 + l)

n
]− 1

2

}

≈ −1
k

{
n(m + 1)B2 − 1

2

+A2

∫ n

0

sin(
2πx

n
)dx

∫ m/2

−m/2

sin [
2π(x + y)

n
]dy

}

= −1
k

{
n(m + 1)B2 − 1

2
+

n2A2

2π
sin

πm

n

}

= −1
k

{
nmB2 +

nA2

2
[n

π
sin

πm

n
− 1

]}
,

where the last equality is due to Eq. (5.2). Adding all the three terms, we have

λ2 = 2
{

1
2

+
n2pB2

k
− nmB2

k
− nA2

2k

[n

π
sin

πm

n
− 1

]}

= 1 +
2nB2(np−m)

k
− NA2

2k

[n

π
sin

πm

n
− 1

]
. (5.3)

While the parameter A represents the magnitude of the waveform, B can be regarded as the strength of the

clustering of the network. Figure 19 shows the value of B versus m/n. There is a sudden transition of B

from 0 to 1/
√

N (or correspondingly, A from
√

2/N to 0). Thus we can approximate B (or A) by a step

function of m/n. The transition point mt where the wave patterns vanish (A becomes 0) can be calculated,

as follows. For B = 0, we have A =
√

2/N and Eq. (5.3) becomes

λ2 = 1− 1
k

(
n

π
sin

πm

n
− 1). (5.4)

For B = 1/
√

N , we have A = 0. Noting that k = (N − n)p + m, we can simplify Eq. (5.3) as

λ2 = 1 +
np−m

k
=

Np

k
. (5.5)

Since λ2 is continuous, at the transition point mt, the values of λ2 obtained from Eq. (5.4) and from (5.5)
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must be equal. This yields

p =
mt

n
− 1

π
sin

πmt

n
+

1
n

. (5.6)

For the parameters used in Fig. 19, the transition point is mt ≈ 0.508, as indicated by the vertical line.

The analytical value agrees well with the simulation result. Thus, for a two-cluster network, λ2 can be

approximated by Eq. (5.4) for m < mt and by Eq. (5.5) for m ≥ mt. Figure 20(a) shows simulation results

and the theoretical prediction for λ2 for both the bi-directional (circles) and directional (triangles) inter-cluster

coupling case. There is an alternating behavior in λ2 as the intra-cluster link density m/n is increased and

the theory captures the behavior of λ2 reasonably well.

5.3.2. Multi-cluster networks

For a multi-cluster network, periodic wave patterns can arise in each cluster as well [Fig. 18(c)]. We

have observed numerically that the amplitudes of the wave patterns for different clusters are approximately

equal, so the average amplitude A can again be used to characterize the wave patterns. Similar to the two-

cluster case, there is a sharp transition of A from a constant value to zero as m/n increases. For A = 0, the

wave pattern diminishes, and e2 has the structure that its components within one cluster have approximately

the same value but they can vary significantly in different clusters [Fig. 18(d)]. In this case, it can be shown

that λ2 is given by Eq. (5.5) [61]. To treat the case where A 6= 0, we assume the network has M clusters. The

eigenvector e2 has the form of (after relabelling)

[{A sin(2πi1/n)}i1 , · · · , {A sin(2πiM/n)}iM
]T ,

for i1, · · · , iM = 1, 2, · · · , n. The normalization condition of e2 gives (n/2)A2M = NA2/2 = 1, which

yields

A =

√
2
N

. (5.7)

Again we have λ2 =
∑N

i,j=1 Gije2,ie2,j . Note that the index i1, · · · , iM are interchangeable, thus we can

focus the summation over i on a single cluster and carry out summation over j. Doing so, we find that λ2 is
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Fig. 19. For a two-cluster network with N = 200, and p = 0.2, quantity B versus m/n from simulation,
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line indicating the transition point of B is predicted by theory.
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Fig. 20. (a) For a two-cluster network with N = 200 and p = 0.2 and (b) a five-cluster network with N = 500

and p = 0.3, λ2 versus m/n. The data points are obtained from simulation for both bi-directional (circles) and

directional (triangles) inter-cluster connections. For the directional case, only the real part of λ2 is presented

(Imλ2 ∼ 10−3Reλ2). Each point is the average of 100 realizations. Solid curves are from theory.
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M times such summations:

λ2 = M
n∑

i=1

A sin
2πi

n

[
A sin

2πi

n

− 1
ki

m/2∑

l=−m/2,l 6=0

A sin(
2π(i + l)

n
)

+
∑

j /∈Vi

GijA sin(
2πj

n
)
]
, (5.8)

where Vi is the set of nodes in the cluster containing i. Since Gij equals 1/ki with probability p and 0

otherwise, the third term leads to 0. Using the mean value k ≡ m + p(M − 1)n to approximate ki, we have

λ2 = M
n∑

i=1

A sin
2πi

n
{k + 1

k
A sin

2πi

n

−1
k

m/2∑

l=−m/2

A sin [
2π(i + l)

n
]}

=
k + 1

k
−M

n∑

i=1

1
k

A sin
2πi

n

m/2∑

l=−m/2

A sin [
2π(i + l)

n
].

The second term can be approximated by integration, which yields

λ2 =
k + 1

k
− MA2

k

n2

2π
sin

πm

n
,

= 1− 1
k

(
n

π
sin

πm

n
− 1

)
, (5.9)

where the second equality results from using Eq. (5.7). This expression is the same as Eq. (5.4) for the

two-cluster network case. Since the expressions for λ2 for both nonzero A and zero A cases are the same as

those in the 2-cluster case, the transition point mt can again be determined by Eq. (5.6), which is independent

of M . Thus λ2 can be approximated by Eq. (5.4) [or Eq. (5.9)] for m < mt and by Eq. (5.5) for m ≥ mt.

Figure 20(b) shows the theoretical prediction of λ2 together with simulation results for a five-cluster network.

It can be seen that the alternating behavior in λ2 persists and is reasonably well predicted by theory.

5.3.3. Robustness of alternating synchronization behavior

An immediate question is whether the predicted alternating behavior in λ2 is robust. To address this, we

need to determine the value of mc for which λ2 in Eq. (5.4) has a minimum value, or, dλ2/dm|mc
= 0. We
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Fig. 21. For clustered networks with parameters M = 2, 5, 100 and n = 100, p versus mt/n (solid lines)

and versus mc/n (dotted lines), where three dotted cases from left to right correspond to M = 2, 5, 100,

respectively. The region between the mc line and the mt line, i.e. mc < m < mt, is the region that λ2 and

therefore the synchronizability exhibit an alternating behavior.
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obtain

p =
( 1

π sin πmc

n − 1
n

cos πmc

n

− mc

n

)/
(M − 1). (5.10)

For a given set of parameters (M, n, p), λ2 is maximized at mt and reaches minimum at mc. Thus the

system can be synchronized at mt and desynchronized at mc. As a result, the alternating behavior exists if

mc < mt. Neglecting the term 1/n, mt/n only depends on p [Eq. (5.6)], while mc/n depends on both

p and M [Eq. (5.10)]. Figure 21 shows mc and mt for different M values. For clarity only one n value

is used since the curves for n = 100 and n = 1000 are almost identical. For large values of M , for any

p, mc approaches n/2. Thus for the particular parameter setting in Fig. 21, insofar as p > 0.2, networks

with arbitrary number of clusters exhibit the alternating behavior. When M is smaller, the critical value

for p for the alternating behavior decreases and the parameter region for the alternating behavior broadens.

The conclusion is that the alternating behavior in synchronization is a quite robust feature in locally regular,

complex clustered networks.

5.4. Numerical simulations of actual synchronous dynamics

While the alternating-synchronizability behavior is predicted and verified using eigenvalue analysis,

direct numerical simulations of coupled oscillator networks give strong evidence for the existence of this

behavior. For instance, we have chosen for each oscillator, when isolated, the Rössler dynamics dx/dt =

F(x), where x = [x, y, z]T , F(x) = [−(y + z), x + 0.2y, 0.2 + z(x− 9)]T , ε = 0.4, and H(x) = [x, 0, 0]T .

Numerically we find K1 = 0.2, K2 = 4.62. Since the Rössler system can have desynchronization bursts, it

is necessary to characterize the synchronization in a statistical way. In particular, we define

W (t) = 〈|x(t)− 〈x(t)〉|〉

as the fluctuation width of the system at time t, where 〈·〉 denotes average over all nodes in the network.

The ensemble and time averages of the fluctuation width 〈〈W 〉T0〉e can be an indicator of the degree of

synchronization, i.e., if the system is synchronized, 〈〈W 〉T0〉e ≈ 0, and if not, 〈〈W 〉T0〉e may assume some

large value. Figure 22(a) shows 〈〈W 〉T0〉e versus m/n for both the bi-directional and directional inter-cluster

coupling cases. When m is small (m/n < 0.2), 〈〈W 〉T0〉e is small and the system is synchronized. As m
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Fig. 22. For a cluster oscillator network with parameters N = 200, M = 2, p = 0.2, (a) 〈〈W 〉T0〉e versus

m/n and (b) Psyn versus m/n. Circles and triangles indicate cases with bi-directional and directional inter-

cluster connections, respectively. Simulation parameters are T0 = 104 and δ = 0.005. The vertical lines

indicating the boundaries are determined by λ2 = K1/ε = 0.5 . Each data point is the average of 700

realizations. The data for this figure were obtained with 15 Pentium-IV 2.80GHz CPUs for about 2 months.
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is increased (m/n = 0.3), 〈〈W 〉T0〉e becomes large and desynchronization occurs. As m increases further

(m/n = 0.5), the fluctuation width reduces and the system becomes synchronized again, and for m/n > 0.6,

the network loses its synchronizability. The probability of synchronization, Psyn, defined as the probability

that W (t) is smaller than a small number δ at all time steps during a time interval T0 in the steady state,

can also be used to characterize the synchronizability. Practically, Psyn can be calculated by the ensemble

average, i.e., the ratio of the number of synchronized cases over the total number of network realizations.

Figure 22(b) shows Psyn versus m/n. The alternating synchronization phenomena is apparent, as predicted.

5.5. Discussions

In this Chapter, motivated by the problem of tissue organization and intercellular communication in

biology, we have studied the synchronizability of a class of clustered networks where each cluster contains

a regular subnetwork. Our finding is that the network synchronizability exhibits an alternating, highly non-

monotonic behavior as the number of intra-cluster links (gap junctions in a biological network) changes.

Although speculative, the results may suggest that the synchronized function of organs in the face of per-

turbation may be controlled by the ability of individual cells to vary the number of gap junctions expressed

on the membrane, which has been observed in variations in gap junctional intercellular communication and

connexion expression in fibroblasts derived from keloid and hypertrophic scars [106–108].

Using more biophysically detailed dynamical models for simulation of synchronous dynamics is an

interesting problem. However, a detailed model that can satisfactorily treats the actual dynamical interactions

in intercellular communication is beyond the scope of present research. Our goal in this Chapter has thus

been to understand the synchronizability of the network, as synchronization is an important factor determining

intercellular communications. The main advantage of the synchronizability analysis is that it allows us to draw

quite general conclusions about the ability for nodes in the network to be synchronized. The key theoretical

tool required for the analysis is spectral properties of the coupling matrix of the underlying network. We

wish to emphasize that, although the synchronizability analysis can yield qualitative information about the

likelihood for the network to achieve synchronization, it is not able to yield information about the detailed

dynamical process that leads to synchronization. Because of this limitation, making the individual-node
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dynamics more “biological” is not very helpful from the standpoint of spectral analysis. In fact, insofar as

the dynamics are oscillatory and somewhat random, we expect them to produce synchronization phenomena

consistent with the predictions from the synchronizability analysis. That is why we have chosen the chaotic

Rössler oscillator as a proper model for actual simulation of the synchronization dynamics. Indeed, the results

from such numerical computations agree, qualitatively, with the theoretical predictions based on spectral

analysis.

Time delays of the interaction along the long-range links are important and relevant to the biological

system. However, as discussed above, our synchronizability analysis is not designed to deal with time delays.

This should be an interesting topic for future explorations.



6 . SYNCHRONIZATION IN GRADIENT CLUSTERED NETWORKS

6.1. Background

It has been recognized in biological physics that at the cellular level, information vital to the functioning

of the cell is often processed on various networks with complex topologies [109]. At a systems level, orga-

nizing information using the network idea has also become fundamental to understanding various biological

functions. A key organizational feature in many biological systems is the clustered structure where biophys-

ical and biochemical interactions occur at a hierarchy of levels. Examples include various protein-protein

interaction networks [3, 110] and metabolic networks [2]. In biology and network science, a fundamental

issue is synchronization [73, 111]. The aim of this Chapter is to study synchronization in clustered complex

networks with uneven cluster-size distribution and asymmetrical coupling. Since this type of network struc-

ture is also important to physical and technological systems such as electronic-circuit networks and computer

networks [98, 112, 113], understanding synchronization in such networks will be of broad interest.

There has been recent effort to study synchronization in complex clustered networks [85,114]. A general

assumption in these works is that all clusters in a network are on the equal footing in the sense that their sizes

are identical and the interactions between any pair of clusters are symmetrical. In realistic applications the

distribution of the cluster size can be highly uneven. For example, in a clustered network with a hierarchical

structure, the size of a cluster can in general depend on the particular hierarchy to which it belong. More im-

portantly, the interactions between clusters in different hierarchies can be highly asymmetrical. For instance,

the coupling from a cluster at a top hierarchy to a cluster in a lower hierarchy can be much stronger than the

other way around. An asymmetrically interacting network can in general be regarded as the superposition of

a symmetrically coupled network and a directed network, both being weighted. A weighted, directed network

is a gradient network [25, 26], a class of networks for which the interactions or couplings among nodes are

governed by a gradient field. Our interest is then the synchronizability and the actual synchronous dynamics

on complex clustered networks with a gradient structure [64].

For a complex gradient clustered network, a key parameter is the strength of the gradient field between

the clusters, denoted by g. A central issue is how the network synchronizability depends on g. As g is

increased, the interactions among various clusters in the network become more directed. From a dynamical-
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system point of view, uni-directionally coupled systems often possess strong synchronizability [115, 116].

Thus, intuitively, we expect to observe enhancement of the network synchronizability with the increase of

g. The question is whether there exists an optimal value of g for which the network synchronizability can

be maximized. This is in fact the problem of optimizing synchronization in clustered gradient networks, and

our findings suggest an affirmative answer to the question. In particular, we are able to obtain solid analytic

insights into a key quantity that determines the network synchronizability. The theoretical formulas are ver-

ified by both numerical eigenvalue analysis and direct simulation of oscillatory dynamics on the network.

The existence of an optimal state for gradient clustered networks to achieve synchronization may have broad

implications for evolution of biological networks and for practical applications such as the design of efficient

computer networks.

6.2. Model setup

Our general setting is network with N nodes and M clusters, where nm is the size of cluster m and

Vm denotes the set of nodes it contains (m = 1, ..., M ). Each pair of nodes is connected with probability

ps in the same cluster and with probability pl in different clusters, where ps > pl [85]. For a coupled

oscillator network with arbitrary connecting topology, its synchronizability is determined [49] by the interplay

between the transverse stability of the local-node dynamics F(x) and the eigenvalue spectrum of the coupling

matrix C, which can be sorted conveniently as λ1 = 0 < λ2 6 · · · 6 λN , where λ1 = 0 underlies the

synchronization solution. A typical nonlinear oscillator in the synchronization manifold is transversely stable

only when some generalized coupling parameter σ falls in a finite range: σ ∈ [σ1, σ2], which is determined by

the single-oscillator dynamics. The network is synchronizable if all the normalized eigenvalues except λ1 can

be contained within this range: σ1 < ελ2 6 · · · 6 ελN < σ2, where ε is a specific coupling parameter. For

convenience, we consider the following class of coupled-map networks: xi
t+1 = f(xi

t)−ε
∑

j CijH
[
f(xj

t )
]
,

where xi
t+1 = f(xi

t) is a d-dimensional map representing the local dynamics of node i, ε is a global coupling

parameter, and H is a coupling function. The rows of the coupling matrix C have zero sum to guarantee

an exact synchronized solution: x1
t = x2

t = ... = xN
t = st. For certain types of oscillator dynamics and

coupling functions, say, for example, the linearly coupled logistic oscillators we are going to study in the
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following, σN is sufficiently large [117]. In such cases the condition ελN < σ2 is naturally satisfied and the

synchronizability of network is only determined by λ2. For simplicity, we will restrict our study to such types

of oscillator dynamics and coupling functions.

6.3. Eigenvalue analysis for gradient two-cluster networks

We first develop a theory for networks consisting of two clusters (the theory can be generalized to

multiple-cluster networks). Without a gradient field, the adjacent matrix A is such that Aij = 1 if there

is a link between node i and node j, and Aij = 0 otherwise. To introduce a coupling gradient field from

cluster 1 to cluster 2, for each inter-cluster link (i, j), i ∈ V1 and j ∈ V2, we deduce an amount g from Aij

(corresponding to the coupling from node j to node i) and add it to Aji so that the total coupling strength is

conserved. In this sense the gradient field can be said to point from cluster 1 to cluster 2. The coupling matrix

C is defined as Cij = −Aij/ki, where ki =
∑N

j=1 Aij is the weighted degree of node i, and Cii = 1.

The eigenvalue spectra of C and of its transpose CT are identical. Let

ê2 = (e1, e2, ..., en1 , en1+1, ..., eN )T

be the normalized eigenvector associated with λ2 of CT . Since
∑N

j=1 CT
j,i =

∑N
j=1 Cij = 0, the eigenvectors

associated with non-zero eigenvalues of CT have zero sum:
∑N

j=1 ê2,j = 0 [118]. From CT ê2 = λ2ê2 we

have λ2 = êT
2 CT ê2 =

∑N
i,j=1 eiCijej . For a clustered network, the elements in ê2 have a special distribution:

ei ≈ E1 for i ∈ V1 and ej ≈ E2 for j ∈ V2 [85], where the two constant values E1 and E2 can be obtained

from the normalization condition êT
2 ê2 = 1 and the zero-sum property. We obtain E1 = −

√
n2/(n1n2 + n2

1)

and E2 =
√

n1/(n1n2 + n2
2) (the signs of E1 and E2 are interchangeable since E1E2 < 0). This can greatly

simplify the calculation of λ2, which now can be written as λ2 ≈
∑N

i=1 ei{(Ci1 + Ci2 + ... + Cin1)E1 +

(Cin1+1 + Cin1+2 + ... + CiN )E2}. The non-zero elements in C can be calculated as follows. For i ∈ V1,

ki ≈ n1ps+n2pl(1−g), if j ∈ V1, Cij = −1/ki ≡ g11, and there are approximately n1ps non-zero elements

for each i. If j ∈ V2, we have Cij = −(1 − g)/ki ≡ g12. For i ∈ V2, ki ≈ n2ps + n1pl(1 + g), if j ∈ V1,

Cij = −(1 + g)/ki ≡ g21 and, if j ∈ V2, Cij = −1/ki ≡ g22. Since Cii = 1, the calculation can be further

simplified as λ2 ≈
∑n1

i=1 ei{E1 +g11E1n1ps +g12E2n2pl}+
∑N

i=n1+1 ei{g21E1n1pl +E2 +g22E2n2ps}.
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Using
∑n1

i=1 ei ≈ n1E1,
∑N

i=n1+1 ei ≈ n2E2 and n1E
2
1 + n2E

2
2 = 1 (the normalization condition), we

obtain

λ2 = 1 + (E2
1n2

1g11 + E2
2n2

2g22)ps + E1E2n1n2pl(g12 + g21). (6.1)

In Eq. (6.1), the unity comes from the diagonal elements in C, it defines the upper limit for λ2 (this special

case is associated with one-way coupled tree-structure networks [115, 116]). The second term is contributed

by the intra-connection of cluster 1 and cluster 2. The last term corresponds to the inter-connection between

the clusters. The parameter g is contained in these terms via gij . For a given 2-cluster network, the optimal

gradient strength g0 that maximizes λ2 can be determined by setting ∂λ2/∂g = 0, which gives

go =
2n1 −N

Npl
(ps − pl). (6.2)

(Please note that in deriving g0 we actually get two such values: g0 and g
′
0 = N(ps+pl)/[(N−2n1)pl] < −1.

Since in our network model |g| is defined within range [0, 1], the value g
′
o is therefore discarded.)

Equation (6.1) reveals some interesting features about the dependence of λ2 on key parameters of the

clustered network. To give an example, we show in Fig. 23 a contour plot of λ2, calculated using the

theoretical formula Eq. (6.1), in the parameter plane spanned by n1 and g, where n1 + n2 = 300. It gives,

for fixed value of n1, the dependence of λ2 on gradient strength. Since, by our construction, the gradient field

points from cluster 1 to cluster 2, the upper half region (n1 > 150) in Fig. 23 represents gradient clustered

networks for which the gradient field points from the large to the small cluster. For any network defined

in this region, for any fixed value of g, λ2 increases monotonically with n1, indicating enhanced network

synchronizability with the size of the large cluster. However, for a fixed value of n1, λ2 first increases,

reaches maximum for some optimal value of g ≡ g0, and then decreases with g. The dependence of g0 on n1

is revealed by the dashed line in the figure [Eq. (6.2)]. We see that, when the gradient field is set to point from

the large to the smaller cluster, in order to optimize the network synchronizability, larger gradient strength is

needed for larger difference in the cluster sizes. In contrast, in the lower-half of Fig. 23 where n1 < n2, λ2

tend to decrease as g is increased (for fixed n1) or when the difference between the sizes of the two clusters
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Fig. 23. Theoretical contour plot of λ2 in the (g, n1) plane, for a 2-cluster network of n1 + n2 = 300 nodes.

Other parameters are pl = 0.2 and ps = 0.7. The dashed line is given by Eq. (6.2), which determines, for

fixed value of n1, the optimal gradient strength g0.
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enlarges. This indicates that, when the gradient points from the smaller to the larger cluster, the network

synchronizability continuously weakens as the the gradient field is strengthened.

To provide support for our theoretical formula Eq. (6.1), we consider the same network in Fig. 24

and directly calculate the eigenvalue spectrum for a systematically varying set of values of g. Figure 24(a)

shows λ2 versus g (open circles) for the case where the gradient field points from the large to the small cluster

(n1 = 190 > N/2) and Fig. 24(b) is for an opposite case (n1 = 110 < N/2). The solid curves are theoretical

predictions. We observe a good agreement. To gain insight into the actual dynamics of synchronization on

the network, we use the logistic map f(x) = 4x(1− x) as the local dynamics, ε = 1, and choose H(x) = x

as the coupling function. For the logistic map, we have σ1 = 0.5, σ2 = 1.5 [74]. We find numerically

λN ≈ 1.1 < σ2. Thus the synchronization condition becomes λ2 > σ1 = 0.5. We have calculated the average

synchronization time T as a function of g, where T is the time needed to reach
∑N

i=1

∣∣(xi − 〈x〉)
∣∣ /N < δ =

10−5 and 〈x〉 ≡ ∑N
i=1 xi/N (the system is considered as unsynchronizable when T > 104). As g approaches

the optimal value g0, we observe a sharp decrease in T , as shown in Fig. 24(c), indicating a significant

enhancement of the network synchronizability. After reaching the minimum at g0, the time increases as g is

increased further, as predicted by theory.

6.4. Eigenvalue analysis for gradient multi-cluster networks

The theory we have developed for two-cluster networks can be extended to multiple-cluster networks.

Consider a M -cluster network, where each cluster contains a random subnetwork. Assume the size of the

clusters satisfy n1 > n2 > n3 > · · · > nM , a coupling gradient field can be defined as for the two-

cluster case. For a random clustered network, the weighted degree can be written as ki ≈
∑N

j=1 Aij =

nmps + (N − nm)pl + plg(
∑

l,nm<nl
nl −

∑
l′,nm>nl′

nl′) ≡ Km. Define gml as the average value of the

non-diagonal, non-zero elements Cij . For i ∈ Vm and j ∈ Vl, we have gmm = −1/Km, gml = −(1−g)/Km

for nm > nl, gml = −(1 + g)/Km for nm < nl, and gml = −1/Km for nm = nl. For the second

eigenvector of CT , e.g. CT ê2 = λ2ê2, its components have a clustered structure, i.e., for all i ∈ Vm,

ê2,i ≈ Em while they may vary significantly for different clusters. The eigenvalue λ2 can then be ex-

pressed as λ2 = êT
2 CT ê2 =

∑N
i,j=1 eiCijej =

∑N
i=1 ei{Em + Emnmpsgmm +

∑
l 6=m Elnlplgml} =
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Fig. 24. For a gradient network of two clusters with N = 300 nodes, numerically obtained (circles) de-

pendence of λ2 on the strength g of the gradient field for the two cases where (a) the gradient field points

from the larger to the small cluster (n1 = 190 > N/2) and (b) the opposite (n1 = 110 < N/2). The solid

curves are from theory. (c) For n1 = 190, actual synchronization time versus g for a clustered network of

chaotic logistic maps. We observe a sharp reduction in the time as g approaches its optimal value, indicating a

stronger synchronizability. Other parameters are pl = 0.2, ps = 0.7. Each point is the average of 100 random

realizations.
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∑M
m=1 nmE2

m +
∑M

m=1 E2
mn2

mpsgmm +
∑

l 6=m EmElnmnlplgml. Taking into consideration the normaliza-

tion condition êT
2 ê2 = 1, we get λ2 = 1 +

∑M
m=1 E2

mn2
mpsgmm +

∑N
m,l=1;l 6=m EmElnmnlplgml.

For a general multiple-clustered network, it is mathematically difficult to obtain an analytic formula for

the quantity Em. However, Em can be determined numerically. Once this is done, the general dependence

of λ2 on g and subsequently the optimal gradient strength g0 can be obtained. In some particular cases,

explicit formulas for Em and λ2 can be obtained. Focusing on the role of the gradient in determining the

synchronizability, we consider the extreme gradient case: g = 1. Numerically, we find that for this case,

with respect to the second eigenvector ê2, only E1 and E2 (corresponding to the largest and the second

largest clusters) have non-zero values, while for all m > 2, Em = 0. From the normalization condition

êT
2 ê2 = 1 and the zero-sum property

∑N
j=1 ê2,j = 0 (since

∑N
j=1 Cij = 0), we can solve for E1 and E2 as

E1 = −
√

n2/(n1n2 + n2
1) and E2 =

√
n1/(n1n2 + n2

2). Noticing g12 = 0, we finally obtain

λ2 = 1 +
2∑

m=1

E2
mn2

mpsgmm +
2∑

m,l,l 6=m

EmElnmnlplgml

= 1 + (E2
1n2

1g11 + E2
2n2

2g22)ps + E1E2n1n2plg21. (6.3)

A numerical verification of Eq. (6.3) is provided in Fig. 3(a). An observation is that, except for the difference

in gij , Eq. (6.3) has the same form as Eq. (6.1), indicating that λ2 is mainly determined by the first two

largest clusters and it has little dependence on the details of size distributions of the remaining clusters. The

remarkable implication is that, for different gradient clustered networks, regardless of the detailed form of

the cluster size distribution, insofar as the two dominant clusters have similar properties, all networks possess

nearly identical synchronizability.

6.5. Discussion

The model of gradient clustered network we have investigated here is different to the asymmetrical net-

work models in literature. In Ref. [111, 115, 116], asymmetrical couplings have been employed to improve

network synchronization and it is found that, for non-clustered networks, synchronization is optimized when

all nodes are one-way coupled and the network has a tree-structure [115]. Different to this, in our model

asymmetrical couplings are only introduced to inter-cluster links, while couplings on intra-cluster links are
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Fig. 25. (a) For a 5-cluster network (circles) and a 10-cluster network (squares), λ2 versus n1, the size of the

largest cluster. The solid curve is from theory [Eq. (6.3)]. For the 5-cluster network, the size of the remaining

clusters are n2 = 200, n3 = 50, n4 = 30, n5 = 20. For the 10-cluster network, we have n2 = 200, n3

to n10 are 90, 80, 70, 60, 50, 40, 30, 20, respectively. Other parameters are pl = 0.15 and ps = 0.7. For

n1 < n2, the gradient is actually from cluster 2 to cluster 1. Each point is the average result of 100 network

realizations. (b) For a “cortico-cortical network” of the cat brain, numerical results of the dependence of λ2

on gradient strength g. Synchronization is optimized for g0 ≈ 0.55
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still symmetrical. This special coupling scheme induces some new properties to the functions of the gradi-

ent. Firstly, increase of gradient will not monotonically enhance synchronization. That is, directed coupling

between clusters, i.e. g = 1, is not always the best choice for synchronization. In many cases the optimal

gradient stregth g0 is some value between 0 and 1, while the exact value is determined by the other network

parameters [Eqs. (6.1,6.3)]. Secondly, the direction of gradient can not be arranged randomly, it should be

always pointing from large to small clusters. Finally, in the case of g = 1, network synchronizability is still

related to the network topology, i.e. by the topology of the first two largest clusters; while for non-clustered

network, synchronizability is only determined by the local dynamics [115].

Can synchronization optimization be expected in realistic networks? To address this question, we have

tested the synchronizability of a “cortico-cortical network” of cat brain, which comprises 53 cortex areas

and about 830 fiber connections of different axon densities [119]. The random and small-world properties

of this network, as well as its hierarchical structure, have been established in several previous papers [120].

According to their functions, the cortex areas are grouped into 4 divisions of variant size: 16 areas in the

visual division, 7 areas in the auditory division, 16 areas in the somato-motor division, and 14 areas in the

frontolimbic division. Also, by the order of size, these divisions are hierarchically organized [119]. With the

same gradient strategy as for the theoretical model, we plot in Fig. 3(b) the variation of λ2 as a function of the

gradient strength. Synchronization is optimized at gradient strength about go ≈ 0.55. An interesting finding is

that the actual average gradient of the real network, gave ≈ 0.37 [121], is deviating from the optimal gradient

go, indicating a strong but non-optimized synchronization in healthy cat brain.

While our theory predicts the existence of a gradient field for optimizing the synchronizability of a

complex clustered network, we emphasize that the actual value of the optimal gradient field may or may

not be achieved for realistic networked systems. Due to the sophisticated procedure involved to determine

the optimal gradient strength and the actual value for a given network, their numerical values can contain

substantial uncertainties. A reasonable test should involve a large scale comparison across many networks

of relatively similar type (say, many different animals), hopefully demonstrating some kind of correlation

between the optimum gradient and the observed values. Furthermore, such a test would include a sense of
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how large the difference between the optimum and observed is. Due to the current unavailability of any

reasonable number of realistic complex, gradient, and clustered networks, it is not feasible to conduct a

systematic test of our theory. (As a matter of fact, we are able to find only one real-world example of gradient

clustered network, the cat-brain network that we have utilized here.) It is our hope that, as network science

develops and more realistic network examples are available, our theory and its actual relevance can be tested

on a more solid ground.

In short, we have uncovered a phenomenon in the synchronization of gradient clustered networks with

uneven distribution of cluster sizes: the network synchronizability can be enhanced by strengthening the gradi-

ent field, but the enhancement can be achieved only when the gradient field points from large to small clusters.

We have obtained a full analytic theory for gradient networks with two clusters, and have extended the theory

to networks with arbitrary number of clusters in some special but meaningful cases. For a multiple-cluster

network, a remarkable phenomenon is that, if the gradient field is sufficiently strong, the network synchroniz-

ability is determined by the largest two clusters, regardless of details such as the actual number of clusters in

the network. These results can provide insights into biological systems in terms of their organization and dy-

namics, where complex clustered networks arise at both the cellular and systems levels. Our findings can also

be useful for optimizing the performance of technological networks such as large-scale computer networks

for parallel processing.



7 . UNDERSTANDING AND PREVENTING CASCADING BREAKDOWN IN COMPLEX CLUS-

TERED NETWORKS

7.1. Background

Recently, cascading breakdown [65–67] in complex networks has received considerable attention [68–

71]. The phenomenon is referred to as an avalanching type of process, where the failure of a single or of a

few nodes can result in a large-scale breakdown of the network. In particular, in a physical network nodes

carry and process certain loads, such as electrical power, and their load-bearing capacities are finite. When

a node fails, the load that it carries will be redistributed to other nodes, potentially triggering more failures

in the network as a result of overloading. This process can propagate through the entire network, leading to

its breakdown. Indeed, cascading breakdown appears to be particularly relevant for large-scale failures of

electrical power grids, and efforts have been made to understand the dynamical origin of such failures [72].

From the standpoint of network security, scale-free networks [43], where a small subset of nodes (hubs)

possess substantially more links than those of an average node and therefore carry disproportionally more

loads, are especially vulnerable to cascading breakdown, as attack on one of the hub nodes can cause a

significant load redistribution [66, 69]. In this regard, a strategy for protecting scale-free networks against

cascading breakdown has been proposed [70], where a selective set of “unimportant” nodes that process little

but contribute relatively large loads to the network are pre-emptively removed so as to reduce the overall load

in the network.

Networks with a community structure, or clustered networks, are relevant to a plethora of biological,

social, and technological systems [122]. A clustered network consists of a number of groups, where nodes

within each group are densely connected but the linkage among the groups is sparse. A clustered network

can be heterogeneous in the sense that its degrees obey a power-law distribution, which can be realized, for

example, by incorporating the scale-free topology in each cluster. Recently various dynamics on complex

clustered networks have been studied [61].

In this Chapter, we address the dynamical origin of cascading processes on complex clustered networks

and, more importantly, investigate how such a network can be made secure in response to attacks. In view of

the particular vulnerability of scale-free networks to cascading breakdown, we focus on networks where each
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individual cluster contains a scale-free subnetwork. To motivate our work and illustrate the challenges, we

consider the problem of virus spread starting from one of the clusters, such as a remote village in a human

epidemic network. A common practice to prevent a global spread is to isolate this particular cluster from

the network. Now, consider the network-security problem by assuming that an attack has occurred in one of

the clusters. A naive strategy to prevent breakdown of the network on a global scale is to isolate this cluster

by cutting all the links that connect this cluster with other clusters so that failures would be restricted to the

original cluster. This intuitive thinking, however, cannot be correct for a load-distributed network, because

cutting off a cluster would transfer the load originally processed by this cluster to other clusters of the network,

increasing the likelihood of overloading and possibly resulting in a more disastrous situation. Indeed, this is

what we have found in simulations: a clustered network is particularly vulnerable to cascading breakdown in

the sense that the general prevention strategy in [70], which is quite effective for scale-free networks, would

increase significantly the probability of a global avalanche if not properly implemented.

Our main idea is to classify and understand the roles played by various nodes in the network and devise

a control strategy accordingly that can effectively prevent global cascades. Our achievement is illustrated

in Fig. 26, plots of the relative size G of the largest connected component of the network versus some

generic network capacity parameter λ in response to an attack on a hub node, where G = 1 represents a

fully connected network and G ¿ 1 indicates that the network has disintegrated effectively. The data points

represented by open squares correspond to the situation where no control is taken to protect the network,

and those represented by open circles are the result of cutting off the particular cluster within which the

attack occurs. We observe that, as λ is reduced, G decreases rapidly but strikingly, there is essentially no

difference in the values of G between these two cases, indicating the ineffectiveness of an straightforward

implementation of the prevention strategy which tries to localize the destruction within one community. In

contrast, implementing our control strategy results in much higher values of G (data points represented by

open triangles). In what follows, we present a sequence of reasonings, supported by numerical computations,

that lead to a relatively complete understanding of the cascading phenomenon in complex clustered networks,

and consequently, to an effective control strategy.
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Fig. 26. For a representative clustered network of N = 5600 nodes, average degree 〈k〉 = 4, M = 50 clusters,

and average inter-cluster number of links kM = 2, the relative size G of the largest connected component in

the network versus the network capacity parameter λ in response to a targeted attack. Each data point is the

result of averaging 100 network realizations (see text for details of the meanings of the three different data

curves). The attack disables a single node in a cluster that has the largest load. For a non-clustered scale-

free network, the value of G can be about zero for λ ' 1 [66]. However, for a clustered network, failures

propagate from one cluster to another, during which a few connected clusters may be separated from the rest

but still remain connected. As a result, the value of G for small values of λ is small but not zero; it is of the

order of 1/M .
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We consider an ensemble of clustered networks, each of N nodes and M clusters, where N À M .

Any cluster within the network is a scale-free subnetwork of n = N/M À 1 nodes [43]. The number

of inter-cluster links is kMM , and they are placed randomly among the clusters. To conserve the average

degree of the entire network, we cut off kMM intra-cluster links randomly while keeping the network fully

connected. Since the number of inter-cluster links is much smaller than that of intra-cluster links, removing a

small number of intra-cluster links has little effect on the dynamics of the network. To investigate cascading

breakdown, we use the prototypical model of load dynamics [66]. In particular, the load Li at node i is defined

as the total number of directed shortest paths passing through this node. Paths that end at or start from the

node are also counted. The total load of the network is given by S =
∑

Li = N(N − 1)(D + 1), where

D is the average network distance. The capacity of a node is the maximum load that the node can handle,

which is assumed to be proportional to its initial load Li0: Ci = λLi0, where the constant λ > 1 is a uniform

capacity parameter. An attack at a particular node is defined as an event that disables or removes this node

from the network. If the load that this node handles is relatively large, a load redistribution over the network

can occur. Any node in the network is considered to have failed and is removed from the network if the

load imposed on it is larger than its capacity. The damage after the network reaches a new steady state can

be conveniently quantified by the relative size G = N ′/N , where N ′ is the number of nodes in the largest

connected component remaining after the attack. For G . 1, the network remains mostly connected, so the

effect of attack on the network is not severe. For G & 0, breakdown of the network occurs at a global scale.

7.2. Traffic flow pattern and cascading

To understand the dynamical origin of cascading failures in a clustered network, we note that nodes con-

necting different clusters, or bridge nodes, transmit inter-cluster load flows and they are critical to maintaining

the connections of the network. For the ensemble of networks used in Fig. 26, we find that the fraction of the

bridge nodes is about 3.5%, but they carry about 41% of the total load of the network. An intuition is, then,

that assigning relatively large capacities to the bridge nodes may mitigate cascades. To test this hypothesis,

we conduct the following numerical experiments. First, we randomly select a set of nodes, which has the

same number as that of the bridge nodes, and assign them with different capacities as characterized by the
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parameter λ′ (the remaining nodes in the network have the capacity parameter λ). We then examine, in the

two-dimensional parameter plane (λ, λ′), contours of various values of G. The result is shown in Fig. 27(a),

where the contours are mostly vertical, indicating little dependence of G on λ′. Thus, having a random set of

nodes with high capacities cannot help prevent cascading failures, as expected. Next, we assign λ′ but only to

the set of bridge nodes. As shown in Fig. 27(b), in this case, the contour lines are approximately symmetric

with respect to λ′ = λ, indicating that G depends mainly on λ′ but only in the region where λ′ < λ. For

λ′ > λ, G has little dependence on λ′, revealing the ineffectiveness of having high-capacity bridge nodes

in limiting cascading failures. There is in fact a bottleneck effect at the bridge nodes: if their capacities are

small, they will hinder the load-transferring capability of the network, but increasing their capacities in gen-

eral can only facilitate load transfers among the clusters via inter-cluster links. Since the majority of links in

the network are intra-cluster links, load transfers within individual clusters are prevalent. As a result, having

large-capacity bridge nodes cannot enhance the network’s load-transferring ability in general.

The results in Figs. 27(a) and 27(b) suggest the need to identify a different set of nodes that are more

important to the load dynamics than the bridge nodes. Our key idea is to examine, within any given cluster,

the set of nodes that are on the shortest paths connecting the bridge nodes. We call such nodes skeleton nodes,

as the shortest paths through them are the main avenues for load transfers within the cluster. The bridge and

the skeleton nodes thus form the backbone of load traffic on the network. Indeed, for the model network in

Fig. 26, the fraction of these two types of backbone nodes is 13% but they carry 79% of the total load. A

typical scenario for traffic flow on the network is then as follows. Say node A in one cluster wishes to transfer

a certain amount of load to node B in a different cluster. Node A first sends the load to a closest skeleton

node in the same cluster, which will then be sent to a bridge node along the shortest path. Such shortest

paths can be regarded as “highways” for load traffic. The load is then transported to the destination cluster

along a series of “highways” connecting various backbone nodes. Upon arrival at the destination cluster, the

load is finally sent to node B via some “local” connections in that cluster. This picture is analogous to the

surface transportation system in a modern infrastructure. We may expect that increasing the capacities of the

backbone nodes can reduce the likelihood of overloading in the network, thereby making the network more
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tolerant to cascading breakdown. Figure 27(c) shows the contours of a number of values of G in the (λ, λ′)

plane, where λ′ now is the capacity parameter for both types of backbone nodes. Indeed, for a fixed value of

λ, as λ′ is increased, G can be increased significantly. Setting a high value of λ′ is practical, as the number

of backbone nodes is small (typically about 10% of the total number of nodes in the network). To give a

concrete example, assume first all nodes have the same capacity: λ′ = λ = 1.4. After the attack, G is about

0.3, indicating that only 30% of the nodes are still connected. However, if we set λ′ = 2.3 and λ = 1.3 so that

the total capacity of the network is the same as for the case of λ′ = λ = 1.4, we find that G can be maintained

at about 0.9, a three-fold increase over the previous case!

7.3. Preventing cascading on complex clustered networks

The above analysis suggests an effective way to implement the strategy of removing “unimportant”

nodes in the network to prevent cascading breakdown [70], i.e., to remove a certain fraction of non-essential

nodes that are neither skeleton nor bridge nodes. These non-essential nodes contribute loads to the network

but they process or transfer little loads, so a controlled removal can reduce the total load while keeping intact

the overall traffic flow of the network. A key issue is the optimal fraction of the non-essential nodes that

should be removed to maximize the network’s robustness against cascading breakdown. In the following, we

develop a physical analysis and numerical computations to address this issue.

We order the clusters by their average distances to the cluster under attack. In particular, we denote the

cluster where a cascading process is originated as IM = 1 and calculate the average distances between nodes

in this cluster and nodes in other clusters: l1J = 1/n2
∑

dij , J = 2, 3, ... , M , where the sum is over all

nodes i in cluster 1 and all nodes j in cluster J . The average distances l1J are arranged in an ascending order,

i.e. the cluster that has the smallest distance l1J is denoted by IM = 2, and so on. The order thus characterizes

the closeness of an arbitrary cluster to the cluster under attack. We find that removing non-essential nodes

from clusters that are close to the original cluster can lead to higher values of G, as shown in Fig. 28(a).

This can be understood as follows. By removing some non-essential nodes in a cluster, the load decrease in

the skeleton and bridge nodes in this cluster is nn(N − n)d, where nn ∼ n is the number of non-essential

nodes, and d is the average path length for load at a non-essential node to travel through the backbone nodes
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Fig. 28. For λ = 1, (a) G versus the index IM of the cluster from which non-essential nodes are removed.

(b) G versus the number of clusters Mr where controlled removal occurs. Circles: from clusters with small

index to large index; squares: from randomly selected clusters; triangles: from clusters with large index to

small index.
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in this cluster. The load decrease over all backbone nodes is approximately n(N − n)(D − d). Because of

the clustered topology of the network, D is much larger than d. For example, for the parameters used in Fig.

27, D ' 14 and d ' 2. The average load decrease associated with the backbone nodes in each cluster is then

n(N − n)(D − d)/(M − 1), which is much less than the load decrease in the original cluster. In general,

the closer a cluster is to the original cluster, the more load decrease occurs. Thus, to significantly increase

the network’s ability to resist cascading breakdown while at the same time to minimize its impact on the

network, non-essential nodes in clusters that are closer to the original cluster should be targeted for removal.

Figure 28(b) shows this effect by comparing the consequence of removing non-essential nodes from randomly

selected clusters and from clusters that are more distant from the original cluster. We see that removing non-

essential nodes from close clusters results in about 20% of improvement in G as compared with node removal

from randomly chosen clusters, and the improvement is about 50% when comparing with removal from some

more distant clusters.

For controlled node removal from some randomly chosen clusters, the optimal removing size Mrc that

maximizes G can be estimated, as follows. Before removal, the total load is S = N(N − 1)(D + 1).

After removing int[fN ] non-essential nodes, the total load becomes S′ = N ′(N ′ − 1)(D′ + 1), where

N ′ = int[(1 − f)N ] and D′ is the new network distance. Since the backbone nodes play a dominant role in

load processing, D′ ≈ D and S′/S ≈ (1 − f)2. That is, the load of an average backbone node i decreases

by a factor of (1 − f)2 as the result of controlled removal. After the attack, the load of node i will in

general increase from Li to L′i = βLi, where β is a constant depending on the network structures. The

new load can thus be written as (1 − f)2βLi. If the capacity λLi of node i is larger than the new load, i.e.,

λLi > (1−f)2βLi, cascading failures will not occur. In this sense, the quantity β characterizes the network’s

ability to resist cascading breakdown.

Generally, the value of the parameter β depends on nodes, thus it is more accurate to write L′i = βiLi.

Most of the nodes in the network have β values close to 1, with a small set of nodes having larger β values. The

probability distribution of βi−1 is shown in Fig. 29. We observe that for scale-free networks without clustered

structure, the distribution decays exponentially for large βi (inset of Fig. 29). This is consistent with previous
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Fig. 29. The distribution of the shifted load ratio βi − 1. For clustered networks, the distribution has a long

tail and is independent to network details such as the number of clusters and network size, indicating the

existence of large load fluctuations before and after attack. The straight line has a slope of −2.1. Inset: the

same quantity for a single scale-free network (by setting M = 1). N = 5600, 〈k〉 = 4, 6, 8, 10 from right

to left. The distribution for the shifted ratio is exponential. Each data is the result of averaging at least 100

random realizations.



87

Fig. 30. Load versus degree for clustered networks with M = 35, N = 44800 (a)(b), and for scale-free

networks with N = 5600, 〈k〉 = 4 (c)(d). (a)(c) Scattered plots for all (ki,Li) pairs. (b)(d) The averaged load

L over all the nodes with the same degree versus node degree k. The straight line has a slop of 1.5. The data

are obtained from more than 100 random realizations.
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results that for networks without a clustered structure, β − 1 ≈ 0 [69]. However, for a clustered network,

the distribution of βi has a long tail compared with exponential decay, indicating large load fluctuations after

the initial attack. Heuristically, this could be understood, as follows. A single network is compact and its

structure is homogeneous, i.e., removing some nodes results in a smaller network but with similar properties.

For example, for a scale-free network the load Li and the degree ki satisfy the scaling relation Li ∼ kα
i ,

where α ≈ 1.5. After removing a few nodes, it is still a scale-free network, thus the relation L′i ∼ k′αi still

holds, where prime means the corresponding network quantities after the removal. Since the number of nodes

removed is small, one expects the change in the degree to be small as well, thus k′i ≈ ki, and L′i ≈ Li [69].

However, for a clustered network, although the averaged load L(k) over the nodes with the same degree k

scales as L ∼ kα [Fig. 30(b)], the relation does not hold for individual nodes [Fig. 30(a)], contrasting with

that of scale-free networks [Fig. 30(c)]. Indeed, the load for such a network is determined by the type of

the nodes. Generally, the bridge nodes have the largest loads, followed by the skeleton nodes, and then by

the non-essential nodes. Since the links between clusters are established among randomly selected nodes,

the backbone nodes can have both large and small degrees [Fig. 30(a)]. Furthermore, when the network is

attacked, the backbone structure is altered. On one hand, some new nodes may become backbone nodes, and

their loads will increase drastically. For example, for the case where backbone nodes (13% of all nodes) carry

79% of the total load S, the average load carried by them is about 6S/N , while the non-essential nodes carry

an average load of 0.2S/N . Thus, when a non-essential node becomes a backbone node, the ratio β is of

the order of 30, and due to heterogeneity of the nodes (each cluster is a scale-free network), the ratio can be

as high as several hundred. On the other hand, the load flow in the backbone may be redistributed after the

attack, leading to huge load changes as well. This accounts for the long tail in the distribution of the shifted

ratio β − 1. Although the ratio for a single node can be as high as several hundred, the number of such nodes

can be several orders of magnitude smaller, as indicated by Fig. 29. We find, numerically, the effective value

of β ≈ 2 for a clustered network.

Thus, for a given value of λ, the optimal fraction of controlledly removed nodes is fc = 1 −
√

λ/β.

Noting that f can be written as f = ηMr/M , where η is the fraction of non-essential nodes, we have
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Fig. 31. (a) G versus Mr for λ = 1.1 (circles), 1.2 (upward triangles), 1.3 (downward triangles), and 1.4

(diamonds). The arrows indicate the predicted value of Mrc. (b) G versus λ for our strategy. The dashed line

represents our theoretical prediction.
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Mrc = Mfc/η. Since Mrc, the optimal number of clusters where controlled removal occurs, assumes

approximately the same value for different ways of selecting the clusters [Fig. 28(b)], our estimate for Mrc

should practically hold for all three cases and it can thus be considered as a general theoretical prediction. For

parameters used in Fig. 31(a), we have η = 0.87. The predicted Mrc values are indicated by arrows in the

figure for several λ values. They agree with the simulation results reasonably well.

We now summarize the steps of executing our strategy for preventing cascading breakdown in a complex

clustered network. Assume that the network parameters λ, β, and η are available (either they are pre-assigned

or they can be calculated when the network structure is known) and the backbone nodes in various clusters

have been identified. The immediate response to an attack on some hub nodes in a particular cluster should

be to calculate the distances between all other clusters to this cluster and assign indices IM to these clusters.

The critical cluster index Mrc = int[M(1 −
√

λ/β)/η] is then calculated. Non-essential nodes in clusters

whose indices satisfy IM ≤ Mrc are removed. Cascading breakdown can then be avoided, where the resultant

maximum value of G is given by Gmax = 1 − fc =
√

λ/β. Numerical verification of our strategy is shown

in Fig. 31(b), where the value of G versus λ is displayed. The result of executing our optimal strategy of

controlled node removal is represented by the solid curve, while the dashed curve is predicted by the above

physical analysis. We observe that, even when the node capacity parameter assumes the minimum value

λ = 1, our method can result in a connected component that contains more than 60% of the original nodes

after an attack. In this sense, cascading breakdown has been effectively prevented. We emphasize that, given

the structure of the network to be protected, the required computations in response to an attack can be done

extremely efficiently, and the results of which can then be used for quick, controlled node removal so as to

prevent possible cascading breakdown.



8 . DYNAMICS-BASED SCALABILITY OF COMPLEX NETWORKS

8.1. Background

Scalability is an important issue in many branches of science and engineering. For example, in biol-

ogy, synchronization can occur in systems of different sizes, ranging from neuronal and cellular networks to

population dynamics in natural habitats of vast distances. In computer science, whether a particular program

can work in systems containing orders-of-magnitude different numbers of components is always a pressing

issue. Similar scalability issues arise in large-scale circuit designs. Our interest here is in dynamics-based

scalability of complex networks. In particular, we ask, if a dynamical phenomenon of interest occurs in net-

works of size N1, can the same phenomenon be anticipated in networks of size N2, where N2 is substantially

larger than N1? More importantly, does the scalability so defined depend on the network topology? Ad-

dressing these questions can provide insights into fundamental issues such as the ubiquity of certain types of

networks in nature with respect to specific dynamical functions. A good understanding of the scalabilities of

networks of different topologies can also be important for practical design of various technological networks.

Despite extensive research on complex networks in recent years, the issue of network scalability has not been

considered.

To address the issue of network scalability, we focus on synchronization, a fundamental type of col-

lective dynamics in biological systems [73], and investigate the interplay between synchronization-based

scalability and network topology. The distinct type of network topologies included in our pursuit are globally

connected, locally coupled regular, random [42, 103], and scale-free [43]. We assume an identical nonlinear

dynamical process on every node. The associated master-stability function (MSF) [60, 123, 124] Ψ(K) can

then be determined, where K is a generalized coupling parameter. Let 0 = λ1 < λ2 ≤ . . . ≤ λN be the

eigenvalue spectrum of the coupling (Laplacian) matrix L for a given network. The system allows a stable

synchronization state if for all i = 2, . . . , N , Ψ(Ki) is negative [123], where Ki = ελi and ε is the actual cou-

pling strength. There are three typical classes of node dynamics under which synchronization can occur [see

Appendix A]: (class-I) Ψ(K) < 0 in a finite interval (Ka,Kb); (class-II) Kb →∞; (class-III) Ψ(K) < 0 in

several distinct intervals (Ka1,Kb1), (Ka2,Kb2), ... , (Kaf ,Kbf ), where Kbf can be either finite or infinite.

Consider, for example, class-I node dynamics. The stability condition becomes Ka < ελ2 ≤ ελN < Kb.
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As a result, we shall analyze the dependence of λ2 and λN on parameters N and ε so that regions in the

two-dimensional parameter plane (N, ε), where the underlying network is synchronizable, can be determined

analytically. Since the scalability results for class-III node dynamics can be inferred from those from class-I

and class-II dynamics, and class-II is actually a special case of class-I (a synchronizable system under class-I

node dynamics is also synchronizable under class-II dynamics), it is convenient to focus on class-I dynamics

and discuss situations of class-II dynamics where the network is unsynchronizable for class-I dynamics.

The main results of this Chapter are as follows. For globally connected and random networks, for

any system size N , there exists a non-zero coupling-parameter interval (εa, εb) for which the network is

synchronizable [123]. However, for locally coupled regular and scale-free networks, no such interval exists

for sufficiently large system size if Kb is finite. That is, these networks cannot be synchronized if their sizes

are too large when the node dynamics belong to class-I. For class-II node dynamics, scale-free networks can

be synchronized, but locally coupled regular networks require arbitrarily large coupling to be synchronized

so that they are practically not scalable. Our findings can provide insights into some fundamental issues

in sciences and engineering. For example, in biology, synchronization can occur on networks of various

sizes [73]. However, large scale-free networks can be unsynchronizable and, hence, the scale-free topology

may not be important, or less ubiquitous, in situations where synchronization is key to system functions. From

the standpoint of network design to achieve some desired synchronization-dependent performance, random

networks are advantageous.

8.2. Globally coupled networks

For such a network, every node is coupled to all other nodes in the network (Lii = N − 1, Lij = −1

if i 6= j) and we have λ1 = 0 and λ2 = . . . = λN = N . The network is synchronizable if K2 = λ2ε > Ka

and KN = λNε < Kb. Synchronization is stable if Ka/λ2 < ε < Kb/λN , and we thus have εa = Ka/N

and εb = Kb/N and, hence, ∆ε = (Kb −Ka)/N ∼ N−1. That is, for any physical network whose size is

finite, there exists a finite interval of the coupling parameter for which synchronization can be achieved. The

behavior is shown in Fig. 32(a), where the shaded strip in the parameter plane (N, ε) (on a logarithmic scale)

indicates the synchronizable region. For any fixed system size, as the coupling parameter is increased, the
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Fig. 32. Synchronizable region (shaded) in the parameter plane (N, ε) for (a) globally coupled networks, and

(b) locally coupled regular networks with fixed average degree 〈k〉 = 80. The node dynamics is described by

the chaotic Rössler oscillator: dx/dt = F(x) ≡ [−(y + z), x + 0.2y, 0.2 + z(x − 9)]T , for which we find

Ka ≈ 0.2 and Kb ≈ 4.6.
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network can undergo transitions from desynchronization to synchronization, and to desynchronization again.

A remarkable feature is that, for a reasonably fixed coupling parameter, as its size is increased, a network can

go from being desynchronized to being synchronized and then to being desynchronized again. This means

that, a globally coupled network can be synchronized if its size is neither too small nor too large. There exists

an optimal range of the system size for which synchronization can be achieved. This is basically a system-size

resonance phenomenon [125].

8.3. Locally coupled regular networks

In such a network, every node is connected to m nearest neighbors, i.e., 〈k〉 = m. We assume

periodic boundary conditions. The elements of the Laplacian matrix L are then Lii = m, Lij = −1

for j = i ± 1, . . . , i ± m/2 and Lij = 0 otherwise. The eigenvector associated with λ2 is e2 =

√
2/N [sin(2π/N), sin(4π/N), . . . , sin(2π)]T , where (·)T denotes transpose. The key eigenvalue λ2 can

then be expressed as λ2 = eT
2 ·L · e2 =

∑N
i,j=1 Lije2ie2j , where e2i =

√
2/N sin (2πi/N). After a lengthy

algebra, we obtain

λ2 = m + 2− 2 cos (
mπ

2N
)
sin ( π

N + mπ
2N )

sin ( π
N )

.

The largest eigenvalue can be obtained by manipulating λN = eT
N ·L ·eN =

∑N
i,j=1 LijeNieNj , where

eNi =
√

2/N sin [(2πj/(N/f)] and f is the basic spatial Fourier frequency, an integer between 1 and N/2.

A similar calculation gives

λN = m + 2− 2 cos(
mπ

2N/f
)
sin( π

N/f + mπ
2N/f )

sin( π
N/f )

.

Because of the frequency dependence of λN , the upper bound of the synchronizable parameter interval is

given by εb = Kb/λN,max, where λN,max = λN (fc) and fc is given by fc = min{f |dλN (f)/df = 0}. For a

sparse network, we have 〈k〉 = m ¿ N . In this case, the expression for λ2(N) and λN,max(N) can be further

simplified by proper Taylor expansions. We obtain λ2 ≈ π2(m + 2)(m2 + m + 1)/6N2 and λN ≈ m. That

is, εa = αN2 and εb = Kb/m (independent of N ), where α ≡ 6Ka/[π2(m+2)(m2+m+1)]. We then have

∆ε = Kb/m − αN2. The key feature that distinguishes a locally coupled network from a globally coupled

network is the existence of a critical system size, above which the network is unsynchronizable, regardless of
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the coupling. Our analysis gives the following formula for the critical system size: Nc =
√

Kb/(mα). In

principle, knowing the specific node dynamics (which gives specific values of Ka and Kb), we can predict

Nc. A typical behavior of the network synchronizability in the parameter plane (N, ε) is shown in Fig. 32(b).

We see that locally coupled regular networks are unscalable for class-I node dynamics. Physically, this could

be understood that for globally coupled network, the number of links per node increases with network size.

While for locally coupled regular network the number of links per node is a constant. Thus as network

size increases, the network distance becomes larger and it is more difficult for a node to communicate with

its diametrical counterparts, leading to degraded synchronizability. For class-II dynamics, Kb → ∞, the

stability condition becomes ε > Ka/λ2, which can be satisfied in principle. A practical issue is that, since

λ2 can be small for large N , the coupling parameter needs to be unreasonably large, e.g. ε > αN2, for

synchronization to occur. If there exists a limit of the coupling parameter, say εu, the critical network size is

given by Nc =
√

εu/α. In this sense, locally coupled regular networks are not scalable.

8.4. Random networks

Let p be the probability for a pair of nodes to be connected. The average degree of the network is 〈k〉 =

pN . For the adjacency matrix A (Aij = −1 if nodes i and j are connected, Aij = 0 otherwise and Aii = 0),

the distribution of the eigenvalues λ
(A)
i follows the Wigner semicircle law [126], where the center of the

semicircle is at zero. In particular, we have λ
(A)
1 ≈ −Np, λ

(A)
2 ≈ −2

√
Np(1− p), λ

(A)
N ≈ 2

√
Np(1− p),

and
∑

i λ
(A)
i = 0. For the Laplacian matrix L, where Lij = Aij for i 6= j and Lii = ki, we have λ1 = 0

and Tr(L) =
∑

i ki = N2p. The nontrivial eigenvalues are still distributed according to the semicircle

law except that the center of the semicircle is now at Np. We thus have λ2 ≈ Np − 2
√

Np(1− p) and

λN ≈ Np+2
√

Np(1− p), which give εa = Ka/[Np−2
√

Np(1− p)] and εb = Kb/[Np+2
√

Np(1− p)].

Random networks arising in nature are typically sparse [42]. For a sparse random network, the average

degree satisfies 〈k〉 ¿ N or p ¿ 1. We thus obtain εa ≈ Ka/(〈k〉 − 2
√
〈k〉) and εb ≈ Kb/(〈k〉 +

2
√
〈k〉). A remarkable consequence is that, if 〈k〉 is fixed, both εa and εb are independent of the network

size! As a result, arbitrarily large networks can be synchronized, insofar as the network becomes increasingly

sparse and the coupling strength falls in a constant interval [127]. The size of this interval does not decrease
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Fig. 33. For the same node dynamics as in Fig. 32, synchronizable region (shaded) in the parameter plane

(N, ε) for (a) random networks with fixed average degree 〈k〉 = 20, (b) random networks with 〈k〉 = 0.05N ,

(c) scale-free networks with degree exponent γ = 3.5 and fixed average degree 〈k〉 = 20, and (d) scale-free

networks with 〈k〉 = 0.05N .
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as N is increased, as exemplified in Fig. 33(a) for 〈k〉 = 20. In this sense, random networks are more

synchronizable than globally connected networks, as for the latter, the synchronizable parameter interval ∆ε

decreases inversely with the increase of the system size [Fig. 32(a)]. Note, however, if 〈k〉 increases with N

(e.g., 〈k〉 = pN and p is fixed), then for large N , we have 〈k〉 À
√
〈k〉 and, hence, ∆ε ≈ (Kb −Ka)/〈k〉 ∼

1/N , as shown in Fig. 33(b). This is similar to the synchronization behavior of a globally connected network.

Thus random networks are scalable for all three classes of node dynamics.

8.5. Scale-free networks

For a scale-free network, the degree distribution follows a power law [43]: P (k) = ak−γ for k ≥ m0,

where γ > 0 is the degree exponent and a is a constant. The minimum degree is kmin = m0. The constant a

can be determined by
∫∞

m0
P (k)dk = 1. For a scale-free network of infinite size, the maximum degree kmax

diverges. However, for any physical network, its size is finite. One can consider the average number of nodes

that have degrees larger than kmax, which is N
∫∞

kmax
P (k)dk. If this number is less than one, kmax is the

largest degree. This condition yields
∫∞

kmax
P (k)dk ≈ 1/N , which gives kmax ≈ m0N

1/(γ−1). For scale-

free networks, we have λ2 ≈ Ckmin, where the constant C is of the order of unity, and λN ≈ kmax [128].

Thus λ2 is independent of the system size but λN increases with N as a power law. We then have εa ≈

Ka/(Cm0) and εb ≈ (Kb/m0)N−1/(γ−1) and, consequently, ∆ε ≈ (Kb/m0)N−1/(γ−1) − Ka/(Cm0).

The point is that there exists a critical system size Nc ≈ [Ka/(CKb)]−(γ−1), above which synchronization

is impossible. The synchronizable region in the (N, ε)-plane is shown in Fig. 33(c) for scale-free networks

of fixed average degree. A qualitatively similar behavior occurs when the average degree increases with the

system size, as shown in Fig. 33(d) for 〈k〉 = 0.05N . Thus large scale-free networks are not synchronizable

if the node dynamics belong to class-I. For class-II dynamics, since λ2 does not decrease with network size

N , synchronization can occur when the coupling parameter is in a proper range, regardless of the system size.

Therefore, scale-free networks are not scalable for class-I node dynamics but scalable for class-II dynamics.

An implication is that, if synchronization is important for the functions of some complex networked systems,

the scale-free topology should not be the choice if the node dynamics has a finite Kb. Likewise, in biological
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situations where synchronization can occur in systems of all kinds of sizes, we expect the random-network

topology to be more pervasive since it is scalable for all cases.

8.6. Direct numerical verification

We now provide direct numerical support for our analysis. To compare with eigenvalue analy-

sis we again use class-I node dynamics. The oscillatory networked system is described by dxi/dt =

F(xi) − ε
∑N

j=1 LijH(xj), where F(x) = [−(y + z), x + 0.2y, 0.2 + z(x − 9)]T , H(x) = [x, 0, 0]T is

a coupling function. Because of the complexity of the system dynamics, the degree of synchronization can be

characterized only statistically. In particular, we define the synchronization probability Psyn as the probability

that the fluctuation width W (t) of the system is smaller than a small number δ (chosen somewhat arbitrarily)

at all time steps during an interval T0 in the steady state, where W (t) = 〈|x(t) − 〈x(t)〉|〉, and 〈·〉 denotes

average over nodes of the network. In computation, Psyn can be calculated by the ensemble average, i.e.,

the ratio of the number of synchronized cases over the number of all random network realizations. Figure 34

shows Psyn versus the system size for both random and scale-free networks, where panel (a) corresponds to

the situation where 〈k〉 = 20 and panel (b) is for 〈k〉 = 0.05N . Indeed, for random networks of fixed average

degree, synchronization can occur for all system sizes tested [open circles, panel (a)]. However, a scale-free

network with fixed average degree cannot be synchronized if its size becomes too large [open triangles, panel

(a)]. When the average degree of the network is proportional to its size, for both random and scale-free net-

works, for a fixed coupling parameter, there exists a range of system size with which synchronization can

occur [panel (b)]. These results agree with those from our spectral analysis.

In summary, we have addressed the fundamental issue of scalability in both complex and regular net-

works, by focusing on their synchronizabilities. Our analysis indicates that random networks are scalable in

the sense that they are synchronizable, regardless of their sizes, insofar as the coupling parameter is chosen

properly. However, scale-free networks are scalable only for certain types of node dynamics. For the regular

topology, globally coupled networks are scalable but locally coupled networks are not. Investigating network

scalability not only can provide a better understanding of the workings of networks in nature, but also is

important for designing technological networks, notably computer networks in information infrastructure.
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Fig. 34. Synchronization probability versus network size. (a) Fixed average degree 〈k〉 = 20 for random

(circles, ε = 0.05) and scale-free (triangles, ε = 0.035, γ = 3.5) networks. (b) Average degree proportional

to network size: 〈k〉 = 0.05N , for random (circles, ε = 0.1) and scale-free (triangles, ε = 0.06, γ = 3.5)

networks. Simulation parameters are T0 = 3000 and δ = 0.01. Each data point is from 1000 network

realizations.



9 . SYNCHRONIZATION-BASED SCALABILITY IN COMPLEX CLUSTERED NETWORKS

9.1. Background

Recently, synchronization in complex networks has received considerable attention [49,50,54,55,59,61,

115,116,129,130]. There are two main motivations: (1) synchronization is fundamental to many phenomena

in nature, especially in biology [73], and (2) many natural and technological systems exhibit traits of complex

networks [12,42,43,131,132]. Most existing studies have focused on the synchronizability, addressing the role

played by different network topologies [55, 59, 115, 130]. Various coupling schemes have been proposed to

enhance the network synchronizability. The issue of scalability, i.e., the dependence of dynamical properties

of the network on its size, has also begun to be considered [62, 133]. The focus of this chapter is on the

scalability of synchronization of complex clustered networks, networks whose characteristics have been found

in various biological, social, and technological systems [1–6].

A clustered network consists of a number of subnetworks (clusters), where nodes within each cluster are

densely connected but the linkage among the clusters is sparse. A clustered network can be complex in the

sense that, not only the inter-cluster linkage can be random, but the connections within each individual cluster

can also be random [75], small-world [42], or scale-free [43]. Recently synchronization in complex clustered

networks has been studied [61], but the issue of size-dependence has not been systematically explored. The

main question addressed in this chapter is then: if a clustered network of small size is synchronizable, under

what conditions will networks of the same topology but of much larger size be still synchronizable? Answer

to this question can reveal the interplay between synchronization and the clustered topology and help provide

insights into whether large complex clustered networks can be pervasive in natural systems with respect to

synchronization.

We will use the standard approach of network spectral analysis, namely the master-stability-function

(MSF) approach [60] to explore the size-dependence issue. In particular, previous works have established

that the synchronizability of a network can be characterized by the spread of the eigenvalue spectrum of the

underlying coupling matrix [49, 50, 54]. Given a clustered network, we shall obtain analytic estimates for

both the smallest and the largest nontrivial eigenvalues as a function of the network size, based on which the

range of the coupling parameter, say ε, for which synchronization is possible can be obtained. A network is
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regarded as scalable with respect to synchronization if there exists a finite range of ε in which synchronization

can occur, insofar as the network size is finite. Likewise, a network is not scalable if the synchronizable

parameter range becomes zero as the network size exceeds a critical value. To state our main result, it is

necessary to define parameters to characterize a complex clustered network. In this regard the probabilities

of inter-cluster and intra-cluster links, denoted by pl and ps, respectively, are most relevant. For the clustered

topology to be distinct, it is required by definition that pl ¿ ps. Our analysis indicates that, for fixed values

of pl and ps, the network is scalable with respect to synchronization. However, as we will see, when pl

and ps are fixed, the densities of the inter-cluster and intra-cluster linkages increase in a different manner as

the network size is increased. If the size is sufficiently large, the inter-cluster link density can surpass the

intra-cluster link density (unless the number of clusters is small). When this occurs, the characteristics of

the clustered topology is completely lost, reducing the network to one with the standard complex topology

determined by the specific topology of the individual subnetwork. On the other hand, if the inter-cluster link

density is fixed so that the clustered topology is maintained, the network synchronizability is lost when its size

becomes sufficiently large. The general phenomenon is then that complex clustered networks are not scalable

with respect to synchronization. An implication is that, if synchronization is important to the functions of a

large networked system, the complex clustered topology is not desirable. For large networks in biology, if

synchronization is fundamental, they are most likely to be non-clustered. Our result also provides a dynamics-

based explanation to the difficulty to achieve synchronization in many social networks that are typically large

and clustered.

The aim of our study is to address network scalability by focusing on the network’s ability to synchro-

nize, not on actual synchronization. This approach would allow general conclusions to be drawn, in spite of

the complexity of the problem. If actual synchronization were to be considered, general insights would be

difficult to obtain as the synchronization would depend on many specific details such as initial conditions.

Thus, in this chapter, when we say that certain networks are scalable with respect to synchronization, we

mean only that the networks can be synchronized, regardless of its size, if the coupling parameter and initial

conditions are chosen properly. In contrast, if a class of networks is not scalable, they absolutely cannot be
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synchronized if their sizes exceed a critical value, regardless of how coupling or initial conditions are ad-

justed. It is in this sense of scalability which makes the MSF formalism [60] a powerful theoretical tool. In

what follows we shall briefly describe the MSF framework and argue for its applicability when different types

of node dynamics are taken into account.

We consider the following network of N coupled oscillators:

dxi

dt
= F(xi)− ε

N∑

j=1

GijH(xj), (9.1)

where i = 1, . . . , N , dx/dt = F(x) describes the dynamics of each individual oscillator, H(x) is the coupling

function to each oscillator, G = (Gij) is the coupling matrix determined by the network topology, and ε is a

coupling parameter. The matrix G satisfies the condition
∑N

j=1 Gij = 0 for any i, ensuring the existence of

a synchronized state xi(t) = s(t),∀i, where ds/dt = F(s) is a solution to Eq. (9.1).

Linearizing Eq. (9.1) about the synchronized state yields the master stability functions (MSF). For

different types of node dynamics, the MSF shows some different behaviors. What has often been assumed

in the network-synchronization literature [49, 50, 54] is that the MSF is negative in a single, finite interval.

However, to encompass all possible situations, we shall also address the cases where the interval tends to

infinity and where the MSF has several distinct stable regions.

Class-I node dynamics. To be concrete, we assume chaotic dynamics on any single node so that Ψ(0) >

0. For synchronization to be possible, Ψ(K) must be negative in some region of K. There is thus a cross point

of Ψ(K) with K-axis at which Ψ(K) becomes negative, say K1. As K is increased, Ψ(K) becomes positive

again at K2 and remains positive thereafter. In this case, Ψ(K) is negative in a finite interval [K1,K2], and

the stability condition for synchronization becomes

λ2 ≥ K1

ε
and λN ≤ K2

ε
,

or

K1

λ2
≤ ε ≤ K2

λN
.

Let ε1 = K1/λ2 and ε2 = K2/λN . For a given network (λ2 and λN fixed) and given node dynamics (K1
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and K2 fixed), the interval of coupling strength that permits a stable synchronization of the system is

∆ε = ε2 − ε1 =
K2

λN
− K1

λ2
. (9.2)

If ∆ε > 0, the system can be made synchronizable for proper choices of the coupling parameter ε and of the

initial conditions. For given K1 and K2, this leads to the condition for synchronization:

Q ≡ λN

λ2
<

K2

K1
, (9.3)

where Q is the eigenratio. If ∆ε < 0 or Q > K2/K1, synchronization will not occur no matter how the cou-

pling parameter ε may be adjusted. The eigenratio Q can thus be used as an indicator of the synchronizability

of the network [49]: the smaller the value of Q, the higher the probability that the system can synchronize.

For a network with given node dynamics, K2/K1 is constant. For the network to be scalable with respect

to synchronization, ∆ε should be positive for any size N of the network. Or equivalently, the eigenratio Q

should not exceed K2/K1 as the size of the network is increased.

Class-II node dynamics. In this case, K2 →∞, i.e., the MSF Ψ(K) is negative for K ∈ [K1,∞). With

respect to scalability, this is a special case of Class-I node dynamics, in the following sense: a synchronizable

or scalable system for class-I dynamics is also synchronizable or scalable for class-II dynamics.

Class-III node dynamics. In this case, Ψ(K) is negative in several distinct regions, say

[Ka1,Kb1], [Ka2,Kb2], . . . , [Kaf ,Kbf ] where Ka1 < Kb1 < Ka2 < Kb2 < ... < Kaf < Kbf and Kbf can

be either finite or infinite. When Kbf is finite, if each interval [Kai,Kbi] is regarded as the synchronizable in-

terval [K1,K2] for class-I node dynamics, results on the scalability for class-I dynamics can be applied. Note

that it is possible that Ki may reside in different stable intervals where the system is still synchronizable.

For Kbf → ∞, if a particular finite interval is of interest, results from class-I node dynamics are pertinent;

otherwise results for class-II dynamics are applicable.

The above discussion suggests that, in order to address the issue of scalability, focusing on class-I node

dynamics suffices.

In Sec. 9.2, we provide a spectral analysis for complex clustered networks under two coupling schemes.
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In Sec. 9.3, we apply the results in Sec. 9.2 to obtain analytic results concerning the scalability of such

networks and provide numerical support. Conclusions are offered in Sec. 9.4.

9.2. Spectral analysis of complex clustered networks

We consider the following general clustered network model [132, 134]: there are N nodes in a network

which are divided into M clusters, and each cluster contains n = N/M nodes. Nodes in the same cluster

are connected with probability ps, and the probability for two nodes, each belonging to a different cluster, to

be linked is pl. The clustered topology requires pl ¿ ps. For typical clustered networks arising in different

situations, the topology of the subnetworks in individual clusters is mostly random [1–6], which we shall

assume for our analysis in this chapter.

For a given node dynamics, the values of the general coupling parameter that define the stable synchro-

nization regime, K1 and K2, are fixed. The synchronizability of the oscillator network is then determined by

its topology as characterized by the smallest and the largest nontrivial eigenvalues of the coupling matrix, λ2

and λN , respectively. In the following, we shall consider two different coupling schemes and derive analytic

formulas for λ2 and λN .

9.2.1. Type-I coupling

In this case, the coupling matrix is defined as: for any i(1 ≤ i ≤ N), Gii = ki, where ki is the degree

(the number of links) of node i, Gij = −1 (i 6= j) if there is a link between node i and j, and Gij = 0

otherwise. This matrix is in fact the generalized Laplacian matrix.

To obtain an analytic estimate for λN , we make use of the relation between λN and the maximum degree

of the network as derived in Ref. [133]:

λN ≈ kmax + 1. (9.4)

Our goal is thus to obtain an expression for kmax for random clustered networks.

In a single random network with connection probability p, the degree ki of a node i follows a Binomial

distribution B(N − 1, p): P (ki = k) = Ck
N−1p

k(1− p)N−1−k, where Ck
N−1 = (N − 1)!/[k!(N − 1− k)!]

is the Binomial coefficient. When N is large, a straightforward application of the law of large numbers yields
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the following standard approximation:

P (k) ≈ 1√
Np(1− p)

φ(
k −Np√
Np(1− p)

),

where φ(x) = (1/
√

2π)e−
1
2 x2

. For a clustered network, node i connects to the remaining n− 1 nodes in the

same cluster with probability ps, and connects to the N − n nodes in different clusters with probability pl.

Therefore, the degree distribution of the network consists of two parts: B(n − 1, ps) for intra-cluster links

and B(N − n, pl) for inter-cluster links. Using the approximation of normal distribution, we have

Ps(k) ≈ 1√
nps(1− ps)

φ(
k − nps√
nps(1− ps)

),

Pl(k) ≈ 1√
(N − n)pl(1− pl)

φ(
k − (N − n)pl√
(N − n)pl(1− pl)

).

Assuming that intra-cluster and inter-cluster links are independent of each other, we can sum the two distri-

butions to obtain a new normal distribution for the degree distribution:

P (k) ≈ 1
σ

φ(
k − 〈k〉

σ
), (9.5)

where the mean and the variance are given by

〈k〉 = nps + (N − n)pl,

σ2 = nps(1− ps) + (N − n)pl(1− pl). (9.6)

The maximum degree kmax of the network can be calculated by following the condition that the probability

of a node to have a degree larger than or equal to kmax is 1/N , i.e.,

∫ ∞

kmax

P (k)dk = 1/N.

Using Eq. (9.5), we obtain

kmax = erf−1(1− 2/N) ·
√

2σ + 〈k〉, (9.7)

where erf−1(x) is the inverse of the error function erf(x) = 2√
π

∫ x

0
e−t2dt. The largest eigenvalue λN can

then be approximated as

λN ≈ kmax + 1 = erf−1(1− 2/N) ·
√

2σ + 〈k〉+ 1. (9.8)
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For λ2, we have λ2 = eT
2 ·G · e2 =

∑N
i,j=1 e2iGije2j , where e2 is the eigenvector associated with λ2 and

e2i is the ith component of e2. A recent work [62] has revealed that for a clustered network, the components

of the eigenvector e2 have approximately the same value within a cluster. Thus the eigenvector e2 can be

written as: e2 ≈ [ẽ1, ..., ẽ1, ẽ2, ..., ẽ2, ..., ẽM , ..., ẽM ]T , and for each index I , 1 ≤ I ≤ M , there are n ẽI ’s in

e2. We have

λ2 ≈
N∑

i=1

e2i{Gi1ẽ1 + Gi2ẽ1 + · · ·+ Ginẽ1 + Gi(n+1)ẽ2 + · · ·+ GiN ẽM}. (9.9)

For type-I coupling, the matrix elements are: (1) Gii = ki, (2) Gii = −1 with probability ps and Gii = 0

with probability 1 − ps if nodes i and j belong to the same cluster, and (3) Gii = −1 with probability pl

and Gii = 0 with probability 1 − pl if nodes i and j belong to different clusters. Substituting these matrix

elements into Eq. (9.9), we have

λ2 ≈
N∑

i=1

e2i{−nplẽ1 − nplẽ1 + · · ·+ kiẽI − npsẽI + · · · − nplẽM},

where ẽI is the eigenvector component associated with the cluster that contains nodes i. For a random sub-

network, the degree distribution has a narrow peak centered at k = nps + (N − n)pl, which leads to ki ≈ k.

We can thus write λ2 as

λ2 ≈
N∑

i=1

e2i{(N − n)plẽI − npl

M∑

J 6=I

ẽJ} =
N∑

i=1

e2i{NplẽI − npl

M∑

J=1

ẽJ}

≈
M∑

I=1

nẽI{NplẽI − npl

M∑

J=1

ẽJ} = Npl

M∑

I=1

nẽ2
I − (n

M∑

J=1

ẽJ)2pl.

Note that
∑M

I=1 nẽ2
I ≈

∑N
i=1 e2

2i = 1, and n
∑M

J=1 ẽJ =
∑N

i=1 e2i = 0 (G is symmetric for this type of

coupling). We obtain, finally,

λ2 ≈ Npl, (9.10)

for pl ¿ ps so that the clustered structure of the network is maintained.

9.2.2. Type-II coupling

Type-II coupling is defined by the following normalized Laplacian matrix: for any i(1 ≤ i ≤ N),

Gii = 1, Gij = −1/ki (i 6= j) if there is a link between node i and j, and Gij = 0 otherwise. For such a
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matrix, if N ≥ 2 and the network is connected, then 0 < λ2 ≤ N/(N − 1) and N/(N − 1) ≤ λN ≤ 2

[55, 135]. λ2 is more crucial in determining network synchronizability than λN is, because a slight change

in λ2 could lead to drastic change in the eigenratio Q, while the change of λN will not. Therefore, in the

following, we estimate λN in one way, and estimate λ2 in another more accurate way.

For λN , note that G = I − D−1A, where I is the unit matrix, D = diag{k1, . . . , kN}, and A is

the adjacency matrix. For a random network, its spectrum follows the Wigner semicircle law [136]. The

minimum eigenvalue of A is thus given by

λA
min = −2

√
nps(1− ps) + (N − n)pl(1− pl)

≈ −2
√

nps + (N − n)pl = −2
√
〈k〉.

Because of the narrow degree distribution, we have ki ≈ 〈k〉, which leads to [55, 137]

λN ≈ 1− λA
min/〈k〉 ≈ 1 +

2√
〈k〉 . (9.11)

For the smallest nontrivial eigenvalue λ2 can be obtained in a more precise manner from Eq. (9.9). In

particular, recall that for type-II coupling, Gii = 1, and if i and j belong to the same cluster, Gij equals

−1/ki with probability ps and 0 with probability 1− ps, while if they belong to different clusters, Gij equals

−1/ki with probability pl and 0 with probability 1− pl. Using 1− nps/ki = (N − n)pl/ki and performing

a similar analysis as for the case of type-I coupling, we obtain

λ2 ≈ Npl

nps + (N − n)pl
=

Npl

〈k〉 . (9.12)

Numerical results show, indeed, that Eq. (9.12) predicts more accurately λ2 than the random-matrix prediction

λ2 ≈ 1− 2/
√
〈k〉.

9.3. Scalability of clustered networks: theory and numerical support

The synchronization-based scalability of a random clustered network can be analyzed by exploring how

the key eigenvalues λN and λ2 of the coupling matrix vary as the size of the network is increased. There are

two ways by which the network size N = nm can be increased: either n or m is increased. In addition, for

a clustered network with fixed intra-cluster connecting probability ps, there are two distinct situations. First,
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the inter-cluster connection probability pl is fixed. In this case, the average number of inter-cluster links per

node µ increases with the network size N = nm. Second, µ is fixed. In this case, when N is increased, the

probability pl needs to be decreased accordingly. With the two types of coupling schemes treated here, there

are eight distinct combinatorial cases of interest. In the following, we will analyze each case and provide

numerical support. Our approach will be as follows. Recall that, insofar as Q = λN/λ2 < K2/K1, there is a

finite parameter interval (ε1, ε2), where ε1 = K1/λ2 and ε2 = K2/λN , within which the oscillator network

is synchronizable. We shall then focus on λN and λ2, investigate when the condition Q < K2/K1 is satisfied,

and plot ε1 and ε2 as a function of N to reveal the synchronizable (scalable) regions in the two-dimensional

parameter space (N, ε).

For numerical exploration, we shall use the chaotic Rössler oscillators for node dynamics, which is

given by F(x) = [−(y + z), x + 0.2y, 0.2 + z(x− 9)]T . Parameters adopted here permit a funnel attractor in

the phase space and the system is in the chaotic state. The coupling function is chosen to be H(x) = x. We

obtain K1 ≈ 0.2,K2 ≈ 4.62, and the synchronization boundaries of the system are given by ε1 = 0.2/λ2

and ε2 = 4.62/λN .

9.3.1. Scalability for fixed inter-cluster connecting probability

For each case below, we fix ps = 0.3 and pl = 0.01 ¿ ps in numerical computations so as to ensure

the clustered topology of the network.

9.3.1.1. Type-I coupling

Case 1. Fixing n and varying m. In this case, the size of individual clusters is fixed while the number of

clusters is varied. Theoretical results for λN and λ2 can be obtained from Eq. (9.8) and Eq. (9.10), as shown

by the solid curves in Figs. 35(a) and 35(b). The data points are from numerical computations. There is a

reasonable agreement between theory and numerics. In particular, as m is increased, both λN and λ2 increase,

but Q decreases, as shown in Fig. 35(c). This means that, insofar as Q < K2/K1 is satisfied, larger networks

are more synchronizable. The synchronization region in the (m, ε) parameter plane can be determined by Eq.

(9.2), as shown in Fig. 36 as the region between the top and the bottom curves (open triangles are numerical

results). It can be seen that as the number of clusters is increased, there exists a finite interval ∆ε within which
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the oscillator system can be synchronized. We thus see that for type-I coupling, random clustered networks

with fixed cluster size are scalable with respect to synchronization.

Case 2. Fixing m and varying n. In this case, the number of clusters is fixed and the size of the

network is controlled by n, the size of each individual cluster. Theoretical and numerical results show that the

behaviors of Q and of the critical values of the coupling parameter are similar to those for case 1. We conclude

that, for type-I coupling and fixed inter-cluster connecting probability, a clustered network is scalable with

respect to synchronization.

We now provide analytic insights into the behaviors of ε for type-I coupling. For this type of coupling,

the relevant eigenvalues λN and λ2 are given by Eq. (9.8) and Eq. (9.10). Based on these formulas, we can

write down the eigenratio Q as

Q = λN/λ2 ≈ erf−1(1− 2/N)
√

2σ + 〈k〉+ 1
Npl

.

We proceed by making use of the following series expansion for the inverse error function [138]:

[erf−1(x)]2 ∼ η − 1
2

ln η + η−1(
1
4

ln η − 1
2
) + . . . , x → 1,

where η = − ln[
√

π(1−x)]. This expansion is valid for x → 1, which holds in our problem as 1− 2/N → 1

for large N . Keeping only the first-order term, we have

erf−1(1− 2/N) ≈
√
− ln(

√
π · 2/N) =

√
ln (N/2

√
π).

Substituting this into the expression for Q and omitting irrelevant constants, we have

Q =

√
2 ln(N/2

√
π)σ + 〈k〉+ 1

Npl
≈
√

nS + nps + mnpl

mnpl
,

where S = [ps(1 − ps) + mpl] ln (mn). We see that Q is essentially independent of m and n when they

become large. But when we fix n and increase m, for instance, in order to maintain the clustered structure,

m should smaller than mmax = ps/pl + 1 (see Sec. 9.4). Substituting this expression of mmax in Eq. (9.13),

we get

Q ≈ 2 +
√

2− ps

nps
ln

nps

pl
, for fixed n.
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Fig. 35. (Color online) For type-I coupling, fixed cluster size, (a-c) λN , λ2, and Q versus m, the number of

clusters, respectively. Simulation parameters are ps = 0.3, pl = 0.01, and n = 100. The curves represent

theoretical results and data points are numerical results averaged over 10 random network realizations.
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Fig. 36. (Color online) For the same setting as in Fig. 35, synchronizable region in the two-dimensional

parameter plane (m, ε) as enclosed by the two curves. Data points are numerical results.
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For fixed m, the asymptotical behavior of Q can be given as

Q ≈ ps

mpl
+ 1, for fixed m,

which does not depends on n and tends to a constant. The size ∆ε of the synchronizable region is then given

by

∆ε ≈ K2pl −K1(
√

S/(m2n) + ps/m + pl)
pl(
√

nS + nps + mnpl)
.

For fixed n, the leading term of ∆ε scales with m as m−1. Making use of the expression for mmax, we get

∆ε ≈ K2nps −K1(
√

nps(1− ps) ln (nps/pl) + 2nps)
nps(

√
nps(1− ps) ln (nps/pl) + 2nps)

.

For fixed m we then have

∆ε ≈ K2mpl −K1(ps + mpl)
mnpl(ps + mpl)

,

which scales with n as n−1.

9.3.1.2. Type-II coupling

Case 3. Fixing n and varying m. In this case, λN decreases as there are more clusters in the network,

versus the cases associated with the type-I coupling where this eigenvalue increases as the network grows.

Meanwhile, λ2 increases with m, the eigenratio Q actually decreases with m, indicating that larger networks

are more synchronizable. Both theoretical and numerical results show that the synchronizable coupling inter-

val increases with m. Since the numerical results appear quite similar to those in Figs. 35 and 36, here we

shall provide a scaling theory for type-II coupling.

Case 4. Fixing m and varying n. For the eigenvalues λN and λ2 and the ratio Q, behaviors similar to

those in case3 have been observed. As a result, the synchronizable region in the parameter plane (ε, n) shows

a similar pattern too : the underlying oscillator network is scalable.

For type-II coupling, we have:

Q =
(1 + 2/

√
〈k〉)〈k〉

Npl
≈ 〈k〉+ 2

√
〈k〉

Npl

≈ nps + nmpl + 2
√

nps + nmpl

nmpl
(9.13)
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where 〈k〉 is the average degree of the network that can be calculated from Eq. (9.6). Apparently, Q depends

neither on n nor on m when the system size becomes infinite. Let m = mmax be the critical value of the

number of clusters above which the clustered structure cannot be maintained. We have

Q ≈ 2(1 +
√

2/(nps)), for fixed n.

When we fix m and increase n, the asymptotic value of Q can be obtained as

Q ≈ ps

mpl
+ 1, for fixed m.

The synchronizable coupling-parameter interval ∆ε can then be calculated as

∆ε ≈ K2 −K1
nps + nmpl

nmpl
,

where the leading term is independent of n and m. For m = mmax, we have

∆ε ≈ K2 − 2K1, for fixed n.

If m is fixed but n is increased, we have, asymptotically,

∆ε ≈ K2 −K1
ps + mpl

mpl
.

For type-II coupling, when we fix m (or n) and increase n (or m), a finite interval in the coupling parameter

always exists for which the network is synchronizable. The clustered networks are thus scalable. Combined

with the results for type-I coupling, we can conclude that, for fixed inter-cluster connecting probability, the

networks are scalable for both type-I and type-II coupling schemes. In particular, the eigenratio Q tends to

constant values as the network grows, and the synchronizable parameter interval ∆ε is inversely proportional

to the network size for type-I coupling but it tends to constant for type-II coupling as the system size N is

increased.

9.3.2. Scalability for fixed average number of inter-cluster connections

The average number of inter-cluster connections is

µ =
n2m(m− 1)pl

mn
= n(m− 1)pl.
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When we fix µ to grow the network, the actual inter-cluster connection probability

pl =
µ

n(m− 1)
(9.14)

will be reduced, but our theoretical results in Sec. 9.2 for the eigenvalues are still applicable.

9.3.2.1. Type-I coupling

Cases 5 and 6. Fixing n (or m) and varying m (or n). In these cases, λN is still given by Eq. (9.8),

except that σ and 〈k〉 now become

σ2 = nps(1− ps) + µ(1− µ

n(m− 1)
), (9.15)

〈k〉 = nps + µ,

and λ2 can be calculated from

λ2 =
mµ

m− 1
. (9.16)

When we fix µ, there is no required maximum value of m (see 9.3.3). We thus only need to discuss the

behavior of Q as the network size is increased. From Eqs. (9.8), (9.15), and (9.16), we have

Q ≈ 1
µ

(
√

(ps(1− ps) + mpl) ln (mn) + nps), (9.17)

which scales as
√

m lnm for fixed n and as n for fixed m. Thus, for type-I coupling, when the network

grows, Q always increases. As the network size increases through a critical value, there exists no interval

in the coupling parameter for which the network can be synchronized, indicating a loss of scalability. These

behaviors have been verified numerically.

9.3.2.2. Type-II coupling

Cases 7 and 8. Fixing n (or m) and varying m (or n). Substituting Eq. (9.14) into both Eq. (9.11) and

Eq. (9.12), we get

λN ≈ 1 +
2√
〈k〉 = 1 +

2√
nps + µ

, (9.18)

and

λ2 ≈ mµ

(m− 1)〈k〉 ≈
mµ

(m− 1)(nps + µ)
. (9.19)



115

For large n (or m), the leading term of Q can be written as

Q ≈ m− 1
mµ

(nps + 2
√

nps),

which does not depend on m for sufficiently large values of m, but it increases with n as the network size is

increased. Therefore, for fixed n, when m is increased, Q first increases and then approaches asymptotically

a constant. But, for fixed m, the eigenratio increases linearly with n, indicating a quick loss of the network

synchronizability as n becomes large. A representative example is shown in Fig. 37.

We see that n and m have different influence on Q for different cases. For example, when m is increased,

Q increases as
√

m ln(m) for type-I coupling and as (m − 1)/m for type-II coupling. These increases are

much slower than Q ∼ n when n is increased for fixed m. Thus, growing a clustered network by increasing

the size of individual clusters can be much more effective to suppress synchronization than increasing the

number of clusters.

From the above analysis, we can see that for the type of growing scheme defined by fixing µ, Q increases

for both types of the coupling schemes [139]. Because of this, although small networks may be synchroniz-

able, the synchronizability will be lost for larger networks. Clustered networks under the constraint of fixed

µ are thus not scalable.

9.3.3. Scalability and deterioration of clustered characteristics

The above results are based on the assumption that the networks considered possess a clustered topology.

An interesting question is whether the clustered structure can be retained when the network grows.

By definition, a clustered network requires that the intra-cluster connections be denser than the inter-

cluster connections. Defining ν and µ as the average numbers per node of intra/inter-cluster connections,

respectively, we need ν > µ. For our clustered network model, ν and µ are given by

ν = (n− 1)ps,

µ = n(m− 1)pl,
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Fig. 37. (Color online) For fixed µ = 0.3, type-II coupling, clustered networks of m = 5 clusters, (a-c) λN ,

λ2 and Q versus n, respectively.
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which leads the following condition for clustered structure:

ν

µ
=

(n− 1)ps

n(m− 1)pl
> 1. (9.20)

According to Eq. (9.20), the presence of the clustered topology depends on four parameters: n, m, pl and ps.

(In this chapter ps is fixed.)

First consider the setting where pl is fixed. If we fix n and increase m, the condition guaranteeing a

clustered network structure becomes

m <
(n− 1)ps

npl
+ 1 ≈ ps

pl
+ 1,

which depends only on the ratio of ps and pl. For m ≥ ps/pl + 1, the clustered structure no longer exists.

For the typical numerical setting we have used, the parameters are ps = 0.3 and pl = 0.01. In order to ensure

the clustered characteristics, the value of m should not exceed ps/pl + 1 = 0.3/0.01 + 1 = 31. This rule has

been followed in all our numerical examples.

If we fix m and increase n, the clustered condition becomes

n[ps − (m− 1)pl] > ps.

Since Eq. (9.20) implies (m− 1)pl < [(n− 1)/n]ps < ps, we have ps − (m− 1)pl > 0 and, hence,

n >
ps

ps − (m− 1)pl
,

which can usually be satisfied. For example, for m = 5, ps = 0.3 and pl = 0.01, the requirement is n À 2.

(Typical values of n used in our simulations are two orders of magnitude larger.)

We remark, however, that for fixed pl, the clustered topology can be maintained if the number of clusters

is small. In realistic networked systems this number may be large. While networks generated for fixed value

of pl are scalable with respect to synchronization, the clustered topology is lost as the network becomes large

if both the number of clusters and the number of nodes in each cluster grow.

Second, we consider the case where the average number of inter-cluster links µ is fixed. In this case,

pl = µ/[n(m− 1)] decreases with network size. The condition for clustered structure is

ν

µ
=

(n− 1)ps

µ
> 1.
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We see that ν/µ is independent of m. There is thus no requirement on m to ensure the clustered structure. If

we fix m and increase n, the ratio of ν/µ will become larger. The condition becomes

n >
µ

ps
+ 1.

For example, for the parameters used in our numerical examples (µ = 0.3 and ps = 0.3), the requirement is

n > 2, which is always guaranteed. The conclusion is that, although the clustered topology can be maintained

by fixing µ, the scalability is lost.

9.4. Discussions

We have addressed the scalability of complex clustered networks by investigating the size dependence

of the network synchronizability. The general conclusion is that such networks are not scalable with respect

to synchronization. In particular, if the probabilities of intra-cluster and inter-cluster connections are fixed,

larger networks are actually more synchronizable. In this case, however, the number of inter-cluster links

increases with the network size and, as such, a sufficiently large network may not exhibit the distinct feature

of being clustered. On the other hand, if the average number of inter-cluster links is fixed, the network

synchronizability deteriorates quickly as the network size becomes larger. A practical implication is that, for

typical clustered networks, if synchronization is important for the system function, the clustered topology is

undesirable [140]. We hope these results to be useful for the exploration of dynamics on complex clustered

networks.

An important issue concerns possible time delay in the coupling function [141], as interactions between

dynamical units in realistic physical systems cannot be instantaneous. When the coupling is time-delayed, the

synchronization manifold still exists, so its stability can be analyzed. In particular, while the master-stability

function needs to be determined from a set of variational equations that contain time delay, one can still define

a generalized coupling parameter as the product between the original coupling parameter and the eigenvalues

of the coupling (Laplacian) matrix. Hence, although a time delay can cause a shift or a change in the interval

where the master-stability function is negative, the eigenratio is determined solely by the network topology
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and can still be used to characterize the network synchronizability. We thus expect our results to hold for

complex clustered networks where there is a time delay in the interactions among nodes.



10 . CONCLUDING REMARKS

Here we list the concluding remarks from the above studies:

1. We find that synchronization in complex, clustered networks tends to obey a different set of rules

other than for a network without clustered structure. In particular, the synchronizability of such a network is

determined by the interplay between inter-cluster and intra-cluster links.The network is most synchronizable

when the numbers of the two types of links are approximately equal. In the presence of a mismatch, increasing

the number of intra-cluster links, while making the network distance smaller, can counterintuitively suppress

or even destroy the synchronization. We provide theory and numerical evidence to establish this phenomenon.

2. We have presented theory and numerical evidence that optimal synchronization of continuous-time

oscillator clustered networks can be achieved by matching the probabilities of inter-cluster and intra-cluster

links. That is, at a global level, the network has the strongest synchronizability when these probabilities

are approximately equal. Overwhelmingly strong intra-cluster connection can counterintuitively weaken the

network synchronizability. This can be better understood by the following considerations. Network synchro-

nizability is usually characterized by the spread of the nontrivial eigenvalues. What our analytical formulae

suggest is that spread becomes minimal when the two probabilities are approximately matched. For instance,

when the inter-cluster linking probability pl is fixed, increasing the intra-cluster connection probability ps

could result in desynchronization. On the other hand, for realistic clustered networks, pl is always smaller

than ps, and is usually much smaller. Our analysis indicates that, insofar as the network is clustered (ps > pl),

a larger pl will lead to better synchronizability.

While our network model is somewhat idealized, we have argued that similar phenomena should persist

in more general clustered networks. We have studied the synchronizability of clustered scale-free networks,

where each cluster contains a scale-free subnetwork. We have carried out numerical simulations, and found

that the patterns for the eigenvalues λN and λ2 are essentially the same as that for the clustered network where

each cluster contains a random subnetwork This indicates that optimization of synchronization by matching

different types of links is a general rule.

3. For a typical locally regular clustered network, its synchronizability exhibits an alternating, highly

non-monotonic behavior as a function of the intra-cluster link density. In fact, there are distinct regions of the
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density for which the network synchronizability is maximized, but there are also parameter regions in between

for which the synchronizability diminishes. We show that, while surprising, this phenomenon of alternating

synchronizability can be fully explained theoretically based on analyzing the behavior of the eigenvalues and

eigenvectors of the coupling matrix. A feature that makes our theoretical analysis feasible is that, due to the

locally regular topology of the network, some key eigenvectors within each individual cluster exhibit periodic

wave patterns. Both numerical eigenvalue calculations and direct simulation of the actual synchronization

dynamics of the underlying oscillator network provide firm support for the theory.

4. We have found that the behavior of cascading breakdown in clustered networks is quite different

to those in a single scale-free network. In particular, we find it convenient to classify nodes in the network

as bridge nodes (nodes that are connecting different clusters), skeleton nodes (nodes within a cluster that

connect the bridge nodes), and the non-essential nodes (the rest of the nodes). The bridge and skeleton nodes

effectively constitute the backbone. We find that, unlike the case for a single-component network where the

betweenness is correlated with the degree, for a complex clustered network, the load is rather determined by

the specific node type. In general, bridge nodes have the largest loads, followed by the skeleton nodes, and

then by the non-essential nodes. The population of the bridge nodes is generally small, but the load they carry

can be quite substantial. Thus to alleviate traffic jams in the clustered networks, it is efficient to increase the

capacity of the backbone nodes and in case of cascading, to intentionally remove some of the non-essential

nodes. We have worked out a theory to estimate the amount of non-essential nodes that need to be removed

and the remaining network size. Our theory agrees well with numerical simulations.

5. We have addressed the fundamental issue of scalability in both complex and regular networks, by

focusing on their synchronizabilities. Our analysis indicates that random networks are scalable in the sense

that they are synchronizable, regardless of their sizes, insofar as the coupling parameter is chosen properly.

However, scale-free networks are scalable only for certain types of node dynamics. For the regular topology,

globally coupled networks are scalable but locally coupled networks are not. Investigating network scalability

not only can provide a better understanding of the workings of networks in nature, but also is important for

designing technological networks, notably computer networks in information infrastructure.



APPENDIX A

MASTER STABILITY FUNCTIONS FOR TYPICAL CHAOTIC OSCILLATORS
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Most existing works (including Chapters 3-6 and Chapters 8 and 9) dealing with synchronization of

complex networks assume that the dynamical oscillator employed has a master stability function (MSF) that

is negative in a finite region of K, say (K1,K2). However, when refer to real dynamical systems, most papers

only use 11 coupling of Rössler oscillator. It is also known that other couplings of Rössler oscillator, say, 22,

33, do not have such master stability functions. Thus it becomes a big concern of the applicability of these

studies. Here we carry out a comprehensive study to calculate the MSFs for all known, typical nonlinear

oscillators under all commonly used coupling configurations. Our results show that for most nonlinear oscil-

lators, there exist some couplings for which the MSFs have a finite negative region, thus assured the previous

studies of synchronization properties of complex network systems.

Generally, for nonlinear oscillators, the Jacobian matrix DF depends on the trajectory s(t); while the

Jacobian matrix for linear coupling function H is a constant matrix. Here, we only consider one component

coupling. To be as general as possible, we consider all possible one component coupling, say, ith component

coupled to jth component: [H(x)]k = δjkxi, where δjk is the Kronecker’s delta such that δjk = 1 if j = k

and zero otherwise, and i and j run over 1 to d. The Jacobian matrix DH thus only has one non-zero element:

Hji = 1, while all other elements are zero.

We have carried out a comprehensive study to calculate the MSFs for all known, typical nonlinear

oscillators under all commonly used coupling configurations. For instance, for a three-dimensional system

(x1, x2, x3), there are nine commonly used, linear coupling configurations: 11, 12, 13, 21, 22, 23, 31, 32, and

33, and we have calculated the MSFs for all these configurations. [Here the notation ij (i, j = 1, 2, 3) stands

for the coupling scheme from ith component to the jth component.] The dynamical systems that we have

tested include: Rössler oscillator, Lorenz oscillator, Chua’s circuit, Chen’s oscillator, HR neuron, Duffing’s

oscillator, and Van der Pol system. For all these oscillators, the parameters are chosen such that an isolated

oscillator oscillates chaotically, corresponding to a positive Lyapunov exponent.

The Lyapunov exponents of variational equation (1.14) are calculated as follows. Define D̃F(s) =
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DF(s)−KDH(s). Then solve the matrix equation

dO(t)
dt

= D̃F(s)O(t) (A.1)

with initial condition O(0) = I, where I is the identical matrix of order d [142]. This matrix equation is

solved together with Eq. 1.11, from which it gets the trajectory variables s(t). Both equations are integrated

with the fourth-order Runge-Kutta (RK4) method (the calculated Lyapunov exponents will have systematic

deviations if the system state is integrated using RK4 while the matrix equation is integrated using Eular

method). Let λi(t), i = 1, ..., d be the eigenvalues of O(t), then the Lyapunov exponents are given by

hi = lim
t→∞

1
t

lnλi(t). (A.2)

However, numerically integrate equation (A.1) is unpractical (it will quickly diverge if the system has a

positive Lyapunov exponent or it will diminish to the round-off error if all Lyapunov exponents are negative).

A reasonable way is to “normalize” and reset O(t) periodically and the Lyapunov exponents can be obtained

from the normalization parameters. In our calculation, we use QR decomposition method to “normalize”

O(t). Details can be found in pages 650-651 in Ref. [143]. 104 cycles of s(t) are calculated to allow the

system reside on the attractor. Then 3 × 104 cycles are used to calculate Lyapunov exponents. Time step is

dt = 0.001.

Rössler system [144]: 



ẋ = −y − z,

ẏ = x + αy,

ż = β + (x− γ)z.

(A.3)

where the parameters are α = 0.2, β = 0.2, γ = 9. The Jacobian matrix is

DF =




0 −1 −1

1 α 0

z 0 x− γ




. (A.4)

The Lyapunov exponents for the this system are λ1 ' 0.080, λ2 ' 0, and λ3 ' −8.716. The master stability

functions for various couplings are shown in Fig. 38.
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Fig. 38. MSFs versus the normalized coupling parameter K for Rössler system (A.3) with various coupling

schemes. See text for the parameter values.

Lorenz system [145]: 



ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

(A.5)
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Fig. 39. MSFs versus the normalized coupling parameter K for Lorenz system (A.5).

where σ = 10, ρ = 28, β = 2. The Jacobian matrix is

DF =




−σ σ 0

ρ− z −1 −x

y x −β




. (A.6)

The Lyapunov exponents for the this system are λ1 ' 0.819, λ2 ' 0, and λ3 ' −13.819. Since the diagonals

of the Jacobian matrix are independent to the dynamical variables, the sum of the Lyapunov exponents should

be equal the trace of the Jacobian matrix DF. Indeed, we have λ1 + λ2 + λ3 ' −13, and Tr(DF) =

−σ − 1− β = 13. The MSFs for different coupling schemes are plotted in Fig. 39.
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Fig. 40. MSFs for Chua system (A.7) with various coupling schemes.

Chua system [146]: 



ẋ = α(y − x + f(x))

ẏ = x− y + z

ż = −βy − γz

(A.7)

where α = 10, β = 14.87, γ = 0, and

f(x) =





−bx− a + b, x > 1

−ax, |x| < 1

−bx + a− b, x < −1,

(A.8)
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where a = −1.27, b = −0.68. The Jacobian matrix is

DF =




−α− α×





b, |x| > 1

a, |x| < 1

α 0

1 −1 1

0 −β −γ




. (A.9)

The Lyapunov exponents for this system are λ1 ' 0.409, λ2 ' 0, and λ3 ' −3.859. The MSFs are presented

in Fig. 40.
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Fig. 41. MSFs for Chen system (A.10).
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Chen system [147]: 



ẋ = a(y − x)

ẏ = (c− a− z)x + cy

ż = xy − βz

(A.10)

where a = 35, c = 28, b = 8/3. The Jacobian matrix is

DF =




−a a 0

c− a− z c −x

y x −β




. (A.11)

The calculated Lyapunov exponents for the this system are λ1 ' 2.154, λ2 ' 0, and λ3 ' −11.820. The

sum of the Lyapunov exponents should be equal Tr(DF) = −a + c − b ' −9.667, which is approximately

satisfied by the numerical results whose summation is −9.666. Note that for our calculation, Eq. (A.1) is

integrated together with Eq. (1.11) using RK4 method. If Eq. (A.1) integrated using Eular method together

with Eq. (1.11) integrated using RK4 method, the calculated Lyapunov exponents are λ1 ' 2.17, λ2 ' 0.25,

and λ3 ' −11.96. One can see there are systematic deviations. The results of MSFs of this system are shown

in Fig. 41.

HR neuron [141]: 



ẋ = y + 3x2 − x3 − z + I

ẏ = 1− 5x2 − y

ż = −rz + rs(x + 1.6)

(A.12)

where I = 3.2 is the external current input, r = 0.006, s = 4. The Jacobian matrix is

DF =




6x− 3x2 1 −1

−10x −1 0

rs 0 −r




. (A.13)

The Lyapunov exponents for the this system are λ1 ' 0.013, λ2 ' 0, and λ3 ' −8.610. The MSFs of the

above system are shown in Fig. 42.
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Fig. 42. MSFs for HR neuron (A.12).

Duffing system [148]:

ẍ + hẋ + x3 = q sin(ηt), (A.14)

or 



ẋ = y

ẏ = −hy − x3 + q sin(ηt),

(A.15)

where η = 1, h = 0.1, q = 5.6. The Jacobian matrix is

DF =




0 1

−3x2 −h


 . (A.16)
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Fig. 43. MSFs for Duffing system (A.15) with various coupling schemes.

The Lyapunov exponents for the this system are λ1 ' 0.066, and λ2 ' −0.166. The sum of the expo-

nents should be equal to Tr(DF) = −h = 0.1. This is approximately satisfied by the calculated Lyapunov

exponents. The MSFs for this system are plotted in Fig. 43.

Van der Pol system [149]:

ẍ− d(1− x2)ẋ + x = F sin(Ωt), (A.17)

or 



ẋ = y

ẏ = −x + d(1− x2)y + F sin(Ωt),

(A.18)
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Fig. 44. MSF function for Van der Pol system (A.18) with various coupling schemes.

where we use d = 3, F = 15, Ω = 4.065. The Jacobian matrix is

DF =




0 1

−1− 2dxy d(1− x2)


 . (A.19)

The Lyapunov exponents for the this system are λ1 ' 0.106, and λ2 ' −2.774. The MSFs are presented in

Fig. 44.

Based on the above observation of MSFs, we classify the behavior of coupled dynamical systems into

four categories based on the cross points of Ψ(K) with the K-axis. Since we focus on chaotic oscillators,

when K = 0, the master stability function Ψ(0) is just the largest Lyapunov exponent of Eq. (1.11), which is

positive, and it is the same for all d× d different coupling schemes. Class I: Ψ(K) has two cross points, Ka,
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Kb, with the K-axis; Class II: Ψ(K) has only one cross point Ka with the K-axis; Class III: Ψ(K) has three

or more cross points with the K-axis; and Class IV: Ψ(K) has no cross points with the K-axis. For Class I,

Ψ(K) becomes negative at, say, Ka, and as K is increased, Ψ(K) becomes positive again at Kb, and remain

positive thereafter. In this case, Ψ(K) is negative in a finite interval (Ka,Kb). For Class II, after crossing the

K-axis at Ka, Ψ(K) remains negative for all K > Ka. That is, Ψ(K) is negative in (Ka,∞), or Kb →∞ in

Class I. Class III is where Ψ(K) is negative in several distinct stable regions, say (Ka1,Kb1), (Ka2,Kb2), ...

, (Kaf ,Kbf ), for which Ψ(K) is negative, where Ka1 < Kb1 < Ka2 < Kb2 < ... < Kaf < Kbf , and Kbf

can be either finite or infinite. When a single finite interval (Kai,Kbi) is of concern, the coupled dynamics

is equivalent to a Class I dynamic [it is possible that Ki’s (ελi) reside in different stable intervals where the

system can still be synchronized, this has been of particular interest for some authors [148]]. When Kbf is

infinite and it is large K values are pertinent, then the system is equivalent to a class-II dynamic. For Class

IV, since Ψ(K) is always positive, the corresponding coupled system do not allow synchronization states.

The classification is summarized in Table 1. The most astonishing finding is that, regardless of the

differences in the details of the oscillator dynamics, there always exists a coupling configuration for which

the MSF is negative in a finite parameter interval.

TABLE 1

Classification based on master stability functions

Rössler Lorenz Chua Chen HR Duffing Van der Pol
Class I 11 21 31,33 33 21
Class II 22,31 11,12,22 11,12,21,22,23 12,22 11,12,22 11,22 11,12,22
Class III 33 12,21 21
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For integrity and clarity, the dissertation mainly consists of my works investigating properties of com-

plex clustered networks. The relevant publications are:

1. L. Huang, K. Park, and Y.-C. Lai, “Information propagation on modular networks,” Phys. Rev. E
73, 035103(R) (2006). This paper has been selected for the April 1, 2006 issue of Virtual Journal of
Biological Physics Research. (Chapter 2)

2. L. Huang, K. Park, Y.-C. Lai, L. Yang, and K. Yang, “Abnormal synchronization in complex clustered
networks,” Phys. Rev. Lett. 97, 164101 (2006). (Chapter 3)

3. L. Huang, Y.-C. Lai, and R. A. Gatenby, “Optimization of synchronization in complex clustered
networks,” Chaos 18, 013101 (2008). This paper has been selected for the January 15, 2008 issue of
Virtual Journal of Biological Physics Research. (Chapter 4)

4. L. Huang, Y.-C. Lai, K. Park, X. Wang, C. H. Lai and R. A. Gatenby, “Synchronization in complex
clustered networks,” Frontiers of Physics in China, Volume 2, Number 4 / October, pp. 446-459
(2007). (Chapters 3 and 4)

5. L. Huang, Y.-C. Lai, and R. A. Gatenby, “Alternating synchronizability of complex clustered networks
with regular local structure,” Phys. Rev. E 77, 016103 (2008). This paper has been selected for the
January 15, 2008 issue of Virtual Journal of Biological Physics Research. (Chapter 5)

6. X. Wang, L. Huang, Y.-C. Lai, and C. H. Lai, “Optimization of synchronization in gradient clustered
networks,” Phys. Rev. E 76, 056113 (2007). This paper has been selected for the December 1, 2007
issue of Virtual Journal of Biological Physics Research. (Chapter 6)

7. L. Huang, Y.-C. Lai, and G.-R. Chen, “Understanding and preventing cascading breakdown in complex
clustered networks,” Phys. Rev. E, 78, 036116 (2008). (Chapter 7)

8. L. Huang, Y.-C. Lai, and R. A. Gatenby, “Dynamics-based scalability of complex networks,” Phys.
Rev. E 78, 045102(R) (2008). (Chapter 8)

9. X. Ma, L. Huang, Y.-C. Lai, Y. Wang, and Z. Zheng, “Synchronization-based scalability in complex
clustered networks,” Chaos, accepted. (Chapter 9)

10. L. Huang, Q. Chen, Y.-C. Lai, and L. M. Pecora, “Master stability functions for typical coupled chaotic
oscillators,” in preparation. (Appendix A)

The other works that I have involved in are listed as follows for completeness.

Works on general complex networks:



136

11. X.-G. Wang, L. Huang, S.-G. Guan, Y.-C. Lai, and C. H. Lai, “Onset of synchronization in complex
gradient networks,” Chaos, 18, 037117 (2008).

12. R. Yang, L. Huang, and Y.-C. Lai, “ Selectivity-based spreading dynamics on complex networks,”
Phys. Rev. E 78, 026111 (2008).

13. L. Huang, Y.-C. Lai, K. Park, J. Zhang and Z. Hu, “Critical behavior of blind spots in sensor networks,”
Chaos 17, 023132 (2007).

14. K. Park, L. Huang, and Y.-C. Lai, “Desynchronization waves in complex networks,” Phys. Rev. E 75,
026211 (2007).

15. L. Huang, Y.-C. Lai, K. Park, and J. Zhang, “Percolation and blind spots in complex networks,” Phys.
Rev. E 73, 066131 (2006).

16. W.-X. Wang, L. Huang, and Y.-C. Lai, “Universal dynamics on complex networks,” submitted to Phys.
Rev. Lett.

17. L. Huang, Y.-C. Lai, and M. A. F. Harrison, “Probing complex networks from measured time series,”
submitted to Phys. Rev. Lett.

18. X. Ma, L. Huang, Y.-C. Lai, and Z. Zheng,“Emergence of loop structure in scale-free networks and
dynamical consequences,” submitted to Phys. Rev. E

19. R. Yang, L. Huang, and Y.-C. Lai, “Transient disorder in dynamically evolving networks,” submitted
to Phys. Rev. E

Dynamics and electron transport in graphene quantum dots:

20. L. Huang, Y.-C. Lai, D. K. Ferry, R. Akis, and S. M. Goodnick, “Transmission and scarring in graphene
quantum dots,” submitted to J. of Physics: Condensed Matter

21. L. Huang, Y.-C. Lai, D. K. Ferry, R. Akis, and S. M. Goodnick, “Quantum scars of graphene quantum
dots,” in preparation.

Nonlinear dynamics in MEMS devices:

22. Q. Chen, L. Huang, and Y.-C. Lai, “Chaos-induced intrinsic localized modes in coupled microcan-
tilever arrays,” Applied Physics Letters 92, 241914 (2008). This paper has been selected for the June
30, 2008 issue of Virtual Journal of Nanoscale Science and Technology.
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23. Q. Chen, L. Huang, and Y.-C. Lai, “ Controlling bistability in microelectromechanical resonators,”
Chaos 18, 013103 (2008). This paper has been selected for the January 28, 2008 issue of Virtual
Journal of Nanoscale Science and Technology.

Bayesian estimation with applications to GPS

24. L. Huang and Y.-C. Lai, “Sequential Monte Carlo scheme for Bayesian estimation in the presence of
data outliers,” Phys. Rev. E 75, 056705 (2007). This paper has been selected for the June 1, 2007 issue
of Virtual Journal of Biological Physics Research.

Random matrix theory in synchrony characterization

25. Y.-C. Lai, M. G. Frei, I. Osorio, and L. Huang, “Characterization of Synchrony with Applications to
Epileptic Brain Signals,” Phys. Rev. Lett. 98, 108102 (2007). This work was selected by the Virtual
Journal of Biological Physics Research for the March 15, 2007 issue.
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[33] Z. Dezsö and A. -L. Barabási, Phys. Rev. E 65, 055103(R) (2002).

[34] Y. Moreno, R. Pastor-Satorras, and A. Vespignani, Eur. Phys. J. B 26, 521 (2002).

[35] M. E. J. Newman, I. Jensen, R. M. Ziff, Phys. Rev. E 65, 021904 (2002).

[36] V. M. Eguı́luz and K. Klemm, Phys. Rev. Lett. 89, 108701 (2002).

[37] R. Cohen, S. Havlin, and D. ben-Avraham, Phys. Rev. Lett. 91, 247901 (2003).

[38] Z.-H. Liu, Y.-C. Lai and N. Ye, Phys. Rev. E 67, 031911 (2003).

[39] J. Balthrop, S. Forrest, M. E. J. Newman, and M. M. Williamson, Science 304, 527 (2004).
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[144] O. E. Rössler, Physics Letters A 57, 397 (1976).

[145] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).

[146] L. O. Chua, T. Matsumoto, and M. Komuro, IEEE Transactions on Circuits and Systems 32, 798
(1985).

[147] G. Chen, T. Ueta, Int. J. of Bifurcation and Chaos 9, 1465 (1999).
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