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ARTICLE INFO ABSTRACT

Keywords: Previous work in the field of relativistic quantum chaos has revealed initial evidence that the manifestations of
Relativistic quantum chaos classical chaos in relativistic quantum systems tend to be weakened as compared with those in nonrelativistic
OTOC

quantum systems. To place this finding on a firmer ground, we investigate the relativistic quantum fingerprints of
classical chaos using the out-of-time-order correlator (OTOC). OTOC has recently been applied to a number of
fields in physics and it holds special promises for the field of quantum chaos, but existing work focused exclusively
on nonrelativistic quantum systems. Calculating and analyzing OTOC for relativistic quantum billiard systems
described by the massless Dirac equation, we find that the signatures of classical chaos are indeed characteris-
tically less pronounced in relativistic than in nonrelativistic quantum systems. The finding is substantiated by
studying four different aspects of OTOC. Firstly, in the energy eigenspace, in the short time regime there is a
complete lack of any signature of chaos associated with the evolution of OTOC in the Dirac billiard due to the
relativistic quantum phenomenon of Zitterbewegung, in contrast to nonrelativistic quantum billiard systems
where chaos leaves behind a quite distinct signature. Secondly, weakening of the relativistic quantum manifes-
tations of classical chaos occurs in the long time regime as well. Thirdly, evolution of the wave packet based
OTOC also reveals that the fingerprints of chaos are much less pronounced in the Dirac billiard systems as
compared with the Schrodinger billiards. Fourthly, the level spacing statistics of the OTOC operators in systems
with classically integrable and chaotic dynamics, which are characteristically distinct in the Schrodinger billiards,
bear a strong similarity in the Dirac billiards, indicating again the dwindling effects of chaos. The OTOC based
results suggest that the impacts of classical chaos are generally weaker in relativistic than in nonrelativistic
quantum systems, a fundamental issue that warrants further investigation.

Dirac equation
Schrodinger equation
Chaotic billiards

Level spacing statistics

situation where the dot geometry produces classically integrable dy-
namics [9]. Classical chaos can also lead to localization of the wave-
functions [10]. The study of the manifestations of classical chaos in the
corresponding (nonrelativistic) quantum system constitutes the field of

1. Introduction

When chaos meets with (non relativistic) quantum mechanics, a set of
signatures is left behind [1-3]. For example, in a closed chaotic Hamil-

tonian system, the probability for an infinitesimal separation between
two neighboring energy levels diminishes [4-6], in contrast to an inte-
grable system where this probability is most pronounced. In a closed
chaotic billiard system, the eigen-wavefunctions can concentrate about
the unstable periodic orbits that are the fundamental building blocks of
classical chaos - the phenomenon of quantum scarring [7,8]. In electronic
transport through a quantum dot structure whose geometry generates
chaos in the classical limit, the fluctuations in the quantum transmission
or conductance can be greatly smoothed out in comparison with the

quantum chaos [1-3], which has been active for four decades.
Recently, relativistic quantum chaos (RQC) [11,12] has emerged as a
field to study the signatures of classical chaos in relativistic quantum
systems. The main motivation for RQC came from the tremendous in-
terest in and development of two-dimensional (2D) Dirac materials [13,
14] such as graphene [15-21] and topological insulators [22]. The en-
ergy bands of these materials typically contain a Dirac cone structure,
stipulating a linear energy-momentum dispersion relation near a Dirac
point. In this energy regime, the quasiparticles of the materials are
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pseudospin-1/2 fermions and are described by the massless Dirac equa-
tion for a two-component pseudospinor. Studies of RQC have revealed a
relatively stronger suppression of chaos in relativistic quantum than in
nonrelativistic quantum systems. For example, in a study [23] on elec-
tronic transport through quantum dots that exhibit different types of
classical scattering dynamics (e.g., integrable or chaotic), in the
Schrodinger system, classical chaos can dramatically smooth out the
sharp fluctuations associated with resonances in quantum transmission
or conductance that would be present if the classical dynamics were
integrable, a phenomenon that can be exploited for chaos based modu-
lation or control of quantum transport characteristics [24,25]. However,
in a relativistic quantum graphene dot, sharp resonances are still present
in the transmission even when the corresponding classical dynamics
become fully chaotic [23]. Another example is persistent currents
[26-29], permanent currents in the absence of any external power
source, in a ring domain with a central magnetic flux that breaks the time
reversal symmetry. The currents have been observed in a variety of
nonrelativistic quantum material systems [30-37]. Random impurities in
metallic or semiconductor systems tend to diminish the persistent cur-
rents [38-45], where they decay exponentially to zero as the disorder
strength is increased. In fact, in a Schrodinger ring system, boundary
deformations leading to classical chaos typically destroy persistent cur-
rents [46,47] as effectively as random disorder. However, in graphene or
other Dirac materials, persistent currents were found to be robust
[48-60]. A theoretical study demonstrated that, in Dirac ring systems,
even when there are substantial boundary deformations leading to fully
developed chaos in the classical limit, persistent currents of comparable
magnitude with that in the integrable ring system can arise (henceforth
the term “super persistent currents”) [46,47]. From the point of view of
the quantum signatures of classical chaos, it can be understood that the
signatures of chaos are less pronounced in the Dirac ring system as
compared with the corresponding Schrodinger ring.

The purpose of this paper is to establish the weakening of chaos in
relativistic quantum systems on a firm ground based on a comprehensive
analysis of the out-of-time-order correlator (OTOC). Historically, OTOC
was proposed in the field of superconductivity [61]. In basic quantum
mechanics, OTOC measures the degree of commutation between two
operators, which can be used to characterize diverse physical phenomena
such as operator spreading [62,63], growth in quantum entanglement
[64,65], and nuclear magnetic resonances [66]. Recently, the study of
OTOC has attracted a great deal of attention due to its relevance to a large
number of fields in physics. For example, OTOC has been employed to
search for the quantum butterfly effect in many body systems such as
those described by the Ising model [67,68] and the Sachdev-Ye-Kitaev
(SYK) model [69,70]. In high energy physics, OTOC has been exploited
to establish the correspondence between conformal field theory (CFT)
and holography [71]. More recently, OTOC has been introduced into the
field of quantum chaos [64-76]. To our knowledge, all existing studies on
OTOC to uncover and characterize the signatures of classical chaos were
for nonrelativistic quantum systems described by the Schrodinger
equation.

In this paper, we consider 2D classically integrable and chaotic bil-
liards, and calculate the OTOC defined in the context of Dirac equation.
For comparison, we also do the calculations for the corresponding
Schrodinger system. For convenience, in this paper we use the terms
“nonrelativistic quantum” and “Schrodinger” interchangeably, as well as
the terms “relativistic quantum” and “Dirac.” In previous studies of OTOC
in nonrelativistic quantum chaotic systems [74-76], an important time
scale was defined: the Ehrenfest or the scrambling time [72] within
which the dynamics of the system are essentially classical and any
quantum interference effect can be ignored. We find it necessary to
introduce another time scale: the revival time tg, to characterize the
quantum oscillatory motion [77], where the relativistic quantum
behavior of the system is distinct before and after this time [78]. We
systematically study OTOC in various situations (classically integrable
versus chaotic dynamics, relativistic versus nonrelativistic quantum
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mechanics) from four different angles that mutually support each other:
short and long time evolution of OTOC in the energy eigenspace, wave
packet based evolution of OTOC, and level spacing statistics of the OTOC
operator.

The main findings are as follows. Firstly, in the short time regime
defined by t < tg, the microcanonical thermal averaged value of OTOC is
strongly indicative of Zitterbewegung motion - relativistic quantum os-
cillations with no counterpart in Schrodinger systems. A striking phe-
nomenon is that the oscillations are independent of the nature of the
classical dynamics: their characteristics are nearly identical for the
integrable and chaotic systems. This means that, in short time, finger-
prints of classical chaos are completely lost in the relativistic quantum
realm, in stark contrast to the behavior in nonrelativistic quantum sys-
tems. Secondly, in the long time regime (t > tg), OTOC exhibits oscilla-
tions that can be related to wave-packet revival. The evolutionary
behaviors are quite distinct in Schrodinger billiards with classically
integrable and chaotic dynamics, but they again are similar for the Dirac
billiards. In fact, for the latter, some signatures of classical chaos appear
but only in the asymptotic time regime. Thirdly, we exploit semiclassical
propagation [79] through wave packet revival [80] by calculating the
time evolution of the wave packet based OTOC, which reveals essentially
the same phenomenon. Finally, we carry out a spectral analysis of the
OTOC operator and find that, in Schrodinger systems with classical
integrable or chaotic dynamics, the eigenvalue spacing distribution ex-
hibits characteristics of Poisson random matrices or those of Gaussian
Orthogonal Ensemble (GOE), respectively, which agree completely with
the energy level spacing statistics [4]. A surprising result is that, for the
Dirac billiards, the level spacing statistics for integrable and chaotic dy-
namics bear a marked similarity. The findings from the four perspectives
of OTOC lead to the conclusion that the effects of classical chaos are
generally less pronounced in relativistic than in nonrelativistic quantum
systems.

2. OTOC in relation to quantum chaos and its calculation in
relativistic quantum systems

2.1. Quantum chaos and OTOC

A long-standing conundrum in the field of quantum chaos concerns
the meaning of “chaos.” In classical physics, a necessary condition for
chaos to arise is that the underlying system be nonlinear, and the hall-
mark of chaos is a sensitive dependence on initial conditions that gives
rise to an exponential growth of a random infinitesimal vector in phase
space, where the rate of growth defines the Lyapunov exponent. In
quantum mechanics, however, the fundamental Schrodinger or Dirac
equation is linear, so an exponential sensitivity to initial conditions or
equivalently, a positive Lyapunov exponent, cannot be expected. There
should then be no actual chaos in quantum systems (Sir Michael Berry
stated [81] in 1989 that “There is no quantum chaos, in the sense of expo-
nential sensitivity to initial conditions, but there are several novel quantum
phenomena which reflect the presence of classical chaos. The study of these
phenomena is quantum chaology.*) Nonetheless, in the development of the
field, the term “quantum chaos” has prevailed and has been widely
adopted [2,3]. In spite of a quantum system’s being fundamentally linear,
which excludes chaos, the issue of whether there is exponential sensi-
tivity in quantum systems has been a subject of active debate [82-86]
and pursuit [87-89].

Exploiting the general property of OTOC that it measures the sepa-
ration in time of a commutator of quantum mechanical operators, it has
been shown recently that, for a chaotic system in the semiclassical limit
7 — 0, OTOC exhibits an exponential growth behavior with the rate
related to the Lyapunov exponent [72,73]. Explicit calculations of OTOC
for the circular (integrable) and stadium (chaotic) billiards were subse-
quently carried out [74,75] with the finding that OTOC is not recursive
(in contrast to the case of, e.g., a one-dimensional harmonic oscillator)
but tends to constant values. However, for the chaotic stadium billiard,
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OTOC does not exhibit any exponential growth behavior. A driven
chaotic system, the kicked rotor, was also studied [76], revealing an
exponential growth behavior of OTOC. However, it was found that the
exponential rate is not exactly the Lyapunov exponent because of the
different order in taking the phase space average and logarithm. In
particular, to calculate the OTOC growth rate based on the
classical-quantum correspondence, one takes the phase space average of
the divergence rate of classical trajectories and then takes the logarithm,
while for the Lyapunov exponent, the order of the two operations is
reversed, i.e., it is the phase space average of the logarithm of the
divergence. Some recent findings [72,76] are consistent with the early
result of Robbins and Berry [90] on the discordance between quantum
and classical correlation moments for chaotic systems. The current un-
derstanding is that a chaotic system in the quantum regime may or may
not exhibit an exponential growth behavior in OTOC but, if it does, the
exponential growth rate is not the same as the Lyapunov exponent in the
corresponding classical system. Nevertheless, studies so far have sug-
gested strongly that OTOC can be a promising theoretical or even
experimental tool [64-76] for the field of quantum chaos.

2.2. Calculation of OTOC in relativistic quantum systems

An OTOC is generally defined as

~a

C" = (=)W (1), V(0)), (€8]

where W and V are two Hermitian operators in the Heisenberg picture:
/W(t) = exp( — iﬁt/h)/Wexp(iﬁt/h). The phase factor (—i)” is chosen to
ensure that the OTOC is Hermitian and has positive eigenvalues for
different values of a. A common choice of « is @ = 2. In this case, the
square of the commutation between the operators W and V at two
different instants of time generates the out-of-time order component
[91]:

C=WOVOWHV©) +VO)WHVO)W(@).

For the case where W and V are the position and momentum oper-
ators: W = % and V = P, in the classical limit # — 0, the OTOC can be
related to the Lyapunov exponent associated with the corresponding
classical dynamics [73].

The subject of our study is relativistic quantum billiard systems with
the Dirac Hamiltonian given by

H=v:6-p +70.V(r), 2

where ¢ and 6, are Pauli matrices, V(r) is a potential field that defines
the billiard shape: V(r) = 0 inside the billiard and V(r) = o outside, and
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vr is the Fermi velocity of the quasiparticles. The billiard systems are one
of the paradigms in the traditional field of nonrelativistic quantum chaos
[1-3]. For a billiard system, the nature of the classical dynamics is
determined completely by the geometric shape of the boundary. For
example, for a circular billiard, the classical dynamics are integrable. In
the corresponding quantum system, nonrelativistic or relativistic, the
statistical distribution of the energy level spacing is Poisson [4,6], as
shown by the blue (Schrodinger) and red (Dirac) curves in Fig. 1(a). If the
shape of the billiard is deformed from that of a perfect circle, the classical
dynamics are generally nonintegrable with the occurrence of chaos. One
of the often studied billiard systems whose classical dynamics are fully
chaotic is one with the shape of Africa - the African billiard [6], as shown
in the inset of Fig. 1(b). For this system, in the nonrelativistic quantum
world with a time reversal symmetry, the energy level spacing distribu-
tion follows that of GOE [4], as shown by the blue curve in Fig. 1(b).
However, for a massless particle described by the Dirac equation, e.g., a
neutrino, the infinite mass confinement breaks the time reversal sym-
metry, leading to level spacing statistics characteristic of those of
Gaussian Unitary Ensemble (GUE) random matrices [6], as shown by the
red curve in Fig. 1(b). (For a thorough discussion of the statistics of the
energy level spacing for Schrodinger, Dirac, and graphene billiards with
classical integrable or chaotic dynamics, see Ref. [12].)

For the two types of billiard systems, we calculate OTOC for both the
Schrodinger and Dirac equations. A difficulty with the Dirac equation is
that, for the momentum operator p, the definition of OTOC in Eq. (1)
typically leads to divergence (Appendix A). To overcome this difficulty,
we take advantage of the feature of spin-momentum coupling in rela-
tivistic quantum mechanics, which is absent in the nonrelativistic

quantum counterpart. Especially, we choose [68] W = V = 5y, which

corresponds to the current operator 6 = 0H /0P, in Dirac systems. For a
meaningful comparison, for the nonrelativistic quantum system we use

W=V-= D, In the semiclassical limit, the choice of the operators w
and V is directly related to the evolution of the quantity [Ap,(t)/Ax(0)]?,
which measures how Ap, evolves with time for any given initial amount
of Ax, a feature that can be studied in classical phase space as well.

For numerical calculation of OTOC in Dirac systems, we use the
infinite mass boundary condition [6] and the normalized unit convention
fi= 2m = vg = 1. For the circular integrable billiard, both the
Schrodinger and Dirac equations can be solved analytically. For the
chaotic African billiard, we use the method of conformal mapping orig-
inally proposed by Robnik for nonrelativistic quantum billiards [92] and
later on generalized to relativistic quantum billiards [93] to solve the
Schrodinger and Dirac equations in the domain, respectively. Advantages
of the conformal mapping method include computational efficiency and
extremely high accuracy. For the integrable billiard, we use 10*710°
eigenstates. Because of the need to ensure computational feasibility, for
the chaotic billiard we choose 103710* eigenstates.

(a) 1 (b) 1

Fig. 1. Representative billiard systems used in our OTOC
study and the statistical distributions of energy level
spacing. (a) A circular billiard with classically inte-
grable dynamics (inset). The energy level spacing
distributions are Poisson (black dashed curve) in both
the Schrodinger (blue zigzagged curve) and Dirac (red
zigzagged curve) quantum worlds. (b) A billiard with
the shape of Africa (inset; the African billiard) that
exhibits fully developed chaos in the classical limit.
The distribution of the energy level spacing is GOE
(blue zigzagged curve) for the Schrodinger system and
GUE (red zigzagged curve) for the Dirac counterpart.
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3. Result 1: evolution of OTOC in short time regime

The initial growth of OTOC in short time has been a focus of previous
studies [64-76], due to the possible correspondence to the growth of a
small tangent vector in classical phase space as quantified by the Lya-
punov exponent. In particular, for a classically chaotic system, an infin-
itesimal distance between two nearby points tends to grow exponentially
with time at the rate determined by the largest Lyapunov exponent. (For
convenience, in this paper we refer to the largest Lyapunov exponent
simply as the Lyapunov exponent.) The initial growth of OTOG, if it is
exponential, would thus be indicative of classical chaos, as speculated in
the earlier work [72,73]. However, no exponential growth has been
found for the chaotic billiard systems [74,75]. For our relativistic
quantum billiard systems, no initial exponential growth in OTOC has
been found in numerical computations. For the short time behavior of
OTOC, we thus focus on detecting any possible difference between its
time evolution in systems with integrable and chaotic dynamics.

In general, we find that the relativistic quantum OTOC exhibits an
oscillatory behavior with time, and the initial time interval in which the
OTOC grows tends to be different from the Ehrenfest time as studied in
previous work [74]. It is necessary to redefine the short time scale as one
beyond which the oscillatory behavior starts, which we call the revival
time tz. For classical integrable systems, this time can be calculated
analytically (Appendix C). Especially, for the Dirac circular billiard, the
revival time is tg ~ 4 while that for the Schrodinger counterpart we have
tg ~ 1.3. To enable a meaningful comparison, we define the small time
regime ast < 1.

For physical systems at a finite temperature, thermal fluctuations are
important. It is thus necessary to incorporate thermal average to calculate
the OTOC time evolution [72]. Expanding OTOC in the energy eigen-
space of the billiard system and imposing the thermal averaging:

ealt) = (| = W (1), V(O)|n), 3
we obtain the canonical expectation value of the OTOC as [68,74]

2_Cn(t)exp(=E,/T)

) =5 exp(—ET)

(€]

where Cr(t) depends on both temperature T and time t. Note that c,(t)
represents the microcanonical evolution.

To be concrete, we focus on the time dependence for a given tem-
perature. Because of the characteristically different energy-momentum
dispersion relation in the Schrodinger and Dirac billiards, the energy
scales in the two types of systems are different by several orders of
magnitude. For each system, we choose the temperature T to correspond
to the 100th eigenenergy, so that using the first 1000 eigenmodes in the
summation in Eq. (4) can guarantee high accuracy. For the Schrodinger
billiards, all eigenenergies are positive. For the Dirac billiards, there are
both positive and negative eigenenergy values, corresponding to particle
and hole states, respectively. In this case, to sample the whole Hilbert
space, it is necessary to include a sufficient number of both particle and
hole states. For the purpose of revealing any symmetric patterns in the
microcanonical evolution of OTOC, for the negative energy states we use
the absolute values of the energies.

Fig. 2 presents the main results for the short time evolution of OTOC
for the integrable and chaotic, Schrodinger and Dirac billiard systems.
Specifically, For the Schrodinger case, the microcanonical OTOC for the
circular billiard exhibits high frequency oscillations, as shown in
Fig. 2(a). These oscillations occur because the underlying system is
integrable, for which there are a large number of commensurate eige-
nenergies [68,74]. For the chaotic billiard, the eigenenergies are
incommensurate, so no such oscillations occur, as shown in Fig. 2(b). The
evolution of the canonical OTOC for the Schrodinger case is shown in
Fig. 2(c) and (d) for the integrable and chaotic billiards, respectively. The
initial growth is not exponential but somewhat algebraic, regardless of
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Fig. 2. Short time evolution of OTOC in Schrodinger and Dirac billiard systems.
Panels (a,b,e,f) show the short time evolution of the microcanonical OTOC
(color coded) for the first 1000 energy eigenstates, and panels (c,d,g,h) display
the evolution of the canonical OTOC. Panels (a—d) and (e-h) are for the
Schrodinger and Dirac billiard systems, respectively. Panels (a,c,e,g) are for the
integrable circular billiard, while panels (b,d,f,h) are for the chaotic African
billiard. For the Schrodinger billiards, the quantity 0H /0p depends on p so that
the OTOC values are orders of magnitude larger than those in the Dirac billiards.
In the Schrodinger case, the short time evolution of the canonical OTOC exhibits
characteristically different behaviors [c.f., panels (c) and (d)], depending on
whether the corresponding classical dynamics are integrable or chaotic. The
Dirac billiards exhibit no such difference [c.f., panels (g) and (h)], indicating
suppression of manifestations classical chaos. The uniquely relativistic quantum
phenomenon of Zitterbewegung is pronounced, which can be seen in panels (e)
and (f), regardless of the nature of the underlying classical dynamics. The red
dashed curves in (e) and (f) indicate the period of the Zitterbewegung motion as
a function of the eigenenergy: the period is large for small energy values but
decreases quickly as the energy is increased.
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the nature of the classical dynamics. However, for the integrable billiard,
the growth is largely monotonic, but for the chaotic billiard, even within
the short time scale considered, the growth saturates. This is then the
characteristic difference between the short time growth behaviors for the
integrable and chaotic billiards, which can be attributed to the difference
in the microcanonical evolution of OTOC: for the former there are os-
cillations [Fig. 2(a)], while no oscillations occur for the latter [Fig. 2(b)].

For the Dirac billiards, Fig. 2(e) and (f) show the evolution of the
microcanonical OTOC for the integrable and chaotic billiards, respec-
tively, which exhibit a strong similarity. The corresponding evolution of
the canonical OTOC is shown in Fig. 2(g) and (h). For both the micro-
canonical and canonical OTOC, the short time evolution gives no
fingerprint of classical chaos, indicating that chaos has been suppressed
by the strong relativistic quantum effects. In fact, a uniquely relativistic
quantum phenomenon, Zitterbewegung motion [94], appears unequiv-
ocally in Fig. 2(e) and (f), where the red dashed lines give the period of
Zitterbewegung oscillations as a function of the eigenenergy, for both the
particle and hole states. For a massless Dirac electron, when the absolute
value of the energy is close to zero, the Zitterbewegung period is large
[95]. As the absolute energy value is increased, the period decreases
rapidly. The physical origin of Zitterbewegung is the interference be-
tween the particle and hole states [6,94]. In particular, due to the
particle-hole symmetry, if w, = (y,,w,)" is an eigenspinor of H with
energy E (particle), then y_, = (w4, )" is also an eigenspinor with the
negative energy —E (hole) [6]. The similarity in the spinor wavefunctions
associated with the particle and hole states generates a large expectation
value for an operator, giving rise to the observed high frequency oscil-
lations. The particle-hole picture also explains the suppression of chaos in
the Dirac billiards [Fig. 2(e,g) versus Fig. 2(f,h)]: due to the linear
dispersion relation, in the first-order approximation, the particle-hole
symmetry dominates (Appendix D), weakening or even eliminating any
features of the underlying classical dynamics including chaos.

The short time behaviors of OTOC with respect to the nature of the
classical dynamics can be summarized, as follows. For the Schrodinger
billiards, before the first revival time, there are signatures of chaos in the
microcanonical and canonical evolution of OTOC. However, for the Dirac
billiards, chaos is suppressed by the relativistic quantum effects so that
the evolution of OTOC gives no indication of classical chaos.

4. Long time evolution of the OTOC

In the long time regime defined by t > tz, quantum effects in the
evolution of OTOC become more and more pronounced. While the focus
of most previous work on OTOC was on possible detection of any
quantum exponential growth behavior, i.e., the butterfly effect, in the
short time regime [64-76], there was also work on the long time
behavior of OTOC [68,74,96,97]. A remarkable phenomenon is the
emergence of oscillations in nonrelativistic quantum OTOC evolution for
classically integrable systems [68,74,96]. Our goal here is to detect and
examine any possible oscillatory behaviors in relativistic quantum evo-
lution of OTOC.

For convenience, we normalize the time by the revival time tg, so the
long time regime becomes t > 1. Before discussing the dynamical evo-
lution of OTOC, it is necessary to investigate the effect of finite temper-
ature on evolution. For this purpose, we normalize the canonical OTOC
Cr by dividing by the following temperature-dependent factor [67,71,72,
91]:

Cr=(WOVVWE) +VWE W)V,

to obtain

¢ /ET . g o1 (WOVW@OV + f/W(z)?W(z))T_

—————— (5)
Cr AWW)(VV),

where the out-of-time component of OTOC is
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Cr=(WO)VWOV+VW(O)VW(Q)),

A general discussion and a physical understanding of the temperature
dependence of OTOC evolution are presented in Appendix B.

Fig. 3(a) and (b) show the evolution of the temperature normalized
OTOC for the Schrodinger billiards into the long time regime 0 < t < 10
and in the asymptotically long time regime 46 < t < 50, respectively,
where the blue and red traces are for the integrable and chaotic billiards,
respectively. Except for an initial short time period (¢t <0.5), the be-
haviors of OTOC evolution for the integrable and chaotic billiards are
characteristically different. In particular, for the circular billiard, there
are persistent oscillations (fluctuations) in the OTOC with a slowly
decaying amplitude [68]. However, for the chaotic billiard, in spite of
small random fluctuations, OTOC becomes largely saturated. The
approximately constant OTOC value in the long time regime is an un-
equivocal signature of classical chaos in nonrelativistic quantum systems.

In the relativistic quantum system, however, the behavior of the long
time evolution of OTOC for the chaotic billiard is quite different from
that in the nonrelativistic quantum counterpart, as shown in Fig. 3(c).
Specifically, in the time interval examined, OTOC exhibits large ampli-
tude oscillations, regardless of whether the classical dynamics are

Circular Billiard | | African Billiard
T = E25 T'= E25
——T=Ey | |——T=Ex
—T:Elgg _T:EHJO
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Fig. 3. OTOC evolution in the long time regime for integrable and chaotic billiards at
different temperatures. (a,b) For the Schrodinger billiards, evolution of the tem-
perature normalized OTOC Cr/Cr in the time interval 0<t <10 and
46 < t < 50, respectively, where the blue and red traces are for the circular and
African billiard, respectively. For the integrable billiard, oscillations of OTOC
extend into the long time regime, regardless of temperature. For the chaotic
billiard, OTOC tends to saturate quickly into an approximately constant value
with small random fluctuations, which is characteristically different from the
behavior of the integrable billiard and can be regarded as a (nonrelativistic)
quantum manifestation of classical chaos. (c,d) The corresponding evolution for
the Dirac billiards. Asymptotically, e.g., in the time interval 46 < t < 50, the
OTOC oscillations persist for the integrable billiard but they diminish for the
chaotic billiard. While this behavior is qualitatively similar to that in the
Schrodinger billiards, in the time interval 0 < t < 10, a quite different feature
arises: the normalized OTOC exhibits large oscillations for the Dirac billiards,
regardless of the nature of the classical dynamics. This means that, in the long
but not asymptotically long time regime, the effect of chaos is suppressed in the
relativistic quantum billiard as compared with that in the nonrelativistic
quantum billiard. In all cases, temperature has little effect on the
OTOC evolution.
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integrable or chaotic. In fact, there is no signature of chaos in the OTOC
evolution, i.e., chaos is suppressed in the relativistic quantum billiard.
We note that, a signature of chaos does tend to arise but only in the
asymptotically long time regime, as shown in Fig. 3(d), where the OTOC
tends to an approximately constant value, similar to the behavior in the
nonrelativistic quantum billiard in Fig. 3(b). That is, the effects of chaos
kick in but only in the asymptotically long time regime. Overall, a
comparison between Fig. 3(a) and (c) gives the unmistakable message
that, in the long time regime, the laws of relativistic quantum mechanics
make the signatures of classical chaos much less pronounced as
compared with the laws of nonrelativistic quantum mechanics.

To probe further into the difference between OTOC evolution of the
integrable and chaotic billiards, we examine the structure of the oscil-
lations in detail in the semiclassical regime, where a quantum particle
can be viewed as a wave packet. A Gaussian wave packet initially placed
in the billiard domain will spread. If the billiard dynamics are classically
integrable, there will come a time at which the wave packet is revived
[98] - the revival time tz. To gain insights into this phenomenon, we
calculate the revival frequencies for three types of integrable systems, as
listed in Table 1. To compare the values of the revival frequencies with
the ones of OTOC oscillations, we perform a Fourier analysis of OTOC
time evolution, as shown in Fig. 4(a) and (c) for the Schrodinger and
Dirac billiards, respectively. For both the circular Schrodinger and Dirac
billiards, the revival frequency is approximately the value determined by
twice the classical revival period, due to the square of the operators in the
OTOC definition.

The difference in the long time evolution of OTOC in the Schrodinger
billiards with integrable and chaotic dynamics can be understood by
noting that, for an integrable system, an initial wave packet will recur in
the course of evolution. While recurrence can be perfect for simple 1D
systems such as the quantum harmonic oscillator or the 1D infinite po-
tential well system, for the circular billiard, a recurred wave packet will
not be exactly identical to the initial wave packet but involve a number of
angular momentum channels [99]. Especially, the quantities c,(t) in Eq.
(3) for different values of n possess different frequencies, ruling out the
possibility of any perfect recurrence in Cr. For a chaotic billiard, re-
currences are unlikely [80], because an initially localized wave packet
will typically spread, involve in principle all possible quantum channels,
and distribute uniformly in the physical space. This can also be seen in
Fig. 4(a), where the Fourier spectrum of OTOC of the chaotic billiard
exhibits no dominant peak. As a result, OTOC tends to an approximately
constant value after an initial growth.

The revival behavior in the time evolution of the OTOC can also be
analyzed using the approach of 1 /f noise scaling, a useful tool in the
study of quantum chaos [100-102]. In particular, we introduce the
following difference in Cr(t):

s;=Cr(ti + At) — Cr(t;) ©

where At is a small time interval. The spectral fluctuation of the sequence
{si} is given by 8, = Y"1, (si — (s)). The Fourier transform of § is

Table 1

Revival periods of classical motion and the OTOC. Abbreviations: 1DIPW - one-
dimensional infinite potential well, CSB - circular Schrodinger billiard, CDB -
circular Dirac billiard.

System Eigenvalue Revival Period OTOC Period
1DIPW n?nn? 4mL? ) 2mL?
E, = iz T (Revival) pos
CSB n2z? I 3\2 8mR? 16mR?
~ 4= — (= ival
E, 2m.R2( + 5 + 4) P (I = 0 Revival) o
2
A0mR” 1 £ 0 Revival)
hm
mVEn 4R 2R
CcDB En~ — (Classical motion) —
2R Vi Vi
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Fig. 4. Revival frequency of OTOC oscillations and 1 /f noise. (a) Blue trace:
Fourier transform of OTOC time evolution for the Schrodinger circular billiard
for t € [0,100]. The arrow indicates the frequency determined by twice the
classical revival period. The splitting is due to the quadratic relationship be-
tween energy and momentum. For comparison, the Fourier spectrum of the
OTOC time evolution of the Schrodinger African billiard is included (the red
trace), where there is absence of any pronounced peak. (b) Scaling of 1 /f noise
spectrum for t € [50,100]. For the circular billiard, the scaling exponent is
approximately y = 2 (blue fitting line). For the African billiard, the exponent is
approximately y = 1 (red fitting line). (c,d) Results corresponding to those in
(a,b), respectively, but for the Dirac billiards. The values of the scaling exponent
are similar to those in (b).

~ —2rifn

5 = Eﬁnexp( N ) ™
with the power spectrum given by

NOEIETR Vi ®

where y is the 1 /f scaling exponent. For integrable and chaotic billiards,
the prediction is [100-102] y =1 and y = 2, respectively. Numerical
results are shown in Fig. 4(b) and (d), where the 1 /f noise analysis is
carried out in the time interval t € [50, 100] (after a dozen revivals for the
integrable billiard). While the theoretical prediction [100-102] was
obtained for nonrelativistic quantum billiard, we find that the same
scaling law holds for the relativistic quantum billiards, as demonstrated
in Fig. 4(d), suggesting the generality of the 1 /f scaling analysis.

5. OTOC based on wave packet evolution

The evolution of the wave packet is key to understanding the oscil-
latory behavior of OTOC as presented in Sec. 4. For a Gaussian wave-
packet initially placed in a billiard system, its time evolution can reveal
the nature of the corresponding classical dynamics, as exemplified by the
previous work on Loschmidt echo [103] in quantum billiards with a
random potential. The issue of wave packet revival was extensively
studied [98]. It was also found that the linear dispersion in relativistic
quantum systems tends to suppress wave-packet spreading in periodic
quantum transport systems [104,105]. In general, examining the
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evolution and behavior of the wave packet can lead to richer information
about the system than merely the eigen wavefunctions.

As an alternative to the energy eigenstate based approach in Eq. (3),
here we develop a wave packet based approach to calculating OTOC to
gain more physical insights. Straightforwardly, instead of taking the
average with respect to the energy eigenstates, we use the following
wave-packet average of the OTOC operator [74,76]:

Co= o C*(1)|wo), )

and proceed to calculate the so-defined OTOC for all cases treated in Sec.
4 (integrable and chaotic, nonrelativistic and relativistic quantum).
Specifically, for the Dirac billiards, we choose the wave packet as

2
ylo—Nexp<(r2;]>+ik-r>(z>. 10

where ¢ is the width of the wave packet and N is a normalization con-
stant. We choose a = v/2/2 and b = v/2/2 exp(ip) (with a® + b?> = 1).
For simplicity, we set ¢ = z/4. For the Schrodinger billiards, the wave

packet has the same form except that the two-component spinor (g) is

removed. A typical numerical setting isryp =0, £ = 0.1 and k = 20. The
result has also been verified with different initial conditions. The
Ehrenfest time is estimated by the width of the wave packet when it
reaches the system size. For the circular billiard, the theoretically esti-
mated Ehrenfest time [74] is tg ~ & = 0.1.

Fig. 5(a) and (b) show the time evolution of Cy for the Schrodinger
and Dirac billiards, respectively. Similar to Fig. 3(a), for the Schrodinger
case, Fig. 5(a) shows that the behaviors of C, are characteristically

(a) 5
6 x10

Circular billiard
— African billiard

Circular billiard
= African billiard

2 =
S
1
0 ® ® ® ®
0 1 2 3 4 5

t

Fig. 5. Time evolution of the wave packet based OTOC in integrable and chaotic,
Schrodinger and Dirac billiards. (a) For the Schrodinger billiard, OTOC Cy defined
in terms of the wave packet versus time, where the blue and red traces are for
the integrable and chaotic billiard, respectively. The time between two adjacent
blue dots is half of the revival time of the corresponding classical motion.
Similar to the evolution of the eigenstate based OTOC, there is a characteristic
difference between the wave packet based evolution of OTOC for the integrable
and chaotic billiards: there are oscillations in the former while the latter tends
rapidly to a constant value (as a pronounced signature of classical chaos). (b)
The results for the Dirac billiard, where the OTOC exhibits oscillations regard-
less of the nature of the classical dynamics. The time between two adjacent red
dots is one fourth of the revival time of the classical motion. Similar to the result
in Fig. 2(b), chaos is suppressed in this relativistic quantum billiard system.
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different for the integrable and chaotic billiards, indicating a distinct
quantum manifestation of classical chaos. However, for the Dirac case,
the difference is largely absent, as shown in Fig. 5(b), implying sup-
pression of chaos. Note that the results in Fig. 5(b) are quite consistent
with those in Fig. 3(b). A minor difference between the wave-packet
based and the eigenstate based evolution of OTOC is that, in the
former there are occasional, sharp changes that are particular pro-
nounced for the integrable billiards, which are caused by the bounces of
the wave packet at the billiard boundary.

6. Level spacing distribution of the OTOC operator in integrable
and chaotic billiards

The statistical distributions of energy level spacing are perhaps one of
the most studied topics in nonrelativistic quantum chaos [2-4]. An
established result is that the energy level spacing follows statistically
distinct distributions for integrable and chaotic systems [2-4] as
described by those of the Poisson and GOE random matrices, respec-
tively. A remarkable signature of classical chaos in the distribution is
level repulsion as stipulated by the Wigner distribution for GOE random
matrices [106,107]. Experimental tests of the random matrix based
prediction were conducted using microwave cavities [108,109]. In
relativistic quantum chaotic systems such as graphene and Dirac bil-
liards, the energy level spacing distributions have also been studied [12,
110-112], with unconventional phenomena such as the occurrence of
GOE statistics in classical integrable graphene billiard systems [112].

A natural question is whether the eigenvalues of the OTOC operators
(C*) would exhibit statistically distinct distributions for integrable and
chaotic systems. In two recent studies [113,114], the connection between
the Sachdev-Ye-Kitaev (SYK) model and random matrix theory in terms
of OTOC was considered, where the characteristics of the Gaussian
ensemble depend on the particle number [113,114]. Another recent
work [115] reported universal level statistics of OTOC operator for
Schrodinger systems. Here we calculate the OTOC level spacing statistics
for Dirac billiards with integrable and chaotic classical dynamics and
compare the results with those from the Schrodinger counterparts.

We expand the OTOC operator C” in the energy eigenspace to obtain
the matrix (C*), whose eigenvalues can then be calculated. Because of the
symmetry between the positive and negative eigenvalues, it suffices to
focus on the positive ones. Following the definition of quantum Lyapunov
spectrum [115,116], we resort to a logarithmic scale and calculate the
quantity logA™, where A" is the positive eigenvalue of (C%), and extract
the level spacing accordingly. We take the OTOC operators at sufficiently
long time to remove any initial transient behavior and ensure that the
level spacing statistics change little when longer time intervals are used.

Fig. 6(a) and its inset show the level spacing distributions for a = 2
and a = 1, respectively, for Schrédinger billiard systems. In both cases,
the black and blue zigzagged curves are for the integrable and chaotic
billiards, respectively. As explained in the caption of Fig. 6, the level
spacing distributions are Poisson and GOE for the integrable and chaotic
billiards, respectively, which are essentially the same as those of the
energy level spacing [2-4]. We see that, for nonrelativistic quantum
billiard systems, the level spacing distributions of the OTOC operators
bear an unequivocal signature of classical chaos.

The situation is quite different for the Dirac billiards. For a chaotic
billiard, if the value of a is an even (odd) integer, time reversal symmetry
is preserved (broken), so that the level spacing distribution should follow
that of GOE (GUE). We have verified that this is indeed the case for a =
1,2,3 and 4. As shown in Fig. 6(b) and explained in its caption, the
difference in the level spacing distribution between the integrable and
chaotic billiards is less pronounced as compared with that in the
Schrodinger case, suggesting that chaos is suppressed by relativistic
quantum effects. This result is consistent with those from the time evo-
lution behaviors of OTOC in Secs. 3 and 4, as well as with that based on
the wave packet evolution in Sec. 5.
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Fig. 6. Level spacing distributions of OTOC operator C* for nonrelativistic and
relativistic quantum billiards. (a) The level spacing distributions of C? for the
Schrodinger integrable (zigzagged solid black curves) and chaotic (zigzagged
solid blue curves) billiards. The smooth black dashed and smooth blue curves
represent the Poisson and GOE distribution, respectively. The reasonably good
fittings between the zigzagged curves and their corresponding smooth curves
mean that, for the classical integrable billiard, the level spacing distribution is
Poisson while that for the chaotic billiard is GOE. Qualitatively similar results
hold for @ =1 (inset). All these results indicate a strong signature of classical
chaos in altering the characteristics of the level spacing distribution in nonrel-
ativistic quantum systems. (b) The corresponding results for the Dirac billiards.
For a = 2, the level spacing distribution for the integrable billiard lies between
those of Poisson and GOE. Because of the even value of a, time reversal sym-
metry is reserved, so the distribution for the chaotic billiard is still GOE.
Comparing with the distributions for the corresponding Schrodinger case, the
difference between those of integrable and chaotic billiards is significantly
reduced, implying suppression of chaos in the relativistic quantum systems. If
the value of a is odd, time reversal symmetry is broken. In this case, for the
chaotic billiard, the level spacing distribution is of the GUE type (inset).

7. Discussion

A number of recent studies have suggested that OTOC can be a

Appendix A. Matrix representation of OTOC
Appendix A.1. Nonrelativistic quantum billiard systems

The Schrodinger Hamiltonian is

Physics Open 1 (2019) 100001

promising framework in the traditional field of nonrelativistic quantum
chaos for detecting possible exponential sensitivity and probing more
deeply into the quantum manifestations of classical chaos [64,67,69-76].
This paper presents a systematic study of OTOC in relativistic quantum
systems, with the take-home message that the signatures of classical
chaos in relativistic quantum systems are less pronounced than in
nonrelativistic quantum systems. We have obtained this conclusion
through a comprehensive, multi-angle approach in terms of four different
aspects of OTOC: short time and long time evolution in the energy
eigenspace, wave-packet based evolution, and level spacing statistics. In
particular, we introduce and justify a time scale, the revival time, to
separate the short from long time regime. Firstly, in the energy eigen-
space of the Hamiltonian, the short time evolution behaviors of the
nonrelativistic quantum OTOC are characteristically distinct for classi-
cally integrable and chaotic billiards, while those of the relativistic
quantum OTOC exhibit no apparent difference, indicating a suppression
of the effects of chaos. In fact, for the latter, uniquely relativistic quantum
behaviors such as negative energy states and Zitterbewegung motion are
pronounced especially in the short time regime [Fig. 2(e and f)], but the
remarkable phenomenon is that these behaviors, even in minuscule de-
tails, appear essentially the same for classically integrable and chaotic
dynamics. Secondly, in the long time regime, for the Schrodinger bil-
liards, the characteristic difference in the OTOC evolution of the inte-
grable and chaotic billiards persists, while those in the Dirac integrable
and chaotic billiards still exhibit qualitatively similar behaviors [Fig. 3(a,
c)]. In fact, for the former, a drastic difference in OTOC evolution sets in
almost immediately after the system evolution starts [Fig. 3(a)], but for
the latter, a noticeably characteristic difference appears but only in the
asymptotic time regime [Fig. 3(d)], implying much weaker manifesta-
tions of classical chaos in the relativistic quantum than in nonrelativistic
quantum systems. Thirdly, wave-packet based OTOC evolution exhibits
essentially the same phenomenon (Fig. 5), reinforcing the finding that
the relativistic quantum machinery tends to suppress the fingerprints of
classical chaos more than the nonrelativistic quantum one. Finally, the
level spacing statistics of OTOC in the Schrodinger billiards are similar to
those of the energy Hamiltonian in that integrable dynamics lead to the
Poisson distribution while classical chaos gives rise to distributions
characteristic of GOE random matrices - one of the best established re-
sults in the field of quantum chaos [2-4]. In the Dirac systems, while the
level spacing distributions of a chaotic billiard can be those of GOE or
GUE (depending on whether the order of the OTOC operator is even or
odd), the differences in the distributions between the classically inte-
grable and chaotic dynamics are markedly less pronounced than in the
corresponding Schrodinger systems (Fig. 6).
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where V(r) is the potential field that defines the billiard. Using the commutation relation p, = (i/2) [ﬁ ,X|, we can construct the matrix (p,) from (X).
The elements of the two matrices are related to each other through

i
Pmn = E (Em - En)xmn‘ (AZ)

For a 1D infinite potential well of width L, the matrix elements x,,, are given by Ref. [74].

5 (n=m),
= A.
=0 e [ | i (A.3)
— n#m),
r (n+m)  (n—m)
which leads to
. ~1 . 1
limx,,, ~—, and limp,,, . (A.4)
n—oo n n—00 n

Since the energy eigenfunctions of the 1D infinite potential well systems are sinusoidal functions, Eq. (A.4) gives [ x sin(nx)sin(mx)dx~1/n® and |
sin(nx)sin(mx)~1/n.
For the circular billiard of unit radius, the solutions of the Schrodinger equation are

vy, = NigJi(kisr)exp(ilf), (A.5)

where k;; denotes the sth zero point of the Ith order Bessel function and Nj, is the normalization constant. We thus have

2 0|
e — { / wr Dy(kir)Jp (kper) dr, 1= 1] =1, (A6)
0, others.

To simplify the eigen wavefunctions, we use the Weyl formula [2,6].

AR Lk

Nk)="—+ 7=,
() 4r J/411'

(A7)

where N(k) is the number of eigenvalues below k, A and L are the area and perimeter of the billiard, respectively, y is a constant that depends on the
boundary condition. For large k values, we thus have N E. Using the asymptotic expansion of the Bessel function [117].

J,(x)N\/%cos (x - %lﬂ' - %7[) , (A.8)

we have that, for any given quantum number (L,s), the nonzero values of x;; are determined by (I + 1,s’), indicating that the values of s can be large for
n — co. Using the asymptotic expansion and integral (which give x(m,n?)"1/n®) for the 2D circular Schrodinger billiard, we have

1
'}Lrgx”,n e and (A.9)
. 1
’}l_gipmn m (A]-O)

Appendix A.2. Relativistic billiard systems
For a Dirac system, the commutation relation is
1/2(HG,+6.H) =p,.

We can construct the matrix elements (p,.) from (5,) as

1
Pmn = Egmn (Em + En ) . (A 1 1)

For a circular billiard, the solution of the Dirac equation is
o J[ (k,:r) .
Vi =N (ffm (ks Jexp(io) ) *P0) *12)

where ki, is determined by the boundary condition J;(kis) = Ji;1(k;s). The current operator is



C.-D. Han et al. Physics Open 1 (2019) 100001

o, = (? é) (A13)

The particle-hole symmetry stipulates that, for any potential V(r), if |p) = (,,w,)" is a solution of the Dirac equation with energy E, then |h) =
(y;,w})" is a solution with energy — E. Using both the particle and hole states, we construct the matrix (s,) as

<h‘0}|17> (hlax|h> B HPmn HHmn

The nonzero matrix elements are given by

o {@mm <p|ox|h>} _ {PPW PH,, } a1

PPy = —271:1'/ P (kigr)Jp (kpgr)dr for (1= = —1),

PPy = Zni/ rJy(kisr)Jp 1 (kpgr)dr for (I — T = 1),

HPyy = 27[/ rJi(kisr)Jp (ke r)dr for (I+ 1 = 0), (A15)
HPyy = 7271/ ri1 (kigr )1 (kpg r)dr for (1+ 0 = =2),
HH,y¢ = PP),..
Using the integral [ sin(nx)sin(mx)~1/n and Eq. (A.8), we have
lim PP, NL. (A.16)

n—oo \/E

Using the Weyl formula Eq. (A.7) and the dispersion relation Exk for massless Dirac systems, from the relationship Eq. (A.11), we can show

limp,,, — constant,
n—oo

so the square OTOC operators cannot be defined for the Dirac billiards.

Appendix B. Temperature dependence
The OTOC defined in Eq. (1) for @ = 2 can be expanded as

(AA f(}\ :\‘} Aj’ V@([)W(I)Vh (B.1)
—(VW@)VW () + W) VW() V),

where the first term determines the long time behavior, which is equal to (WW)(VV). The second term, known as the out-of-time part, exhibits an
exponential decay and does not contribute to the long time behavior, which can be used to evaluate the microcanonical averaged OTOC. In particular, in
the high temperature limit T — oo, the expansion coefficient in Eq. (3) is

Cn ==, [W (@), V(0) Plw,) ~ (WW)(VV). (B.2)

For Schrodinger and Dirac systems, the temperature dependence of the microcanonical averaged OTOC is quite distinct.

Schrodinger system

For a 1D system, we have E ~ n?, which leads to the relation ¢, n* for W=V-= D, Using integration to approximate the summation in Eq. (4), we
get

c 7fexp(7E,,/T)c,,dn o

= B.3
" [exp(—E,/T)dn (B.3)
For a 2D Schrédinger billiard, for W= pand V = p, it can be shown that ¢, ~ n? and Cy ~ T2
For a 2D Schrodinger billiard, for W=xand V = D, it can be shown [74] that ¢, ~nand Cr ~ T.
Dirac systems
For Dirac billiard systems, we choose W=V = Oy, SO we have limr_ ,Cr constant.
Appendix C. Wave-packet revival
The revival time can be determined [98,99] from following Taylor expansion of the energy level E(n):
E’(n
E(n) = E(ng) + E’ (no)(n — no) + é 0)(n —ng) A+ . (€c.1)

The time for the onset of periodic motion and the revival time can be obtained in terms of the coefficients E’(ny) and E’’(n,), respectively, as

10
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2nh _ 2nh €.2)

Tcl =T 3 Tl‘ev 3y .
|E” (no)| |E™(n0) /2]

For an integrable Schrodinger billiard, the dispersion relation for certain angular momentum is E ~ n?. In this case, wave packet revival dominates.
For an integrable Dirac billiard, we have E n. In this case, periodic motion dominates. Using Egs. (C.1) and (C.2), we can obtain the revival times for the
three types of integrable systems as described in Sec. 4 and presented in Table 1.

Appendix D. Analytic calculation of OTOC in integrable systems

Appendix D.1. Harmonic Oscillator

Equation (1) implies W = V or W # V. There are two types of OTOC. The case of Cr = — < [%(t), p(0)]*>r has been treated in Refs. [73,74]. Here
we focus on the case Cr = — < [P,(t),p,(0)]*>r. In the classical limit, we can replace the commutation relation by the Poisson bracket
({px(t), px(O)}P)z, where the integration is evaluated over the energy surface. We rewrite the Poisson bracket as

_Ap(1)
Ax(0)

{p(1),p:(0)} (D.1)

For the quantum harmonic oscillator, in the Heisenberg picture we have

PSP 1.
X(t) = x(0)cos wt + wp(O)sm ot, 0.2)

P (1) = p(0)cos ot — wx(0)sin ot.
The commutation relation is then given by

1

7 Px(11), Po(12)] = w sinfo(t —1)]. (D.3)

For classical motion with the initial phase y, the solution is given by q(t) = Acos(wt + y). The classical growth rate is

2
/ Ep(tl)dy: — o sinjo(t; — t)]. (.4
0

The minus sign will disappear when taking the square. Thus the classical and quantum cases yield the same result, a special result that holds only for
the harmonic oscillator.
Appendix D.2. 1D infinite potential well

We obtain an approximate expression for the thermally averaged OTOC. First, we expand the microcanonical OTOC to get ¢, = Y bumb},,, where
m

B = (n|[W (), V(0)]|m). (D.5)

We then expand b, in terms of the eigenvectors to get
by = Z{Wmvmexp[i(En — E;)t/h] — V, Wewexpli(E; — E,)t/h]}. (D.6)

Equation (D.6) can be regarded as the superposition of many oscillators with the weights proportional to the expectation values of the operator w
and V. In general, different eigenvectors with similar energy values are coupled strongly, due to the similarity in their wavefunctions.
For the Schrodinger system, we use Cr = —([p,.(t), p,]*). For a 1D infinite potential well of width L, the matrix elements x,,, can be calculated based

on Eq. (A.3). For a large value of n and for n # m, the first term 1 /(n + m)? can be neglected. The second term that contains 1 /(n — m)* decays rapidly
for [m — n| > 1. Form = n,n+ 1, we have

iL
DPunt1 = l—ZZan. (D.7)
V%

Substituting Eq. (D.7) into Eq. (D.6) and (B.3) and taking a = #2#*/2mL?, we obtain
o2 n°h
_ 4 _ Q
¢, (1) = 64n <47m2L2> {1 cos (mL2 tﬂ ,
48
Cr(t) = 5T

n\? ~h
T 2m mL

Using this approximation, we can obtain the dependence of the microcanonical OTOC on n and that of the canonical OTOC on the temperature T. For
one period of evolution, we have T, = 2mL?/z#h. From Eq. (C.2), we have that the revival period is given by T,, = 4mL?/xh, which is twice the OTOC
oscillation period.

Appendix D.3. Circular Schrodinger billiard

(D.8)

Following the 1D analysis, we focus on the strongly coupled states with similar energy values in Eq. (A.6). The simplest case iss = 1, where the ([, 1)
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mode couples with the (I+1,1) modes. For these modes, we have

(D.9)

__ J nonzero, forl’=[+1lands =1,
urs ~ 0, others.

For other modes with I > s, it can be shown that the same oscillation pattern follows but the analysis is more complex. Similarly, for a mode with a
large value of [, the frequency depends on Ak; as
Aky=kginymn — knn = knn — kg-1yin- (D.10)

Using the asymptotic expansion of the Bessel function [117].

Jl(x)~\/%cos (x — %lﬂ — %ﬂ) . (b.11)

we have
/4
Ak = Ak = 7 (D.12)
A similar argument gives that the period of the OTOC oscillation depends on the quantity Ak? /7. We then have

_ 16mR*

To= D.1
0= (D.13)

where R is the radius of the circular billiard. Note that Ty is twice the revival time for [ = 0, approximately half the revival time for [ # 0.
Appendix D.4. Circular Dirac billiard

In the short time regime, Eq. (A.15) indicates that the coupling between the particle states is described by the matrix PP. From Eq. (D.9), we obtain
the same rule governing the coupling for the Dirac system. The difference from the Schrodinger billiard is the linear dispersion. The terms in Eq. (D.6)
then cancel each other.

For the particle-hole states, the coupling is described by the matrix PH (HP). Consider the microcanonical OTOC c,, where n denotes the particle
state. From Eq. (A.15), we have that the particle-hole states with the same energy will have a large coupling. Equation (D.6) stipulates that this will
generate high frequency oscillations with the frequency @ = 2|E,| in small time. In fact, the particle-hole symmetry exists, regardless of the nature of the
classical dynamics.

In the long time regime, approximated frequency expression cannot be obtained. However, both Figs. 4 and 5 indicate that the frequency can be
related to that of the classical wave packet motion.
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