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Quantum scars constitute one of the fundamental pillars in the traditional field of nonrelativistic quantum
chaos. In relativistic quantum systems, chiral scars have been discovered recently whose wave functions
concentrate on odd periodic orbits and break the time-reversal symmetry. We develop a theoretical framework to
unify the scarring phenomena in nonrelativistic and relativistic quantum systems, which were previously thought
to be distinct. In particular, we exploit massive Dirac billiard systems and derive semiclassical quantization rules
to bridge the two opposite limits: the massless Dirac case and the large mass regime where the system effectively
degenerates into one governed by the Schrödinger equation. A nontrivial phase is uncovered, which depends on
the mass, the wave number, and the angle of reflection, and we demonstrate that this phase plays a key role in
transforming the chiral scars and in bridging the relativistic and nonrelativistic quantum scars. In the large-mass
limit, time-reversal symmetry is restored, as evidenced by a spectral analysis.
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I. INTRODUCTION

In quantum chaos, a branch of physics that studies the
quantum manifestations of classical chaos [1,2], a funda-
mental topic is scarring. Quantum scars are referred to as
the relatively high concentrations of the wave function about
certain unstable periodic orbits of the system dynamics in the
classical limit. In such a system, e.g., a two-dimensional (2D)
stadium billiard, the classical phase space is ergodic and the
density of the trajectories is uniform in the physical space.
Intuition would suggest that the quantum wave-function dis-
tributions be uniform as well. It is against this intuition which
makes any nonuniform wave-function distribution surprising.
Historically, highly nonuniform concentrations of the quan-
tum eigenwave functions about classical periodic orbits were
first discovered by McDonald and Kaufman [3,4], which
were later called “quantum scars” by Heller [5]. Since then,
quantum scars have fascinated physicists [4,6–39].

Experimental separation of graphene about one and half
decades ago [40–46] led to the tremendous development of
condensed-matter systems whose quasiparticles obey the laws
of relativistic quantum mechanics governed by the Dirac
equation or its generalizations. This in turn has stimulated
interests in the relativistic quantum manifestations of classical
chaos (see Refs. [47,48] and references therein). A seminal
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contribution was made by Sir Michael Berry and his collabo-
rator, who studied the spectral properties of the eigenenergies
of the massless Dirac equation for the chaotic neutrino billiard
[49]. However, efforts in relativistic quantum chaos were
largely sporadic before the development of two-dimensional
Dirac materials. On the subject of scarring, relativistic quan-
tum scars were uncovered in graphene systems [50] and
observed experimentally [51]. A peculiar class of relativistic
quantum scars in chaotic massless Dirac billiard systems was
discovered in which the difference between the accumulated
phase along a counterclockwise orbit in a complete cycle
and that along the clockwise cycle is π modulo 2π . These
are chiral scars [52] that break the time-reversal symmetry
[49,53,54] and have no counterpart in nonrelativistic quantum
systems.

In this paper, we develop a theory to unify scarring in
nonrelativistic and relativistic quantum systems through an-
alyzing the phase behaviors of the eigenstates of massive
Dirac billiard systems. In all existing studies of relativistic
quantum scars [50–53,55], the quasiparticles have zero mass
so the energy-momentum dispersion relation is linear. This
picture describes well the physics of quasiparticles in a variety
of two-dimensional (2D) Dirac material systems such as an
ideal graphene sheet in the low-energy regime or the surface
electrons of a topological insulator [56,57]. In physical reality,
because of the necessity of opening band gaps for device
applications and the realization of experimental schemes for a
gate-controlled, continuously tunable band gap [58], the con-
cept of massless quasiparticles is no longer sufficient, render-
ing necessary a description based on massive Dirac particles.
The physics of such quasiparticles remains relativistic quan-
tum with the underlying equation being the massive Dirac
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equation. Scarring in relativistic quantum systems described
by the Dirac equation with a finite mass is by itself an open
problem. From the fundamental standpoint of unification, the
massive Dirac equation has two limiting regimes: (a) zero
mass and (b) a large finite mass, where the former describes
the behavior of massless Dirac fermions and, for the latter, if
the mass is sufficiently large, the first component of the spinor
effectively describes the corresponding Schrödinger system.
Studying quantum scarring of massive Dirac particles can
thus unify the conventional, nonrelativistic quantum scars and
chiral scars in massless Dirac fermion systems.

Our key finding in developing a scar-unifying theory is
that the mass term in the Dirac equation leads to a dynamical
phase that depends not only on the angles but also on the mass
and wave number. This enables us to derive a semiclassical
formula for the phase accumulation and, consequently, to
fully predict the emergence and properties of scars. Another
result is that the dynamical phase and the semiclassical for-
mula can be used to understand the spectral properties of
massive Dirac fermions. The significance of our findings
is as follows. Nonrelativistic quantum scars have become a
quite well-studied topic in quantum chaos while the discov-
ery of relativistic quantum scars in massless Dirac systems
was relatively recent. Our work reveals that these two types
of scarring phenomena, characteristically distinct properties
notwithstanding, are different aspects of the same entity: scars
in massive Dirac systems with the dynamical phase as the
unifying thread.

II. MASSIVE DIRAC BILLIARD

Consider a 2D spin-1/2 particle of mass m in a billiard
region D, where the particle moves freely inside the billiard
and reflects at the boundary. The massive Dirac equation is

[−ih̄c(σ̂ · ∇) + mc2σ̂z + V (r)σ̂z]ψ (r) = Eψ (r), (1)

where ψ (r) = [ψ1(r), ψ2(r)]T is the two-component spinor
wave function, h̄ is the reduced Planck constant, c is the
speed of light (or the Fermi velocity), σ̂ = (σx, σy) and σ̂z =
σz are the Pauli matrices, and E =

√
(h̄ck)2 + (mc2)2 is the

energy. The confinement potential V (r) is zero inside D, and

infinite outside D. For convenience, we use the unit con-
vention h̄ = c = 1. Hermiticity of the Hamiltonian requires
that the outward current vanish, which leads to the boundary
condition ψ2/ψ1|∂D = i exp{iα}, where α is the angle of the
normal vector of the boundary measured from the positive
x direction, as shown in Fig. 1(a). For m → 0, the massive
Dirac billiard degenerates to one described by the massless
Dirac equation. For m → ∞, we have ψ2 → 0 homoge-
neously inside the billiard D and the first component ψ1(r, t )
satisfies the Schrödinger equation with the Dirichlet boundary
condition ψ1|∂D = 0—a nonrelativistic quantum billiard (see
Appendix A for more details).

To calculate a large number of states for chaotic massive
Dirac billiard, we generalize the conformal mapping method
previously developed for the massless Dirac equation [52].
The starting point is the eigenfunctions ψlm and the corre-
sponding eigenwave number μlm of a circular massive Dirac
billiard (see Appendix B), where a key parameter is

κ ≡
√

1 − mc2/E

1 + mc2/E
=

√√√√√
1 + h̄2k2/m2c2 − 1√
1 + h̄2k2/m2c2 + 1

, (2)

which plays a determining role in the dynamical phase.
For a chaotic billiard with an analytic boundary that can
be transformed from a circle, the massive Dirac equation
can be solved in the circular domain in a modified form.
By expanding the wave function in the base of {ψlm}, the
problem can be converted to a standard matrix eigenequa-
tion, where the eigenvalues and eigenvectors can be used to
yield the eigenwave number kn and eigenwave function �n(r)
of the original chaotic massive Dirac billiard system (see
Appendix C for details). To be concrete, we consider a billiard
with the boundary

w(z) = (z + c1z2 + c2eid z3)/
√

1 + 2c2
1 + 3c2

2, (3)

where |z| = 1 and the parameter values are (c1 = 0.49, c2 =
d = 0) and (c1 = c2 = 0.2, d = π/3) for the heart-shaped
and Africa billiards, respectively [59]. We calculate 40 000
base eigenstates and use the first one third in our analysis to
guarantee accuracy.

FIG. 1. Critical phases. (a) Incident and reflected local plane waves for the massive Dirac billiard. At the reflection point, there is a phase
δi = (θi − θi−1)/2 = αi − θi−1 + π/2 due to spin rotation for both massless or massive Dirac fermions, and another phase in the nontrivial
reflection coefficient Ri: arg(Ri ) = 2ωi + δi (see text). (b) Dependence of the dynamical phase (2ωi ) on κ and the angle (αi − θi−1).
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III. QUANTIZATION FORMULA FOR SCARRING STATES
IN MASSIVE DIRAC BILLIARD SYSTEMS

In general, the condition for a scarring state to emerge
is that, starting from any point on a periodic orbit, after
traversing the orbit a complete cycle, the total accumulated
phase is an integer multiple of 2π . For the massive Dirac
billiard, for each reflection on the boundary, there is a phase

δi = (θi − θi−1)/2 = αi − θi−1 + π/2

due to spin rotation [49,55]. Using the plane wave analysis
[49,60] as illustrated in Fig. 1(a), we can derive that the
reflection coefficient Ri is no longer one, but contributes a
nontrivial phase (see Sec. III A below): arg(Ri ) = 2ωi + δi,
where

ωi = arg(κe−i(αi−θi−1 ) − i). (4)

The complex functional profile of (2ωi) is shown in Fig. 1(b).
Note that (2ωi) is asymmetric for positive and negative values
of (αi − θi−1), except for κ = 0 (the Schrödinger limit), indi-
cating T-symmetry breaking for the massive Dirac billiard in
general.

A. Plane-wave analysis

To develop a comprehensive theory for scars in chaotic
massive Dirac billiard systems, we resort to plane-wave analy-
sis, which was previously used to yield a detailed understand-
ing of quantum scarring in massless Dirac billiards with a
clear physical picture [49]. In the plane-wave representation,
the spinor wave function of a positive energy state with a wave
vector k of absolute value k and angle θ with respect to the
positive x axis is given by

ψ =
√

E + mc2

2E

(
e−iθ/2

κeiθ/2

)
eik·r, (5)

where κ is given by Eq. (2). The wave inside the domain
can be written as the superposition of an incident wave and
a reflected wave:

�I =
√

E + mc2

2E

[(
e−iθi−1/2

κeiθi−1/2

)
eiki−1·r + Ri

(
e−iθi/2

κeiθi/2

)
eiki ·r

]
,

where Ri is the reflection coefficient for the ith reflec-
tion, and the incident and reflected wave vectors are
ki−1 = (k cos θi−1, k sin θi−1) and ki = (k cos θi, k sin θi ), re-
spectively. In the general case where the domain is confined by
a finite potential V , the transmitted wave outside the domain is

�II = Ti√
2(V q − EK )

(−iλi1e−iαi/2

λi2eiαi/2

)
e−qineiKis,

where Ti is the transmission coefficient, Ki = k sin θi−1, the
attenuation coefficient in the normal direction is

qi =
√

(V 2 − E2)/(h̄c)2 + K2
i , (6)

λi1 = √
(V + E )(qi − Ki ), λi2 = √

(V − E )(qi + Ki ), and n
and s are the normal and tangential coordinates. Continuity of

FIG. 2. Diagram for ωi in the reflection coefficient. (a) For the
case shown in Fig. 1. (b) For the reversed case.

the spinor wave function at the boundary requires√
E + mc2

E
(e−iθi−1/2 + Rie

−iθi/2) = −i
λi1Tie−iαi/2

√
V q − EK

,

(7)√
E + mc2

E
κ · (eiθi−1/2 + Rie

iθi/2) = λi2Tieiαi/2

√
V q − EK

,

which yields the reflection and transmission coefficients as

Ri =
κ
λi

eiθi−1 − ieiαi

eiθi−1 − i κ
λi

eiαi
= iei(αi−θi−1 )

κ
λi

e−i(αi−θi−1 ) − i
κ
λi

ei(αi−θi−1 ) + i

= ei(2ωi+αi−θi−1+π/2),

Ti = 2C sin(ωi + αi − θi−1)ei(ωi+(αi−θi−1 )/2−π/2). (8)

As shown in Fig. 2, ωi is given by

ωi = arg

(
κ

λi
e−i(αi−θi−1 ) − i

)
,

or

tan ωi = −
κ
λi

sin(αi − θi−1) + 1
κ
λi

cos(αi − θi−1)
, (9)

and

C =
√

(E − mc2)(V qi − EKi )

E (V − E )(qi + Ki )
, λi = λi2

λi1
=

√
(V − E )(qi + Ki )

(V + E )(qi − Ki )
.

Note that the reflection coefficient is no longer a constant but
depends on the specific values of αi and θi−1 associated with
a particular reflection. Although the absolute value of the re-
flection coefficient is still one, it introduces a nontrivial phase,
namely, 2ωi + δi for each reflection, which contributes to the
phase accumulation in the quantization condition of the scar-
ring states. For a billiard system confined by hard walls, i.e.,
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V → ∞, the parameters are λi = 1 and C =
√

(E − mc2)/E .
According to Eq. (6), the attenuation coefficient qi is infinite,
so the wave function outside the domain decays to zero for
arbitrarily small distance from the boundary; i.e., the particle
is confined within the billiard.

The phase δi is due to spin rotation and can be regarded
[61] as a spin following a nonadiabatically changing magnetic
field pointing to the same direction as k. The quantity δi is
thus the Berry geometric phase due to the cycling rotation
of the spin. The dynamical phase 2ωi can be related to the
Pancharatnam phase [62], i.e., the solid angle PIT̄ R spanned by
the incident wave (I), the reflected wave (R), and the direction
perpendicular to transitive spinor wave function (T̄ ) in the
Poincaré sphere at the reflection point. Thus, the quantity 2ωi

also has a geometrical origin.
To be specific, it is useful to describe spin polarization

using the Bloch sphere, on which each point is an eigenstate
χi, i = I, R, T̄ of the spin polarization matrix:

S(r) = h̄

2

(
z x − iy

x + iy −z

)
= h̄

2

(
cos �r sin �re−iφ

sin �reiφ − cos �r

)
,

where cos �r = mc2/E . The argument of the reflection coef-
ficient is given by

arg(R) = arg

(
− χ

†
T̄
χI

χ
†
T̄
χR

)
= π + PIT̄ R − arg(χ†

I χR),

where

|χI〉 =
(

cos �r
2 e−iθi−1/2

sin �r
2 eiθi−1/2

)
, |χR〉 =

(
cos �r

2 e−iθi/2

sin �r
2 eiθi/2

)
,

|χT 〉 = 1√
2

(−ie−iαi/2

eiαi/2

)
, |χT̄ 〉 = 1√

2

(
e−iαi/2

−ieiαi/2

)
.

Since

χ
†
I χR = ei(θi−θi−1 )/2(1 + κ2e−i(θi−θi−1 ) ),

we could separate out a mass-independent phase δi = (θi −
θi−1)/2 to get

2ωi = −π − PIT̄ R + arg(1 + κ2e−i(θi−θi−1 ) ). (10)

However, such a decomposition does not simplify the
calculation of the phases. We thus use the criterion of mass
dependence to decompose and analyze the phases.

In the massless limit m → 0 (or κ → 1), we have

tan ωi = − sin(αi − θi−1) + 1

cos(αi − θi−1)

= −1 − cos(αi − θi−1 + π/2)

sin(αi − θi−1 + π/2)

= − tan
1

2
(αi − θi−1 + π/2).

When examining the reflection coefficient as a whole, we
find that its phase is 2ωi + (αi − θi−1 + π/2) = 0, indicating
R = 1. In this case, the system effectively becomes a massless
Dirac billiard and chirality emerges for periodic orbits with
an odd number of bounces due to the π phase difference

FIG. 3. Behaviors of the dynamical phase. Shown is the dynam-
ical phase (2ωi ) in the reflection coefficient for counterclockwise
and clockwise orbits 3 and 4I. The symbols in the left panel mark
the reflection points on the orbits. The same symbols on the right
panel mark, for given κ = 0.5, the value of αi − θi−1 at the reflection
points, with αi − θi−1 < 0 (>0) for the counterclockwise (clockwise)
case. The vertical lines mark the values of αi − θi−1 for the reflection
points.

associated with spin. For m → ∞ (κ = 0), the correspond-
ing Dirac system degenerates to the Schrödinger system. In
this limit, we have tan ωi → −∞, and 2ωi → −π . Thus,
ei2ωi → −1, and the reflection coefficient becomes R = −1
in a Schrödinger billiard.

It is worth noting that, due to the uncertainty in the rel-
ative phase between the two components of the spinor wave
function, while it is convenient to use symmetrical-plane wave
solution (5) to solve the massive Dirac equation, there is
flexibility in choosing the form of the two-component solution
insofar as the ratio of the second component to the first is eiθ .
However, this gauge freedom does not change the expression
of the reflection coefficient and thus has no effects on the
results.

B. Dynamical phase and quantization
condition of scarring states

Define

β± =
N∑

i=1

δ±
i , γ ± =

N∑
i=1

2ω±
i ,

where N is the number of reflections along the orbit and
“±” denote the counterclockwise and clockwise orientations,
respectively. Since δ±

i (thus β±) depend only on the angles
determined by the shape of the confinement boundaries and
the classical periodic orbits, and persist for both massless and
massive Dirac billiards, it is the primary phase. Besides its
angle dependence, 2ω±

i (hence γ ±) also depends on the mass
and wave number (or energy) through κ [Eq. (2)]—it is thus a
dynamical phase. Both phases have a geometrical origin.

From Eq. (9), we see that (2ω±
i ) depends on both the

angles αi and θi−1 and κ that depends on the ratio of k/m
through Eq. (2). For a given scarring state, k and m, and thus
κ , are fixed. As a result, for a given periodic orbit as shown
in Fig. 3, at each reflection point as marked by the symbols,
the angles αi and θi−1 and consequently αi − θi−1 can be
determined. These are marked in the right panel of Fig. 3.
The corresponding (2ω±

i ) can then be calculated to yield γ ±.
Note that, for different orbits, these angles are different, and
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thus γ ± will be different. Even for the same orbit but with
a different orientation, the value of γ ± can still be different.
Another intriguing point is that, for different eigenstates, the
wave numbers are different, so even for scarring states on the
same orbit, the value of γ ± will be different. Nevertheless, for
a given system with fixed mass m, when the scarring orbit is
also fixed, (2ω±

i ) and thus γ ± can be calculated as a function
of the wave number k or energy E .

We carry out a semiclassical analysis for the massive Dirac
billiard system without a magnetic field. The phase accu-
mulation about an orientated periodic orbit after traversing a
complete cycle is

�± = 1

h̄
S − σπ

2
+ β± + β± + γ ±, (11)

where S = ∫
p · dr = h̄kL is the action, and σ is the Maslov

index that can be related to the number of conjugate points
along the orbit, i.e., the number of reflections off the billiard
boundary. The first β± in Eq. (11) is due to spin rotation
during the reflection at the boundary, and β± + γ ± is the
nontrivial phase in the reflection coefficient. It is convenient
to consider the two phases together and rewrite them as

�± = kL − σπ

2
+ β± × 2 + γ ±. (12)

The quantity β± can be calculated directly by following the
orbits, which only has two values for typical periodic orbits:
β = 0 for orbits 3−, 4II±, 5I+, and 5II+ and β = π mod
2π for orbits 2±, 3+, 4I±, 5I−, and 5II− (see Fig. 6 for the
geometric shapes of these orbits). Since β equals to either 0
or π mod 2π , the quantity β × 2 only contributes to integer
multiples of 2π to the total phase �, which is independent
of the mass, the energy, and the orbits. Thus, the key is the
dynamical phase γ ±.

For a scarring state to emerge, it is necessary that �± =
2πn (n being an integer) be satisfied, which leads to the
quantization condition for the wave number:

k±
n = (2πn + σπ/2 − 2β± − γ ±)/L. (13)

Figure 4 plots k±
n versus n for two representative scars on

orbit 3 (upper left) and orbit 4I (lower right). The curves are
theoretical predictions while the data points are eigenwave
numbers k±

n for the scarring states identified manually through
visual examination of all the available eigenstates. It can be
seen that the prediction of the quantization formula agrees
well with the numerical data. To see the fine variations of γ ±
versus k, we define

�± = mod(k±
n L, 2π ) = mod(σπ/2 − 2β± − γ ±, 2π ).

The insets in Fig. 4 show mod(k±
n L, 2π ) calculated directly

from the scarring states (data points), together with the the-
oretical predictions mod(σπ/2 − 2β± − γ ±, 2π ) (curves).
The two types of results are consistent with each other,
revealing the effects of the variation of γ ±(k). For k → 0, the
system approaches the Schrödinger limit, and the difference
in �± diminishes.

FIG. 4. Validity of the uncovered quantization formula. For the
heart-shaped massive chaotic Dirac billiard, the semiclassical quan-
tity k±

n versus n from theory (curves) and the identified scarring states
(symbols). The upper left inset is for orbit 3 (in darker color) and the
lower right inset is for orbit 4I (in lighter color), where �± (see text)
versus k is shown. The mass is m = 100. Orange upward- pointing
triangles and solid curves are for scars with counterclockwise current
orientation (+), while blue downward-pointing triangles and dashed
curve are for the clockwise orientation (−).

IV. UNIFICATION OF NONRELATIVISTIC
AND RELATIVISTIC SCARS

A. The effects of the dynamical phase

Scars persist from m = 0 to m → ∞. As m is increased
from zero, how do scars transit from being relativistic chiral
for m = 0 to nonrelativistic quantum scars in the m → ∞
limit? To address this fundamental issue in a concrete manner,
we consider periodic orbits of odd periods (e.g., a triangular
scar) because, for orbits of even periods (e.g., period 4), the
corresponding scars are nonchiral in both the m = 0 and m →
∞ limits. Does such a scar remain nonchiral for an arbitrary
value of m? For a massless Dirac billiard, the characterization
of chiral scars is that, for a given wave number, the difference
�� of the accumulated phase between counterclockwise and
clockwise cycles is not an integer multiple of 2π . If the phase
along one orientation satisfies the quantization condition,
the other will not, breaking the time-reversal symmetry and
leading to GUE (Gaussian unitary ensemble) level spacing
statistics [49]. More specifically, in the massless case, we
have �� = β+ − β− = �β. Since mod(�β, 2π ) equals π

for odd orbits and zero for even orbits, there will be a π phase
difference for periodic orbits with an odd number of bounces
[49,52,55]. This is the fundamental mechanism for the subtle
T-symmetry-breaking phenomenon in massless Dirac billiard
systems.

For the massive Dirac billiard, since mod(2�β, 2π ) = 0
holds regardless of whether the orbit is even or odd, the
accumulated phase difference becomes �� = γ + − γ − =
�γ . Thus, the key to understanding the transition from chiral
scars to nonrelativistic scars is the dynamical phases γ ±
(or 2ω±

i ) and their difference �γ . Figure 5 shows, for two
representative orbits, �γ versus k and m. For orbit 3, the
range of �γ is [0, π ], while for orbit 4I, the range is [0, 2π ].
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FIG. 5. Unification of relativistic and nonrelativistic quantum scars by the dynamical phase. Difference in the dynamical phase between
counterclockwise and clockwise scars on orbits 3 (a) and 4I (b). The massless Dirac regime is m → 0, while k → 0 is the Schrödinger limit.
Since κ depends only on the ratio k/m, �γ takes the same values on the straight lines of k ∝ m.

For both cases, the limit k → 0 for a finite m is equivalent
to m → ∞ for a fixed k (the nonrelativistic limit) where �γ

goes to zero. For m → 0 (massless Dirac billiard), we have
�γ → π for orbit 3, leading to chiral scars. For orbit 4I, we
have �γ → 2π , corresponding to nonchiral scars, which is
consistent with previous observations [52,55]. Interestingly,
for orbit 4I, around k = 2m, we have �γ ∼ π , exhibiting an
accidental chiral nature.

B. Understanding from length spectra analysis

A convenient tool to reveal the signatures of classical
periodic orbits is the length spectrum [1,2,12]. Denote A±(L)
as the contribution of states with counterclockwise-clockwise
orientations of orbital length L. For a particular periodic orbit,
we have

A+(L) = ei��A−(L) = ei�γ A−(L)

for the massive Dirac billiard. As a result, the height of a peak
in the length spectrum,

|A+(L) + A−(L)|2 = |1 + ei�γ |2|A−(L)|2,

can be modulated by �γ , as exemplified in Fig. 6(a), a
series of spectra with increasing mass. We find that the mass
has no effect on the orbits for which the current directions
(i.e., counterclockwise or clockwise) cannot be distinguished,
such as orbits 2 and 4II. However, for orbits whose current
directions can be distinguished, regardless of whether they
are even or odd, mass can affect the heights of the peaks
in the spectrum. In particular, for odd orbits (3, 5I, and
5II), for m = 0, the π phase difference in �γ makes the
contributions to the spectrum from the counterclockwise and
clockwise current states cancel each other exactly, so there
are no peaks at the corresponding lengths, as evidenced in the
bottom curve in Fig. 6(a). With increasing mass, the values
of �γ for these orbits decrease from π to zero, as shown in
Fig. 6(b), leading to a continuous increase in the height of
the peak at the corresponding length. For even orbits whose
orientation can be distinguished, e.g., orbits 4I, 6I, and 6II, the
height decreases first and then increases with the mass. This is
because as the mass increases from zero to ∞, �γ decreases
from 2π to zero. Consequently, there exists an intermediate
mass value (e.g., m = 100) at which �γ ∼ π , where the peak
height is greatly suppressed.

FIG. 6. Analysis of length spectra. (a) Length spectra for different masses: m = 0 (massless Dirac billiard), 10, 50, 100, 200, 1000, and
the Schrödinger limit. The peaks correspond to classical periodic orbits on which the scars are concentrated, as demonstrated in the insets.
(b) �γ for these orbits vs m. Since k ∈ (0, kmax), where kmax is about 200, �γ also takes values in a range, as marked by the solid bars.
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Additional results from length-spectra analysis for differ-
ent energy ranges are presented in Appendix E.

V. INDICATIONS OF T-SYMMETRY RESTORATION
IN THE INFINITE MASS LIMIT

Whether the system possesses T symmetry is largely de-
termined by the dynamical phase. In the massless limit, we
have �γ → π for odd orbits, breaking T symmetry. For the
massive case, �γ takes on finite values, so T symmetry is
always broken but with a deteriorating effect as m goes to
infinity, where �γ → 0 holds for both odd and even orbits.
As a result, T symmetry is restored so that scars with both
orientations can occur simultaneously. This fundamental in-
terplay between the dynamical phase and T symmetry has
been verified through a systematic study of the level spacing
statistics (e.g., for a fixed range of wave number) as the
mass is increased from zero; see Sec. V A. Alternatively,
this can be understood from the spin polarization on the
boundary (see Sec. V B below). For a finite value of m,
spin is polarized on the boundary due to the infinite mass
confinement, breaking T symmetry. However, as m goes to
infinity, the expanding coefficients on the spin eigenstates
go to zero continuously, leading to a zero wave function
on the boundary in the limiting case, where T symmetry is
restored.

A. Statistics of energy level spacing for chaotic massive
Dirac billiard systems

Because of the fundamental role played by symmetry in
quantum systems, we analyze two types of chaotic massive
Dirac billiard systems: one with and another without a geo-
metric symmetry, e.g., the heart-shaped and the Africa-shaped
billiards.

For the heart-shaped chaotic massless Dirac billiard, al-
though the system does not possess the time-reversal symme-
try, it is invariant under the combined symmetric operation of
time reversal and parity. As a result, the statistics of the energy
level spacing are described by those of GOE [49]. In the
infinite mass limit, the system degenerates to a nonrelativistic
quantum billiard. In this case, due to the mirror symmetry,
the eigenstates are either symmetric or antisymmetric, leading
to two sets of independent eigenvalues. Consequently, the
level spacing statistics follow those of double GOEs, i.e., a
combination of the eigenlevels from two independent random
matrices with each yielding GOE statistics. Figure 7 shows the
level spacing statistics for three cases of different mass values,
where the first 2800 levels are used to calculate the statistics.
Indeed, for m = 0, the statistics are GOE. For m = 1000, the
statistics of double GOEs arise. For m = 200, the results are
in between the two limiting cases.

For the Africa-shaped billiard that does not possess any ge-
ometric symmetry, in the massless limit, there is T-symmetry
breaking. In this case, the spectral fluctuation properties of the
energy levels are described by those of GUE [49]. However,
in the large mass limit, GOE statistics emerge due to the
restoration of T symmetry caused by the dynamical phase.
These results are exemplified in Fig. 8.

FIG. 7. Energy level spacing statistics for the heart-shaped mas-
sive Dirac billiard system. (a) Level spacing distribution P(S) calcu-
lated from 2800 levels, where the three rows (from top to bottom)
correspond to mass values m = 1000, 200, 0, respectively. (b) The
corresponding spectral rigidity �(L).

B. Spin polarization on boundary

To better understand the effect of domain boundary on
spin, we analyze the influence of mass on the interaction
between the spin degree of freedom and the boundary of a
finite mass confinement. The spin operator in the y direction,
Ŝy = (h̄/2)σ̂y, has two eigenfunctions:

Ŝy|χ↑↓〉 = ± h̄

2
|χ↑↓〉,

where

|χ↑〉 = 1√
2

(
1

i

)
, |χ↓〉 = 1√

2

(
1

−i

)
. (14)

For a massive wave function on the boundary given by

ψ =
√

E + mc2

2E

(
e−iθi−1/2 + Rie−iθi/2

κ (eiθi−1/2 + Rieiθi/2)

)

=
√

E + mc2

2E
2ei(ωi−θi−1/2)

(
cos ωi

−iκ sin(ωi − θi−1)

)
, (15)

FIG. 8. Statistics of energy-level spacing for the chaotic Africa-
shaped Dirac billiard system. Results from three cases are presented:
the Schrödinger limit (m = 1000), massive Dirac (m = 200), and the
massless Dirac (m = 0) from top to bottom, respectively. (a) Level
spacing distributions P(S) calculated from the first 3000 energy
levels. (b) The spectral rigidity �(L) for the same set of energy
levels.
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we can expand it in the eigenfunction base of Ŝy: � =∑
i=↑↓ Ai|χi〉, with the expansion coefficients given by

A↑ =
√

E + mc2

E
ei(ωi−θi−1/2)

[
1 − κ

sin(ωi − θi−1)

cos ωi

]
cos ωi,

A↓ =
√

E + mc2

E
ei(ωi−θi−1/2)

[
1 + κ

sin(ωi − θi−1)

cos ωi

]
cos ωi.

(16)

With the simplification

κ
sin(ωi − θi−1)

cos ωi
= κ tan ωi cos θi−1 − κ sin θi−1

= κ ·
κ
λi

sin θi−1 − 1
κ
λi

cos θi−1
· cos θi−1 − κ sin θi−1

= λi,

we obtain

A↑ = (1 + λi)

√
E + mc2

E
ei(ωi−θi−1/2) cos ωi,

A↓ = (1 − λi)

√
E + mc2

E
ei(ωi−θi−1/2) cos ωi.

The massive wave function is a superposition state of the
eigenfunctions of Ŝy. When the boundary is confined by an
infinite mass, we have λi = 1 and the expansion coefficients
associated with the down y-spin eigenfunction are zero, re-
gardless of the mass inside. That is, the wave function can be
regarded as an up-spin eigenfunction of Ŝy: ψ = A↑|χ↑〉 and
Ŝyψ = h̄

2 ψ .
It is useful to examine two limiting cases: m = 0 and

m = ∞. For the former case, the parameter values are κ = 1
and ωi = θi−1/2 − π/4. The expansion coefficients are A↑ =
2e−iπ/4 cos(θi−1/2 − π/4) and A↓ = 0, which are consistent
with the spinor wave function for massless Dirac fermions
discussed in Ref. [55]. In the latter case (the infinite mass
limit), the parameter values are κ = 0 and ωi = −π/2. We
have A↑ = 0 and A↓ = 0, indicating that the wave function on
the boundary is zero: the boundary condition in a nonrelativis-
tic quantum billiard system.

To further validate the boundary effect on spin, we analyze
the spatial distribution of the current density. The current
operator [49,55] is û = ∇pĤ = cσ̂ and the current density,
i.e., the expectation value of the current operator, can be
written as

J = c�†σ̂� = 2c[Re(ψ∗
1 ψ2), Im(ψ∗

1 ψ2)]. (17)

Inside and outside the billiard domain, the current expressions
are, respectively,

J in
x = 0,

J in
y = h̄c2k

E
[2 sin θi−1 + 2 sin(2kx cos θi−1 − 2γn + θi−1)]

(18)

FIG. 9. Effect of mass on current density. (a) Dependence of
the y component of the boundary current on the incident angle
θi−1 for different values of the mass portion of the energy mc2/E .
(b) The y component of the current inside the billiard domain vs
the mass portion for a fixed incident angle. The solid and dashed
curves represent the currents in the counterclockwise and clockwise
directions, respectively. The mass conditions are specified in the
inset.

and

Jout
x = 0,

Jout
y = c|T |2e−2qx = 4c(E − mc2)

E
sin2(γn − θi−1)e−2qx.

(19)

The current normal to the boundary, Jx, is always zero because
of Hermiticity of the Hamiltonian. Because of the infinite
mass confinement (q → ∞), the decay factor e−2qx in Jout

y will
decrease rapidly to zero. It then suffices to focus on the current
component J in

y . As illustrated in Fig. 9(a), the boundary cur-
rent always points in the positive direction, independent of the
incident angle. As the mass portion of the energy increases,
the current decreases and tends to zero for large masses.
Figure 9(b) shows that, for a fixed incident angle, the current
inside exhibits a periodic behavior with an increasing period
but its amplitude decreases with the mass. In the large mass
regime, the current concentrates on the x axis, i.e., Jy → 0.
These results agree with those from the analysis of the spin
operator Ŝy.

VI. DISCUSSION

Scars, relatively high concentrations of the quantum wave
functions along classical unstable periodic orbits, are perhaps
the most fundamental manifestation of classical chaotic be-
havior in the corresponding quantum system, nonrelativis-
tic or relativistic. In the traditional field of quantum chaos
that deals with nonrelativistic quantum systems described by
scalar wave functions governed by the Schrödinger equation,
the phenomenon of scarring has been extensively studied in
the past four decades [4,6–34,36]. In the recently emergent
field of relativistic quantum chaos [47,48] that treats systems
described by spinor wave functions obeying the Dirac equa-
tion, there has also been a particular focus on scarring of
massless Dirac fermions. In spite of the common feature be-
tween nonrelativistic and relativistic quantum scars, there are
characteristic differences. In particular, for all scars in nonrel-
ativistic quantum systems and most scarred states in massless
relativistic quantum systems, the associated wave functions
return completely to themselves after traversing the unstable
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periodic orbits once. That is, for such a scar, the phase change
after one round trip along the unstable periodic orbit is zero
or 2π . The most pronounced difference between scars in
nonrelativistic and relativistic quantum systems of massless
Dirac fermions uncovered so far is the emergence of a class
of scars in the latter that have no counterparts in the former:
Chiral scars that require two round trips along the unstable
periodic orbits for the underlying spinor wave functions to
return completely to themselves. The phase change associated
with a chiral scar after traversing the classical periodic orbit
once is thus π . In a hard wall billiard system, chiral scars arise
on classical unstable periodic orbits with an odd number of
bounces or reflections off the billiard boundary. In view of the
characteristic difference, a question of fundamental interest
is whether nonrelativistic and relativistic quantum scars are
different entities, or are they just two different aspects of the
same physics? In other words, does a theory exist unifying the
scarring phenomena in nonrelativistic and relativistic quantum
systems?

We have developed a theoretical framework to unify non-
relativistic and relativistic quantum scars. The basic idea is to
investigate relativistic quantum chaotic systems of fermions
governed by the massive Dirac equation. In the zero mass
limit, the equation degenerates to the massless Dirac equa-
tion. In the large mass limit, the spinor components “de-
couple,” e.g., the second component goes to zero, and the
first component becomes one described by the Schrödinger
equation with the Dirichlet boundary condition, degenerating
effectively the system to a nonrelativistic quantum billiard.
Scarring of massive Dirac fermions can thus serve as a bridge
to unify nonrelativistic quantum and relativistic chiral scars.
Especially when the mass is finite, the reflection coefficient
at the boundary is no longer a constant but introduces a new
phase that needs to be included in the quantization condition
for scarring states. The difference in the dynamical phase,
�γ , which depends on the mass and wave number, plays a
determining role. As the mass is increased from zero, �γ

decreases from π (2π ) for odd (even) orbits. For m → ∞,
one has �γ → 0, so that the orientation can be distinguished,
leading to conventional scars in the nonrelativistic quantum
billiard system, where T symmetry is restored, as corroborated
by the level spacing statistics and the deterioration of the spin
polarization effects on the boundary.

From the point of view of symmetry, whether the system
possesses the T symmetry is largely determined by the dy-
namical, mass-dependent phase. In the large mass (or low
kinetic energy) limit, this mass-dependent phase tends to zero,
conserving T symmetry. As the mass portion of the total
energy is reduced continuously, the dynamical phase becomes
more dominant, breaking T symmetry. This fundamental in-
terplay between the dynamical phase and T symmetry has
been verified through a systematic study of the statistics of
energy level spacing in the massive Dirac billiard systems in
general and in the limiting cases of zero and infinite mass.
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APPENDIX A: DEGENERACY OF MASSIVE DIRAC
BILLIARD SYSTEM INTO A NONRELATIVISTIC

QUANTUM BILLIARD IN THE INFINITE MASS LIMIT

In the infinite mass limit, the massive Dirac billiard system
degenerates into the corresponding nonrelativistic quantum
billiard, which can be seen as follows: Consider a two-
dimensional spin-1/2 particle of mass m confined by an
infinite mass potential in a billiard domain D. In the position
representation, the Dirac Hamiltonian Ĥ acts on the two-
component spinor wave function ψ (r) = [ψ1(r), ψ2(r)]T.
The massive Dirac equation is given by Eq. (1). The confine-
ment potential is given by

V (r) =
{

0, inside D,

∞, outside D.

Hermiticity of the Hamiltonian in Eq. (1) requires that the
outward current vanish, which is equivalent to the condition:
ψ2/ψ1 = iB exp{iα}, where B is a constant. The infinite mass
confinement leads to B = 1, ensuring that the boundary con-
dition of the massive Dirac billiard is identical to its massless
counterpart:

ψ2

ψ1
= i exp{iα}, (A1)

where α is the angle of the normal vector of the boundary
measured from the positive horizontal direction.

When the kinetic energy is small compared with the static
energy, a Taylor expansion of the energy expression gives E =√

(h̄ck)2 + (mc2)2 ≈ mc2 + h̄2k2/(2m). The zeroth-order ap-
proximation of ψ (r, t ) can be written as

ψ (r, t ) = ψ (r)e−iEt/h̄ ≈ ψ (r)e−imc2t/h̄,

which is a solution of

ih̄
∂ψ (r, t )

∂t
≈ mc2ψ (r, t ). (A2)

In the polar coordinates r = (r, φ), the Dirac equation

ih̄
∂ψ1(r, t )

∂t
= Ĥψ1(r, t ) (A3)

in D can be expanded as

ih̄
∂ψ1(r, t )

∂t
= −ih̄ce−iφ

(
∂r − i

r
∂φ

)
ψ2(r, t ) + mc2ψ1(r, t ),

(A4a)

ih̄
∂ψ2(r, t )

∂t
= −ih̄ceiφ

(
∂r + i

r
∂φ

)
ψ1(r, t ) − mc2ψ2(r, t ).

(A4b)

Using the second component of Eq. (A2) in Eq. (A4b), we
obtain the expression for ψ2(r, t ) in terms of ψ1(r, t ):

ψ2(r, t ) = − ih̄

2mc
eiφ

(
∂r + i

r
∂φ

)
ψ1(r, t ). (A5)
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Substituting Eq. (A5) into Eq. (A4a) yields the equation for
the first component ψ1(r, t ):

ih̄
∂ψ1(r, t )

∂t
= − h̄2

2m
∇2ψ1(r, t ) + mc2ψ1(r, t ). (A6)

Since ih̄∂ψ1(r, t )/∂t = Eψ1 and E ≈ mc2 + h̄2k2/(2m),
combining with Eq. (A6), we have

∇2ψ1(r) + k2ψ1(r) = 0,

which is the Helmholtz equation, i.e., the spatial part of the
Schrödinger equation for a quantum billiard system. From
Eq. (A5), we see that, as m → ∞, ψ2 → 0 holds uniformly
inside the billiard. The boundary condition (A1) can be
rewritten as ψ2 = ψ1i exp(iα). Since ψ2 → 0, the boundary
condition for ψ1 becomes ψ1 = 0.

We thus have that, in the m → ∞ limit, the massive Dirac
billiard degenerates to a nonrelativistic quantum system: ψ2 =
0, and the first component ψ1 is governed by the Schrödinger
equation (Helmholtz equation) with the Dirichlet boundary
condition.

APPENDIX B: ANALYTICAL SOLUTIONS OF CIRCULAR
MASSIVE DIRAC BILLIARD

The massive Dirac equation [Eq. (1)] in the polar coordi-
nates r = (r, φ) is

mc2ψ1 − ih̄ce−iφ

(
∂

∂r
− i∂

r∂φ

)
ψ2 = Eψ1

−ih̄ceiφ

(
∂

∂r
+ i∂

r∂φ

)
ψ1 − mc2ψ2 = Eψ2. (B1)

Eliminating ψ1, we get the Legendre equation

(h̄c)2

mc2 − E

[
∂2

∂r2
+ ∂

r∂r
+ ∂2

r2∂φ2

]
ψ2 = (mc2 + E )ψ2. (B2)

Using separation of variables, ψ2 = R(r)�(φ), we obtain the
analytical solution in the form of the Bessel functions:

ψ2 = C2Jl (kr)eilφ.

Substituting this into Eq. (B1) and using the recurrence re-
lation of the Bessel functions: νJν (x) + xJ ′

ν (x) = xJν−1(x),
we get

ψ1 = iC2h̄ck

mc2 − E
Jl−1(kr)ei(l−1)φ.

Setting C1 = iC2 h̄ck
mc2−E , we can rewrite the spinor wave func-

tion as

ψ (r) =
(

C1Jl (kr)eilφ

C2Jl+1(kr)ei(l+1)φ

)
. (B3)

Taking into account the boundary condition ψ2/ψ1 = ieiφ , we
have

C2

C1

Jl+1(kr)

Jl (kr)
eiφ = iκ

Jl+1(kr)

Jl (kr)
eiφ = ieiφ,

which yields the following equation for solving the eigenwave
number,

Jl (kr) = κJl+1(kr), (B4)

FIG. 10. Dependence of the key quantity κ on mass and wave
vector in the massive Dirac billiard. Shown is the dependence of κ on
the mass portion of energy (a) and on both mass m and wave vector
k (b). The symbols are the analytical solutions for circular massive
Dirac billiards with m = 10, 50, 100. The contour lines show that κ

is invariant when k is varied linearly with m, which can also be seen
from Eq. (2) as κ depends only on the ratio of k/m.

where κ is given by Eq. (2), which plays a determining role in
the dynamical phase and whose behavior is shown in Fig. 10.
The eigenvalues klm of the circular massive Dirac billiard can
be obtained from Eq. (B4), and the eigenwave function is

ψ (r) = Nlmeilφ

(
Jl (klmr)

iκlmJl+1(klmr)eiφ

)
, (B5)

with the normalization factor

Nlm =
[

2π

∫ 1

0
dr r

(
J2

l (klmr) + κ2
lmJ2

l+1(klmr)
)
]−1/2

. (B6)

Under the operation of the antiunitary operator Â = σ̂xK̂ , the
Hamiltonian becomes Ĥ ′ = ÂĤ Â−1 = −Ĥ , thus the eigen-
value is E ′ = −E , and the corresponding eigenstate becomes

� ′ = Â� =
(

ψ∗
2

ψ∗
1

)
= Nlme−ilφ

(−iκlmJl+1(klmr)e−iφ

Jl (klmr)

)
.

APPENDIX C: GENERALIZED CONFORMAL MAPPING
METHOD FOR CHAOTIC MASSIVE DIRAC BILLIARDS

For a massless chaotic Dirac billiard, the method of con-
formal mapping is effective, which enables a large number of
eigenvalues and eigenstates to be calculated accurately and
efficiently. The starting point to generalize this method to
massive Dirac billiard systems is the eigenfunctions ψlm(r) of
a circular massive Dirac billiard system, which can be written
down analytically (Sec. B):

ψlm(r) = Nlmeilφ

(
Jl (μlmr)

iκlmJl+1(μlmr)eiφ

)
,

Nlm =
[

2π

∫ 1

0
dr r

(
J2

l (μlmr) + κ2
lmJ2

l+1(μlmr)
)]−1/2

,

(C1)

where μlm is the eigenwave vector given by the equation
Jl (μlm) = κlmJl+1(μlm), and l and m are the radial and angular
subindices, indicating that the corresponding values should be
calculated using the eigenvalues.

For a chaotic billiard with an analytic boundary in the w =
(u, v) plane such as the heart-shaped or the Africa-shaped
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billiard, the domain can be transformed from a circle in the
z = (x, y) = (r, φ) plane through the conformal mapping:

u(x, y) + iv(x, y) = w(z) = z + c1z2 + c2eid z3√
1 + 2c2

1 + 3c2
2

,

where, for the heart-shaped and Africa-shaped billiards,
the parameters are (c1 = 0.49, c2 = d = 0) and (c1 = c2 =
0.2, d = π/3), respectively. When being acted upon by the
Hamiltonian operator, since the Pauli matrices are anticom-
mutative, the Dirac equation (1) inside the billiard region in
the (u, v) coordinates becomes

[−h̄2c2�uv + m2c4]� = E2� (C2)

or

−�uv� = k2�. (C3)

The wave functions in the w and z planes are approximately
equal, i.e., �(w) = eiσzθcm/2� ′(x, y) ≈ � ′(z), where θcm =
arg(dw/dz), due to the rotation of the spinor wave function
caused by the conformal mapping. To solve Eq. (C3), one
needs to transform back from the chaotic billiard domain in
the w plane to the circular domain in the z plane. With

�rφ =
∣∣∣∣dw

dz

∣∣∣∣
2

�uv ≡ T (r, φ)�uv,

Eq. (C3) becomes

−�rφ� ′ = k2T (r, φ)� ′. (C4)

Thus, as the billiard domain becomes regular, the equation
becomes complex due to the quantity T (r, φ). Nevertheless,
the eigensolutions Eq. (C1) for the circular massive Dirac
billiard [for which T (r, φ) = 1] form an orthonormal basis
for the general spinor wave functions satisfying the boundary
condition (A1). Expanding � ′ in this basis yields

� ′ =
∑
l ′m′

Cl ′m′ψl ′m′ (r, φ). (C5)

Practically, the summation in Eq. (C5) needs to be truncated at
a large but finite index. In our calculation, we choose the first
40 000 eigenstates in the increasing order of the eigenwave
number μlm. Substituting this expansion into Eq. (C4) and
carrying out the inner product with 〈ψlm| on both sides, we
obtain the following eigenequation:∑

l ′m′
Mlml ′m′Vl ′m′ = Vlm/k2, (C6)

where Vlm = Clmμlm and

Mlml ′m′ = NlmNl ′m′

μlmμl ′m′

∫ 2π

0
ei(l ′−l )φ T (r, φ)dφ

×
∫ 1

0
dr · r[Jl (μlmr)Jl ′ (μl ′m′r)

+ κlmκl ′m′Jl+1(μlmr)Jl ′+1(μl ′m′r)]. (C7)

From the eigenvalues λn and the eigenvectors Vn of the
eigenequation MVn = λnVn, we can obtain the solutions of the
massive Dirac equation with

kn =
√

1/λn, Cn,lm = Vn,lm/μlm.

The corresponding eigenenergy and eigenwave function
are given by En =

√
(h̄ckn)2 + (mc2)2 and � ′

n(x, y) =∑
lm Cn,lmψlm in the (x, y) plane, respectively. Accordingly,

in the (u, v) plane, the eigenwave function is �n(u, v) =
eiσzθcm/2� ′

n(x, y).
Note that, due to the term eiσzθcm/2, the boundary condition

for the massive Dirac billiard in the (u, v) plane will not
be transformed to the boundary condition of the same form
as Eq. (A1) in the (x, y) plane, especially at the boundary
point where the value of θcm is large. We have compared
the results using the boundary integral and the conformal
mapping methods for the heart-shaped billiard. There are
noticeable discrepancies for the first few eigenstates in both
the eigenwave numbers and eigenwave functions, where the
wave functions are mostly localized on the boundaries. For
large values of n, the discrepancies diminish.

The generalized conformal mapping method can yield a
huge number of eigenwave functions simultaneously with
high spatial resolution for the chaotic massive Dirac billiards,
leading to a large number of scarring states for statistics and
semiclassical analyses.

APPENDIX D: ADDITIONAL RESULTS OF DYNAMICAL
PHASE AND QUANTIZATION CONDITION

OF SCARRING STATES

The key to understanding the transition from chiral scars
to nonrelativistic scars thus lies in the dynamical phase γ ± =∑

i 2ω±
i . Examples of several orbits for m = 100 are shown in

Fig. 11, where both γ +, γ − and �γ = γ + − γ − are plotted.
It can be seen that γ + and γ − are different for all the orbits,
and �γ , the key to determining the chirality of the scars,
exhibits different behaviors for even or odd orbits. As shown
in the second row of Fig. 11, in the large-k limit, the system
approaches a massless Dirac billiard. In this case, for even
orbits (e.g., type 4I), we have �γ → 2π , while for odd
orbits (types 3, 5I, and 5II), �γ → π holds. This breaks
the time-reversal symmetry because the π phase difference
renders impossible simultaneous quantization of the wave
functions along the orbits in both orientations, in agreement
with previous understandings of chiral scars in massless Dirac
billiards [55].

For k → 0, the system approaches the nonrelativistic limit.
In this case, �γ goes to zero for all cases, indistinguishable
for even and odd orbits. In between, �γ varies smoothly with
k. However, as for even orbits, �γ changes from 2π to 0
continuously, there will be a particular value k (depending on
the orbit) for which �γ = π holds. As a result, even orbits
may also exhibit chirality. The change in �γ versus k and
the time-reversal symmetry breaking effect can be visualized
through level spacing statistics (in Sec. V A).

The theoretical values of � for a set of other periodic orbits
together with those derived from the eigenwave numbers of
the scarring states are plotted in Fig. 12. It can be seen that, de-
spite fluctuations, the data follow the theoretical curves well.
Period-2 and period-4-II orbits are bouncing-ball-like orbits.
For such an orbit, itself and its time-reversed counterpart are
identical, so no orientation can be defined. For period-5-I and
period-5-II orbits, the orientations can be defined; thus, �

takes on different values for different orientations. For k → 0,
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FIG. 11. Behaviors of the dynamical phase γ = ∑
i 2ωi. From left to right are the phases for scars of types 3, 4I, 5I, and 5II, respectively,

in the heart-shaped chaotic massive Dirac billiard. The mass is m = 100. The solid orange and dashed blue curves in the first row [(a)–(d)]
represent the theoretical values of the phases for counterclockwise and clockwise orbits. The range of the wave vectors is from 0 to 1200. The
second row [(e)–(h)] shows the phase difference �γ between the two cases and the gray-shaded areas represent the range of the wave numbers
obtained numerically.

the system approaches the infinite mass limit, so the difference
in � diminishes. Since � is the modular value of the phases,
when it decreases to values below zero, we add a shift of +2π ,

FIG. 12. � characteristic for scars on different orbits for the
heart-shaped massive Dirac billiard. The mass is m = 100. [(a)–(d)]
The � values for scars of periods 2, 4-II, 5-I, and 5-II, respectively.
The symbols are calculated via mod(kL, 2π ). The curves are the
theoretical predictions through γ (m, k). Orange upward-pointing
triangles and solid curve are for scars with counterclockwise cur-
rent orientations, and blue downward-pointing triangles and dashed
curve are for scars with clockwise orientations. Gray squares and
black solid curve are for scars whose current directions cannot be
distinguished.

corresponding to the behavior of its decreasing from one in the
� plot.

Since only γ depends on k, it is convenient to “normal-
ize” � as �̃ = mod (kL + β + γ , 2π ) = mod (σπ/2 −
β, 2π ). Again, �̃ can be calculated from eigenwave numbers
k of the scarring states through mod (kL + β + γ , 2π ) and

FIG. 13. Normalized values �̃ for period-3 scars at different
mass values. Shown are the �̃ values for period-3 scars in the
heart-shaped billiard system for m = 0, 10, 50, 100 [(a)–(d), respec-
tively]. The horizontal solid lines are the semiclassical predictions
mod (σπ/2 − β, 2π ), and the data points are calculated using
mod (kL + β + γ , 2π ).
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FIG. 14. Length spectra of a heart-sharped chaotic massive Dirac billiard system in different wave-number ranges. (a) Length spectra for
m = 50. The data from back to front correspond to the Schrödinger limit, wave-number range (0, �k), (�k, 2�k) and, (2�k, 3�k), and the
massless Dirac limit (m = 0), respectively. (b) The three different wave-number ranges. (c) The corresponding difference in the dynamical
phase �γ for different types of scars. The color scheme is the same as that in panel (b).

can also be calculated from mod (σπ/2 − β, 2π ) that is
independent of k and m but only depends on the geometry
of the orbit. By removing the effects of γ , �̃ is a constant
independent of k and m. Examples of the behaviors of �̃

for several period-3 scars with different masses are shown in
Fig. 13. Since both β and γ depend on the orientation, �̃+ and
�̃− take on different values, with their difference being π .

APPENDIX E: ADDITIONAL ANALYSIS
OF LENGTH SPECTRA

Since the dynamical phase in the reflection coefficient
is related to κ in that increasing the mass is equivalent to
decreasing the wave number, it is insightful to investigate the
length spectra for eigenwave numbers in different ranges, as
shown in Fig. 14. In particular, Fig. 14(c) shows the values

FIG. 15. Energy level spacing distributions for the Africa-shaped
massive Dirac billiard in different energy ranges. The same color
indicates the same range. The mass value is m = 200. (a) Illustra-
tion of the level spacing statistics in three energy ranges. (b) The
corresponding spectral rigidity �(L). Inset shows the corresponding
ranges in the E − k plot.

of �γ in three different wave-number ranges for different
orbits with m = 50. For orbits 2 and 4II, since their current
directions are indistinguishable, �γ remains to be zero, re-
gardless of the k ranges. It can be seen that, for odd orbits 3,
5I and 5II, as k increases, �γ increases from zero to nearly
π (the massless limit value is π ), leading to an increasing
difference in the phase between the counterclockwise and
clockwise orbits. This effect is stronger in the region of larger
wave number, giving rise to a reduction in the peak heights
of the length spectrum at the positions of the odd orbits. This
can be seen in Fig. 14(a), and the peaks for the odd orbits
disappear completely in the massless limit. For the even orbits,
e.g., orbits 4I, 6I, and 6II, as k increases, �γ increases from
zero to about 2π . For the intermediate wave-number range,
�γ is close to π , resulting in a π phase difference between
the counterclockwise and clockwise current states and leading
to the disappearance of the peaks. As a result, the peak height
first decreases and then increases with k.

APPENDIX F: STATISTICS OF ENERGY LEVEL SPACING
FOR DIFFERENT ENERGY RANGES

An additional result is that, since the dominant factor is not
the absolute value of the mass but rather the relative fraction
of the energy due to the static mass, for fixed finite mass,
varying the wave number k will lead to different phenom-
ena. In particular, for near-zero k values, e.g., for the first
few eigenstates, the system is similar to one in the infinite
mass limit. For large values of k, especially for h̄k � mc,
the system approaches the massless limit. Thus, when k is
varied from small to large values, the level spacing statistics
will change from the GOE to the GUE type, as shown in
Fig. 15, where the nearest neighbor level spacing probability
P(S) and the spectral rigidity �(L) are presented for three
different energy ranges for m = 200. In the low-energy region
where the dispersion relation is quadratic, the statistics are
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close to that of GOE. As the energy is increased, the dis-
persion relation becomes increasingly linear, so the behavior

gradually approaches that of massless limit described by the
GUE statistics.
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