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S1. PHOTON-PHONON COUPLING

The photon-phonon coupling can be transformed to the photon-photon coupling by applying the

so-called polaron transformation [1]:
ˆ̃H = Û †ĤÛ , in the absence of any driving and dissipation.

The resulting Hamiltonian

ˆ̃H = ~ωcâ
†â+ ~ωM b̂†b̂− ~

g20
ωM

(â†â)2 (S1)

has the eigenvalue Enj = ~ωcn− ~g20n
2/ωM + ~ωMj, where n and j are the photon and phonon

numbers, respectively. The effective photon-photon coupling term makes the photon level spec-

trum anharmonic, leading to many interesting physical phenomena such as photon block effect

and photon-induced tunneling [1, 2].

S2. RELEVANCE OF WEAK COUPLING REGIME

In order to understand the dynamics of fluctuations in the optomechanical system as described

by the quantum Langevin equations, we consider the corresponding variational equations. For

example, a dynamical variable x can be written as x(t) = x0(t) + δx(t), where x0(t) is the

corresponding variable in the zeroth-order system and δx(t) characterizes the fluctuations. For the

full system described by Eq. (1) in the main text, the zeroth-order system is given by

q̈0 = −ω2
mq0 − ΓM q̇0 +

√
2g0ωm|a0|2 (S2a)

ȧ0 = −(
κ

2
+ i∆0)a0 + i

√
2g0a0q0 + E. (S2b)

Letting x0 = g0q0 and α0 =
a0
E

, we can write Eq. (S2) as

ẍ0 = −ω2
mx0 − ΓM ẋ0 +

√
2g20E

2ωm|α0|2 (S3a)

α̇0 = −(
κ

2
+ i∆0)α0 + i

√
2α0x0 + 1, (S3b)

where the parameters g0 and E appear as a product, indicating that the zeroth-order properties of

the system are determined by this product as well as other system parameters. To study how the

system dynamical behaviors depend on g0 and E, we can conveniently fix their product g20E
2 and

change one of them systematically, say g0.

As described in the main text, quasiperiodic motion emerges in the weak optomechanical cou-

pling regime, i.e., g0 ≪ κ, and it can enhance quantum entanglement. This remarkable phe-

nomenon, however, cannot be guaranteed to occur in the strong coupling regime g0 ∼ κ, due to

the fact that the magnitude of the input noise behaves as ξ → g0ξ and
√
κain → √

κain/E. As we

increase g0 towards the strong coupling region, the amplitude of the input noise will be enhanced

by a factor of the the same order of magnitude. In this case, noise and the zeroth-order terms will

have comparable magnitude. Classically, the system dynamics will then be affected strongly by

noise, making it difficult to assess the interplay between nonlinear dynamics and quantum entan-

glement.
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S3. NUMERICAL SIMULATION OF THE QUANTUM LANGEVIN EQUATIONS

In order to gain insights into the dynamics of the optomechanical system and to validate the

time-dependent covariant matrix method for quantifying quantum entanglement, we use a stochas-

tic fourth-order Runge-Kutta (RK4) method to simulate the evolution of the quantum Langevin

equations [7]. The stochastic RK4 method can yield accurate and stable solutions even when us-

ing step size ∆ of two orders of magnitude larger than that in the widely used Heun’s method [8].

The quantum Langevin equations can generally be written as

dX

dt
= F+G · z, (S4)

where G · z = [G1z1, G2z2, ..., Gnzn]
T , Gi is the autocorrelation of the ith noise input, and zi is

the Gaussian white noise with the normal distribution N(0, 1). The Stochastic RK4 method can

be explicitly expressed as

X(t+∆) = X(t) +

3
∑

j=0

pjKj∆+

3
∑

j=0

qjMj · z (S5)

where

K0 = F(X(t), t)

M0 = G(X(t), t)

X
(1) = X(t) +

1

2
K0∆+

1

2
M0 · z

K1 = F(X(t)(1), t+
1

2
∆)

M1 = G(X(t)(1), t+
1

2
∆)

X
(2) = X(t) +

1

2
K1∆+

1

2
M1 · z

K2 = F(X(2)(t), t +
1

2
∆)

M2 = G(X(2)(t), t+
1

2
∆)

X
(3) = X(t) +K2∆+M2 · z

K3 = F(X(3)(t), t +∆)

M3 = G(X(3)(t), t+∆)

The stochastic RK4 algorithm converges to that based on the Stratonovich calculus [7]. For our

optomechanical system, G is a constant, facilitating greatly numerical integration. Note that M ·z
has the same meaning as G ·z. We simulate the quantum Langevin equations a large number (e.g.,

3000) of times to obtain well converged ensemble-averaged quantities, as exemplified in Fig. 3 in

the main text.
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S4. TIME EVOLUTION OF FLUCTUATIONS

As described in the main text, the time evolution of the fluctuations in the optomechanical

systems is governed by

u̇(t) = A(t)u(t) + n(t), (S6)

where A(t) is a 4× 4 matrix given by

A(t) =









0 ωM 0 0

−ωM −ΓM gx(t) gy(t)

−gy(t) 0 −κ ∆(t)

gx(t) 0 −∆(t) −κ









. (S7)

Here we have made the following substitutions: δx = (δa+ δa†)/
√
2 and δy = −i(δa− δa†)/

√
2,

so that u = (δq, δp, δx, δy)T and n = (0, ξ,
√
κxin,

√
κyin)

T
. Other variables are defined as

gx(t) = g0〈x(t)〉, gy(t) = g0〈y(t)〉 and ∆(t) = ∆0 − g0〈q(t)〉.

S5. LOGARITHMIC NEGATIVITY

There has been no universal definition of quantum entanglement that can be applied to different

situations of physical interest, nor any general quantitative measure that can be used to character-

ize the degree of quantum entanglement. Only special cases can be dealt with where, for example,

the density operators are relatively simple. In a canonical bipartite system described by continuous

variables, quantum entanglement can be quantified by the so-called measure of logarithmic nega-

tivity, defined for Gaussian quantum state as well as pure and symmetric states. In particular, say

the quantum system has the density operator ρ and has a subsystem A. The logarithmic negativity

is defined as [3]

EN (ρ) ≡ log2 ||ρTA||1, (S8)

where ρTA is the partial transpose of the bipartite mixed state ρ for its subsystem A, || · ||1 means

its trace norm and is expressed as

||ρTA||1 = 1 + 2|
∑

i

µi|, (S9)

where µi’s are the negative eigenvalues of ρTA . For a general mixed state of infinite dimension

without any symmetry, it is extremely difficult to calculate the trace norm. However, for a Gaus-

sian state, the method of symplectic diagonalization or normal-mode decomposition can be em-

ployed, in which the state is transformed into a tensor product of independent thermal oscillator

states fully specified by their energies. Note that the quantum properties a Gaussian state can be

completely characterized by its covariance matrix. The normal-mode decomposition then enables

us to diagonalize the covariance matrix as diag(c1, c1, c2, c2, ..., cn, cn), where ci is the energy of

the ith thermal oscillator state. For a state at thermal equilibrium, we have [4]

ρ =
e−βa†a

Tr[e−βa†a]
= (1− z)

∑

n=0

zn|n〉〈n|, (S10)
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where z = e−β and β ∝ 1/(kBT ). In general, for a physical density operator, we have z ≥ 0.

However, the operator under consideration here is a partially transposed operator for which the

uncertainty relation is not preserved. There can then be states with −1 < z < 0. Nonetheless,

a connection between ||ρTA||1 and ci can be established via the quantity z through the definition

of trace norm as well as the energy relation. Particularly, for a Gaussian state with diagonal

covariance matrix diag(c, c), its trace norm is

F (c) =

{

0, for 2c ≥ 1

− log2 (2c), for 2c ≤ 1
(S11)

and the logarithmic negativity is the sum of different trace norms of c. The physical meaning is

that, for 2c ≥ 1, i.e., z ≥ 0, the state corresponds to a normal thermal state, indicating that energy

is characterized by c. As the trace norm of this state is 1, it has no contribution to the entanglement

of the total system. However, for 2c ≤ 1, i.e., −1 < z < 0, a negative density operator arises with

a non-trivial trace norm, which contributes to entanglement.

The quantum states in an optomechanical system are naturally bipartite state: any such state

is composed of the entangled sub-states associated with the optical and mechanical degrees of

freedom, respectively. In this case, the quantities c1 and c2 can be calculated from

(ic)4 + [det(A) + det(B)− 2det(C)](ic)2 + detγ = 0, (S12)

where A, B, and C are the 2× 2 block matrices comprising the covariant matrix

γ =

(

A C

CT B

)

. (S13)

It can be seen that det(A), det(B), det(C) and det(γ) are four invariants under the symplectic

transformation SA ⊕ SB , where SA, SB ∈ Sp(2,R). The conditions of c for the entangled states

can be obtained directly from the PHS criterion [5] associated with the uncertainty relation [6].

We then have

EN = −
2

∑

i=1

min(0, log (ci)). (S14)

S6. TEMPERATURE DEPENDENCE

How robust is quantum entanglement against thermal fluctuations? To address this question,

we calculate the dependence of maximum entanglement measure EN on temperature for a large

number of values of the laser driving power. In the system of quantum Langevin equations, a

convenient way to incorporate the temperature effect is through the input noise. There are two

sources of noise: vacuum radiation input noise ain(t) for the optical subsystem and the viscous

force to the mechanical subsystem through the Brownian stochastic process ξ(t). For the vacuum

radiation input noise, at high optical frequency, the equilibrium mean thermal photon number

N(ωc) = [exp (~ωc/kBT )− 1]−1 (S15)

5



0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

T/mK

E
N

 

 

P=0.025
P=0.045
P=0.070

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

T/mK
Ē
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FIG. S1: For three values of the driving power, dependence of the entanglement maximum EN on the envi-

ronmental temperature T . In all cases, robust entanglement exists for T in the range of tens of millikelvin.

Inset: rescaled average entanglment.

tends to zero [9]. This leads to the correlation functions

〈ain(t)ain,†(t′)〉 = [N(ωc) + 1]δ(t− t′) → δ(t− t′) (S16a)

〈ain,†(t)ain(t′)〉 = N(ωc)δ(t− t′) → 0 (S16b)

which do not depend on the temperature. For the case of Brownian noise, as its frequency has

the same order of magnitude as the mechanical frequency, the equilibrium mean thermal phonon

number can remain finite even at relative low temperature. As a result, the temperature of the

mechanical reservoir can affect the dynamics of the system through

n̄ =
1

exp [~ωM/(kBT )]− 1
. (S17)

Three representative cases are shown in Fig. S1. We plot the maximum of entanglement as well

as the rescaled average entanglement within the stable periodic or quasiperiodic regime after the

transient behaviour has died out. In general, we find that, for low mechanical dissipation rate ΓM

and high mechanical frequency, entanglement can persist in the temperature range up to tens of

millikevins, which is experimentally readily achievable. This is reasonable as the magnitude of

the autocorrelation of the mechanical Brownian noise is ΓM(2n̄ + 1). Insofar as the mechanical

mode has a high-Q factor, the effect of the stochastic mechanical effect is small. Especially, for

high frequency, the thermal occupation number of the mechanical mode is small, leading to a ro-

bust entanglement. A rather surprising phenomenon is that quantum entanglement corresponding
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to classical quasiperiodic motion is more temperature-robust than that associated with periodic

motion.

[1] X.-W. Xu, Y.-J. Li, and Y.-X. Liu, “Photon-induced tunneling in optomechanical systems,” Phys. Rev.

A 87, 025803 (2013).

[2] P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107, 063601 (2011).

[3] G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).

[4] A. Ferraro, S. Olivares, and M. G. A. Paris, “Gaussian states in continuous variable quantum informa-

tion,” arXiv:quant-ph/0503237.

[5] R. Simon, “Peres-Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett.

84, 2726-2729 (2000).

[6] D. Buono, G. Nocerino, V. D’ Auria, A. Porzio, S. Olivares, and M. G. A. Paris, “Quantum characteri-

zation of bipartite Gaussian states,” J. Opt. Soc. Am. B 27, A110 (2010).

[7] J. A. Hansen and C. Penland, “Efficient approximate techniques for integrating stochastic differential

equations,” Monthly Weather Rev. 134, 3006-3014 (2006).

[8] C. Van den Broeck, J. M. R. Parrondo, R. Toral, and R. Kawai, “Nonequilibrium phase transitions

induced by multiplicative noise,” Phys. Rev. E 55, 4084-4094 (1997).

[9] C. Genes, A. Mari, P. Tombesi, and D. Vitali, “Robust entanglement of a micromechanical resonator

with output optical fields,” Phys. Rev. A 78, 032316 (2008).

7


