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Do relativistic quantum scars in classically chaotic systems possess unique features that are not shared

by nonrelativistic quantum scars? We report a class of relativistic quantum scars in massless Dirac fermion

systems whose phases return to the original values or acquire a 2� change only after circulating twice

about some classical unstable periodic orbits. We name such scars chiral scars, the successful identi-

fication of which has been facilitated tremendously by our development of an analytic, conformal-

mapping-based method to calculate an unprecedentedly large number of eigenstates with high accuracy.

Our semiclassical theory indicates that the physical origin of chiral scars can be attributed to a combined

effect of chirality intrinsic to massless Dirac fermions and the geometry of the underlying classical orbit.
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A remarkable phenomenon in contemporary physics is
quantum scarring in classically chaotic systems. For a
system that exhibits fully developed chaos in the classical
limit, a typical trajectory will generate a uniform distribu-
tion in the phase space and physical space as well. Naively,
one would then expect the quantum wave functions to be
uniform. It was discovered by McDonald and Kaufmann
[1] in 1979 in their systematic study of the quantum
eigenstates of the classical stadium billiard that the
physical-space distributions of the wave functions associ-
ated with many eigenenergies are highly nonuniform. In
fact, due to quantum interference, the eigenstates tend to
concentrate on various classically unstable periodic orbits.
Such nonuniform distributions of quantum wave functions
in classically chaotic systems were later named quantum
scars by Heller [2], who also devised a random-wave
or interference model to explain the phenomenon.
Semiclassical theory was subsequently developed by
Bogomolny [3] and Berry [4], providing a comprehensive
understanding of the phenomenon. Quantum scarring in
classically chaotic systems has since attracted a great deal
of attention [5].

Most existing works on quantum scarring were with
respect to nonrelativistic quantum systems governed by
the Schrödinger equation [1–5]. In relativistic quantum
systems, the basic governing equation is the Dirac equa-
tion. The question of whether scarring can occur in rela-
tivistic quantum systems exhibiting chaos in the classical
limit is thus fundamental in physics. This question was
partially addressed in the context of chaotic graphene [6]
billiard [7], where pronounced concentrations of the wave
function about distinct classical unstable periodic orbits

were demonstrated in different energy regimes. However,
graphene is essentially a discrete-lattice system with two
nonequivalent Dirac points in the energy-momentum
[(E, k)] space. Although the electronic behavior in the
neighborhood of each Dirac point can be described by
the Dirac equation [6], physical processes such as reflec-
tion from the system boundaries can couple the dynamics
from the two Dirac points. In a strict sense, the underlying
physics in graphene is not exactly that given by the Dirac
equation. The scars uncovered in Ref. [7] are thus relativ-
istic quantum scars only in an approximate sense.
Concerning the general issue of relativistic quantum man-
ifestations of classical chaos in the framework governed by
the Dirac equation, a pioneering work was that by Berry
and Mondragon [8]. They developed a boundary-integral
method to solve the massless Dirac equation (for neutrinos)
in closed domains such as that given by the chaotic Africa
billiard but mainly addressed the issue of energy-level
statistics, although an integral formula was provided to
calculate the eigenstates.
In this Letter, we address the following question: Are

there characteristics of relativistic quantum scars that differ
fundamentally from those associated with nonrelativistic
quantum scars? To make possible our search for such
characteristics, we develop an analytic approach to calcu-
lating the eigenstates of massless Dirac fermions in a broad
class of chaotic billiards by using the method of conformal
mapping. In particular, for any shape in the class, a proper
conformal mapping can transform it to a shape for which
the solutions of the Dirac equation can be written down
analytically. An inverse transform of the solutions thus
leads to eigenstates in the original billiard. This method
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allows us to calculate an unprecedentedly large number of
eigenvalues and eigenstates with high accuracy. Taking
advantage of this powerful method, we have succeeded
in identifying one such characteristic associated with the
phase of the wave function. In particular, in nonrelativistic
quantum systems, when a particle traverses one cycle
along a scarred orbit, the associated quantum phase change
is 0 or 2�. However, when we examine the various eigen-
state solutions of the massless Dirac equation, we find one
subclass of scarred orbits for which one complete itinerary
brings about a phase change of only �. In fact, it takes two
cycles for the phase of the wave function to become 2�
and, for the wave function, to return completely to its
original value. This relativistic quantum phenomenon is
originated from the chirality of the massless Dirac fermi-
ons (as will be explained later), and consequently we name
such scars chiral scars. We note that, despite the emer-
gence of chiral scars, the majority of the scars are conven-
tional in the sense that the phase change associated with
one cycle is 2�. We develop a semiclassical theory to
understand the physical origin of chiral scars.

Consider a massless spin-half particle in a finite domain
D in the plane r ¼ ðx; yÞ. Utilizing an infinite-mass term
outside the domain to model the confinement of the parti-
cle motion within D, we obtain the following Hamiltonian

in the position representation: Ĥ ¼ �i@v�̂ � r þ VðrÞ�̂z,
where �̂ ¼ ð�̂x; �̂yÞ and �̂z are Pauli matrices. The

Hamiltonian Ĥ acts on the two-component spinor wave
function c ðrÞ ¼ ½c 1; c 2�T and it has eigenvalue E, i.e.,
½�i@v�̂ � r þ VðrÞ�̂z�c ðrÞ ¼ Ec ðrÞ. Some basic proper-
ties of the Dirac equation are the following. First, the
confinement condition of imposing infinite mass outside
D naturally takes into account the Klein paradox for rela-
tivistic quantum particles. Second, the reduced spatial
dimension and confinement break the time-reversal sym-

metry of Ĥ, namely, ½T̂; Ĥ� � 0, where T̂ ¼ i�yK̂ and K̂

denotes the complex conjugate. Third, for V ¼ 0 in the
Dirac equation, there exist plane-wave solutions whose
positive-energy part has the following form:

c kðrÞ ¼ 1ffiffiffi
2

p
exp

�
�i �2

�

exp
�
i �2

�
0
B@

1
CA expðik�rÞ; (1)

where k is a wave vector that makes an angle � with the x
axis.

To obtain solutions of the Dirac equation, a proper treat-
ment of the boundary condition is necessary. Letting the
outward unit normal at s be nðsÞ ¼ ½cosð�Þ; sinð�Þ�
(� being the angle with the x axis, see Fig. 1), making

use of the Hermiticity of Ĥ, and defining j ¼ vc y�̂c as
the local relativistic current, we get the vanishing current
condition j�n ¼ 0 for any point s. Requiring the outward
current to be zero cannot fix the boundary condition
uniquely but it entails Re½expði�Þc 1=c 2� ¼ 0 for all
points s. Using the boundary potential as in Ref. [8],

we can obtain the complete boundary condition:
c 2=c 1 ¼ i exp½i�ðsÞ�.
Consider chaotic billiards with analytic boundaries. An

elementary observation [9] is that, while the Dirac equation
together with the boundary condition are generally not
separable in the Cartesian coordinates, for circular
domains analytic solutions can be written down in terms
of both eigenvalues and the eigenstate f�lm; c lmðr; �Þ;
l ¼ 0;�1;�2; . . . ; m ¼ 1; 2; . . .g (see the Supplemental
Material [10]). Thereby, given a closed domain with ana-
lytic boundary, if a proper conformal mapping can be
identified to transfer the domain into a circle, solutions
can be explicitly obtained.
The billiard domain D can be defined as a conformal

transformation of the unit disk in the w plane, as shown in
Fig. 1; i.e., uðx; yÞ þ ivðx; yÞ ¼ wðzÞ � wðrei�Þ (for r 2
½0; 1�), where wðzÞ is an analytic function with a nonvan-
ishing derivative in D. The boundary can be defined para-
metrically by u ¼ Re½wðei�Þ�, v ¼ Im½wðei�Þ�. The basic
problem is then to solve the following stationary Dirac
equation: �i�̂ � ruv� ¼ k�, together with the boundary
condition�2=�1j@D ¼ iei�, where�1 and�2 are the two

components of the spinor wave function �. When being
acted upon by the operator �i�̂ � ruv, the Dirac equation
becomes ��uv1� ¼ k2�. Using the conformal mapping
� ¼ jdw=dzj2�uv to transform the Dirac equation into the
unit disk in the z plane, together with the definition
�0ðrÞ ¼ �ðu; vÞ, we obtain the following form of the
Dirac equation in the polar coordinates: ��0 þ
k2Tðr;�Þ�0 ¼ 0, where Tðr; �Þ ¼ jdw=dzj2. To solve
this equation, we expand �0 in terms of eigenfunctions
of the unit disk: �0ðr;�Þ ¼ P1

l¼�1
P1

m¼1 clmc lmðr; �Þ,
where clm are the expansion coefficients. Substituting
this into the Dirac equation, we have �lm=k

2 �P
l0m0Mlml0m0�l0m0 ¼ 0, where �lm ¼ �lmclm and

Mlml0m0 ¼ Nl0m0Nlm

�l0m0�lm

Z 2�

0
d� expfiðl0 � lÞ�g

�
Z 1

0
drTðr;�ÞrfJlð�lmrÞJl0 ð�l0m0rÞ

þ Jlþ1ð�lmrÞJl0þ1ð�l0m0rÞg: (2)

FIG. 1 (color online). Conformal transformation from the unit
disk in z ¼ xþ iy (z plane) to the billiard domain D in w ¼
uþ iv (w plane). The boundary is generated by the mapping
function Eq. (3) with parameter � ¼ 0:49.
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Once the eigenvalues 	n and eigenvectors � of the matrix
(Mlml0m0) have been obtained, we get the complete solutions
of the Dirac equation through the relations kn ¼ 1=

ffiffiffiffiffiffi
	n

p
and

clm ¼ �lm=�lm. A practical limitation is that, in actual
computations, a truncated basis fc lmðr; �Þg, lmin � l �
lmax, 1 � m � mmax, is used. Thus, extremely high energy
levels and the associated eigenstates cannot be determined
accurately. Nonetheless, our conformal-mapping-based
method can yield an unprecedentedly large number of
energy levels and the corresponding eigenstates, e.g., a basis
of the size of 40 000 is used which yields about 15 000
eigenstates with high accuracy for the following analysis.

To demonstrate the working of our conformal-mapping-
based method to calculate eigenenergies and eigenstates of
the Dirac equation, we choose the following complex
function wðzÞ as a quadratic conformal map,

wðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2

p ðzþ �z2Þ; � 2
�
0;
1

2

�
; (3)

to determine the shape of the billiard in which a massless
fermion is confined. For � ¼ 0:49, a previous work on the
classical dynamics of the billiard [11] demonstrated the
presence of chaos. The quadratic conformal map also has
the advantage of amenability to analytic treatment where,
in particular, the� integration in Eq. (2) becomes straight-
forward and the matrix Mlml0m0 becomes nearly diagonal
in l. Comparison of the energy levels calculated by our
conformal-mapping method with those from the boundary-
integral method [8] reveals a remarkably excellent agree-
ment. Further validation of our method can be established
by calculating and analyzing the universal behaviors of the
various level-spacing statistics in chaotic billiards (see the
Supplemental Material [10]).

We now present the reasoning and calculations that lead
to the discovery of chiral scars. After examining a large
number of relativistic quantum scars for massless Dirac
fermion in chaotic billiards, we notice that a certain scar-
ring pattern, once having appeared, tends to reappear at a
different energy value. This can be understood by using
semiclassical theory [12], which states that two repetitive
scars associated with the same classical periodic orbit can
occur when the action difference satisfies j�Sj ¼ 2�n@
(n ¼ 1; 2; . . . ), where S ¼ H

pdq ¼ @kL and L is the

length of a given periodic orbit. It can be inferred that, if
one scar already appears, say, at k0, the eigenfunctions at
the wave number kn ¼ k0 � n
k will most likely scar,
where 
k ¼ 2�=L. We define

�ðnÞ ¼ jkn � k0j

k

�
�jkn � k0j


k

�
; (4)

where [x] denotes the largest integer less than x. According
to the semiclassical theory for nonrelativistic quantum sys-
tems, the quantity �, by its definition, should exhibit only
two distinct values: either close to 0 or 1. To calculate the
value of �, some key characteristics of the corresponding

scars are needed. Table I lists some of the key features of the
calculated scars. Using the data of the most typical types of
scars, i.e., scar types 2, 3, 4, and 5 in Table I, we calculate
their values of �ðnÞ from Eq. (4). Figures 2(a)–2(l)
show the results. We see that, for scar types 2 and 4, �ðnÞ
exhibits the two values, i.e., 0 and 1, as can be anticipated
from the semiclassical theory. However, for scar types 3 and
5,� can attain the additional value of 1=2. This implies that,
for this type of scar, the conventional semiclassical theory
has to be modified.
The origin of the type of ‘‘abnormal’’ scars that do not

obey the conventional semiclassical quantization rules can
be understood by exploring the chirality for massless Dirac
fermions and the associated phase changes. In particular, for
a classical periodic orbit, the chirality corresponds to the
cumulative effect of reflections at the billiard wall. Consider
one pair of orbits that close on themselves after N bounces
but with opposite orientation, as shown schematically in
Fig. 3. Based on the plane-wave description in Eq. (1), after
traversing the orbit once, the associated phase change is
� ¼ 1

2 ð�N � �0Þ ¼ ��, where � is an integer, and the

total rotation (�N � �0) can be obtained by the reflection
law �n ¼ �þ 2�� �n�1 for n ¼ 1; 2; . . . ; N (Fig. 1).
Define �þ ��� ¼ ð�þ ���Þ� as the difference in
the phase changes between the pair of þ and � orbits. It
was shown by Berry and Mondragon [8] that �þ ��� ¼
2�þ� for even N and �þ ��� ¼ � for odd N. Since
chirality corresponds to the situation of (�þ ���) being
odd, where the two orbits in the pair enclose themselves
with an opposite sign change, the orbit with an even number
of bounces is not chiral but the orbit with an odd number of
bounces is. Chirality can have a remarkable effect on scar-
ring. To quantify this, we define an effective periodic-orbit
length L� ¼ �L, where L is the original length of the
periodic orbit and � is a correctional factor. The nonchiral
orbits with an even number of bounces correspond to � ¼ 1.
However, the chiral orbits correspond to � ¼ 2. This means
that, for chiral orbits, the quantum states as determined by
the Dirac equation return to themselves after two successive
circulations along the classical orbit. When the modified
length is used in the semiclassical theory for type-3 scars,
the values of� for all scars become concentrated on 0 and 1.

TABLE I. Characteristics of the relativistic quantum scars.

Scar indexa L 
k k0 Collected number

2 4.2425 1.4810 167.3225 104
4-I 7.5385 0.8335 219.8747 73

4-II 5.7993 1.0843 152.2197 57

3 5.3764 1.1687 217.0473 104
5-I 8.4725 0.7416 189.2712 18

5-II 9.7321 0.6456 169.0422 12

aThe relativistic quantum scars are labeled as n, the period of the
corresponding classical periodic orbit, if no other configurations
exist. For orbits of the same period but with different configu-
rations, Roman numerals are used.
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In summary, we have developed an analytic method
based on conformal mapping to solve the massless Dirac
equation in a broad class of closed chaotic domains.
The advantage is that significantly more eigenstates can
be calculated to high accuracy as compared with the pre-
vious boundary-integral or finite-difference methods.
Empowered by our method, we have found a new class
of relativistic quantum scars, chiral scars whose quantum

phases return to their original values only after two circu-
lations around the underlying classical unstable periodic
orbits. The physical origin of chiral scars can be attributed
to chirality of massless Dirac fermions coupled with the
particular geometry of the underlying periodic orbit. Such
scars are uniquely relativistic quantum scars and find no
counterparts in nonrelativistic quantum systems.
This work was supported by NSFC (National Science

Foundation of China) under Grant No. 11005053 and
No. 11135001. L. H. and Y.C. L. were supported by
AFOSR under Grant No. FA9550-12-1-0095 and by
ONR under Grant No. N00014-08-1-0627.
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FIG. 3 (color online). Illustration of a pair of orbits with
opposite orientations.

FIG. 2 (color online). (a)–(c) show the energy levels Em versus the sequence number m for the scar types 2, 4-I, and 4-II in Table I,
respectively. (d)–(f) are � versusm calculated from Eq. (4), where the relevant data are from (a)–(c), respectively. Similarly, results for
the scar types 3, 5-I, and 5-II are shown in (g)–(l).
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325 (1990); R. Blümel, I. H. Davidson, W. P. Reinhardt, H.
Lin, and M. Sharnoff, Phys. Rev. A 45, 2641 (1992); M.
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