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Chiral scars in chaotic Dirac fermion systems

1 Analytic solution of the Dirac equation in circular domain

The Hamiltonian for a massless spin-half particle in a finite domain D in the plane rrr = (x,y) is given by

Ĥ =−ih̄vσ̂ ·∇+V (rrr)σ̂z, (1)

where σ̂ = (σ̂x, σ̂y) and σ̂z are Pauli matrices, and V (rrr) is the infinite-mass confinement potential:

V (rrr) =
{

0 rrr ∈ D,
∞ rrr outside of D

(2)

In the polar coordinates rrr = (r,ϕ) for closed circular domain with radium r0, the Dirac equation is

−i

(
0 exp(−iϕ)( ∂

∂r −
i
r

∂
∂ϕ)

exp(iϕ)( ∂
∂r +

i
r

∂
∂ϕ) 0

)
ψ(rrr) = µψ(rrr), (3)

where µ ≡ E/h̄c. For a circular boundary, we have [Ĵz, Ĥ] = 0, where Ĵz =−i∂ϕ+1/2σ̂z is the total angular-
momentum operator. In general, the solutions of Eq. (3) can be expressed as [1]

ψ(rrr) =
(

C1Zl(µr)exp(ilϕ)
C2Zl+1(µr)exp(i(l +1)ϕ)

)
, (4)

where l = 0,±1,±2, ...., µ > 0 and Zl is a Bessel function. Substituting Eq. (4) into Eq. (3) and making use
of the recursion relations of Bessel functions: Z′

l(x)± lZl(x)/x =±Zl∓1(x), we obtain

C2

C1
= i. (5)

Since a physical solution must be finite at the origin, we have

ψlm(r,ϕ) = Nlm exp(ilϕ)
(

Jl(µlmr)
iexp(iϕ)Jl+1(µlmr)

)
, (6)

where the normalization factor

Nlm =
1√

2π
∫ 1

0 drr
[
J2

l (µlmr)+ J2
l+1(µlmr)

] , (7)

and without loss of generality, we have assumed that the radius of the circular domain is unity: r0 = 1, and
the eigenvalues µlm can be determined by the boundary condition: Jl(µlm) = Jl+1(µlm). The eigenfunctions
satisfy ∫∫

D
drrrψ†

l′m′(rrr)ψlm(rrr) = δll′δmm′ ,

where the set {ψlm}, under the zero-flux boundary condition, forms an orthonormal complete basis for the
operator −iσ̂ ·∇ and its positive integral power [−iσ̂ ·∇]n, where n = 1,2, · · · .
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Figure 1: (Color online) Comparison of eigenenergies calculated by using our conformal-mapping method (CMM)
and the boundary-integral method (BIM) for a cardioid-shaped Dirac billiard whose classical dynamics is chaotic.
Show are the lowest 81 positive eigenenergy levels.

2 Method validation: universal level-spacing statistics in chaotic billiard

Figure 1 shows, for a chaotic billiard (β = 0.49), the lowest 81 energy levels calculated by two methods:
our conformal-mapping based method (CMM) and the boundary-integral method (BIM) due to Berry and
Mondragon [2]. We observe a remarkably excellent agreement.

To further validate our method, we calculate the level-spacing statistics, which are believed to exhibit
universal behaviors for quantum systems, non-relativistic [3, 4] or relativistic [5], which exhibit chaos in
the classical limit. In particular, let {kn|n = 0,1,2, · · ·} denote the non-decreasing positive wave-number
sequence of a quantum billiard system. According to the Weyl formula [3, 4], the smoothed wave-vector
staircase function is given by

⟨N (k)⟩= Ak2

4π
+ γ

Lk
4π

+ · · · , (8)

where A and L are the area and perimeter of the billiard, respectively, γ = −1 (or 1) for Dirichlet (or
Neumann) boundary conditions, and γ = 0 for massless Dirac fermion billiards [2]. Define xn ≡ ⟨N (kn)⟩
as the unfolded spectra, which is scaled in units of the mean-level spacing. Let Sn = xn+1 − xn be the
nearest-neighbor spacing and P(S) be the probability distribution of S [i.e., P(S)dS is the probability that
a spacing S lies between S and S+ dS]. In the quantum-chaos literature, it has been known [6, 3, 4] that,
for classically integrable systems, the level spacing distribution is Poisson: P(S) ∼ exp(−S). For classi-
cally chaotic systems that possess time-reversal symmetry but no geometric symmetry, the level-spacing
distributions follow the GOE (Gaussian orthogonal ensemble) statistics: P(S) = (π/2)Sexp(−πS2/4). For
chaotic systems without time-reversal symmetry, P(S) obeys the GUE (Gaussian unitary ensemble) statis-
tics: P(S) = (32/π)S2 exp(−4S2/π). Given P(S), the corresponding cumulative level-spacing distribution
can be obtained from I(S) =

∫ S
0 dS′P(S′). Different types of level-spacing statistics can also be distinguished

by using the ∆3 statistic [3, 4], which is used to measure long-range spectral fluctuations and is defined as

∆3(L) =
⟨

min(a,b)L−1
∫ L/2

−L/2
dx{N(x0 + x)−ax−b}2

⟩
, (9)

where the average is over x0.
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Figure 2: (Color online) Level-spacing statistics for an integrable (circular) Dirac billiard (β = 0), where the left
and right panels are the unfolded level-spacing distribution P(S) and the cumulative level-spacing distribution I(S),
respectively. In both panels, numerical data are represented by red line and theoretical distribution curves for Poisson,
GOE, and GUE statistics are denoted by the green dash-dotted, blue solid, and cyan dashed curves, respectively.

Utilizing our conformal-mapping method, we are able to calculate a large number of energy levels (on
the order of 104) for Dirac billiards. Figures 2 and 3 show the statistics of 15,000 energy levels for an
integrable (β = 0) and a chaotic (β = 0.49) billiard, respectively. We see from the various quantities plotted
that the statistics is Poisson for the integrable case but GOE for the chaotic billiard. Note that for the Dirac
billiard, the time reversal symmetry is broken, thus one may expect GUE statistics instead of GOE for the
chaotic case. However, since the shape of our chaotic billiard has a reflection symmetry, the combination of
time-reversal and reflection is preserved, leading to GOE. If the shape has no geometric symmetry, then the
resulting level spacing distribution will be GUE. This has been validated numerically by examining level
spacing statistics using our method for the Africa billiard employed in Ref. [2].

We emphasize that accurate calculation of such large number of energy levels is unprecedented because
no previously known method was able to achieve that.
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Figure 3: (Color online)
Level-spacing statistics for
the cardioid-shaped chaotic
Dirac billiard (β = 0.49). (a)
Wavevector staircase func-
tion N (k) for the lowest
15,000 levels (circles) ver-
sus the wavenumber k. The
red curve through the circles
is ⟨N (k)⟩ = Ak2/(4π) −
1/12. (b) Staircase func-
tion N (k) as a function
of Ak2/(4π) (solid curve).
(c) Magnification of part
of (b) containing the low-
est 49 levels. (d) Unfold-
ed level-spacing distribution
P(S). (e) Cumulative level-
spacing distribution I(S). (f)
Spectral rigidity ∆3(L). In
(d)-(f), green dash-dotted,
red solid, and cyan dashed
lines denote theoretical dis-
tribution curves for Poisson,
GOE, and GUE statistics, re-
spectively.
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