
PHYSICAL REVIEW E 87, 052808 (2013)

Controlling collective dynamics in complex minority-game resource-allocation systems
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Resource allocation takes place in various kinds of real-world complex systems, such as traffic systems,
social services institutions or organizations, or even ecosystems. The fundamental principle underlying complex
resource-allocation dynamics is Boolean interactions associated with minority games, as resources are generally
limited and agents tend to choose the least used resource based on available information. A common but harmful
dynamical behavior in resource-allocation systems is herding, where there are time intervals during which a
large majority of the agents compete for a few resources, leaving many other resources unused. Accompanying
the herd behavior is thus strong fluctuations with time in the number of resources being used. In this paper, we
articulate and establish that an intuitive control strategy, namely pinning control, is effective at harnessing the
herding dynamics. In particular, by fixing the choices of resources for a few agents while leaving the majority
of the agents free, herding can be eliminated completely. Our investigation is systematic in that we consider
random and targeted pinning and a variety of network topologies, and we carry out a comprehensive analysis
in the framework of mean-field theory to understand the working of control. The basic philosophy is then that,
when a few agents waive their freedom to choose resources by receiving sufficient incentives, the majority of
the agents benefit in that they will make fair, efficient, and effective use of the available resources. Our work
represents a basic and general framework to address the fundamental issue of fluctuations in complex dynamical
systems with significant applications to social, economical, and political systems.
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I. INTRODUCTION

Resource allocation is an essential process in many kinds
of real-world systems, such as traffic systems (e.g., Internet,
urban traffic grids, and rail and flight networks), social
service institutions or organizations (e.g., schools, marts,
banks, and financial markets), and ecosystems of various sizes.
The underlying system typically contains a large number of
interacting components or agents on a hierarchy of scales,
and there are multiple resources available for each agent. As a
result, complex behaviors are expected to emerge ubiquitously
in the dynamical process of resource allocation. In a typical
situation, agents or individuals possess similar capabilities,
who share the common goal of pursuing as high payoffs
as possible. To exploit the resource allocation dynamics in
multi-agent systems to reduce the likelihood of or even to
eliminate harmful or catastrophic behaviors is of significant
interest.

A general framework to address and understand the
extremely rich and complex dynamics of many real-world
systems is complex adaptive systems [1–3]. Especially suitable
for resource-allocation dynamics is the paradigm of minority-
game (MG) dynamics [4], introduced by Challet and Zhang to
address the classic El Farol bar-attendance problem conceived
by Arthur [5]. In an MG system, each agent makes choice (+1
or −1, e.g., to attend a bar or to stay at home) based on available
global information in the memory such as the winning choice
in a previous round of interaction. In particular, the agents who
choose the minority strategy are rewarded, and those belonging
to the majority group lose due to limited resources. The MG
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dynamics has been studied extensively in the last decade or
so [6–24].

There are two basic and related approaches to the MG
problem. One is based on the mean-field approximation, which
was mainly developed by the statistical-physics community to
relate the MG problem to those associated with nonequilibrium
phase transitions [25–27]. Another approach is based on
Boolean-game (BG) dynamics, where for any agent, detailed
information about agents that it interacts with is assumed to
be available, and the agent responds accordingly [28–33]. One
interesting result was that coordination can emerge from local
interactions in BG and, as a result, the system as a whole
can achieve “better than random” performance in terms of
utilization of resources.

A common behavior in many social, economical and
ecosystems is herding, where many agents take on the same
action [34]. In the past, the herd behavior has been extensively
studied and recognized to be one important factor contributing
to the origin of complexity, which can lead to enhanced
fluctuations and significant reduction in the payoff of the
entire system [11,35–37]. For the resource-allocation problem,
the desired performance is that all the resources are used
efficiently. When herding occurs, many agents may go after
a very limited number of resources, causing crowding in
the use of these resources, while many other resources are
significantly underused. The herd behavior is thus regarded
as harmful for resource-distribution systems. An outstanding
issue is whether effective control strategy can be developed to
prevent herding in multi-agent systems with competition for
multiple resources.

In this paper, we investigate a realistically feasible control
approach to harnessing herding in complex resource-allocation
systems, pinning control in the framework of Boolean
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dynamics. In particular, we show that even a small amount
of pinning can effectively prevent or greatly mitigate the herd
behavior in resource-allocation systems. The basic idea of
pinning control is to select certain individuals and pin (or
fix) their options to access resources by certain incentives,
e.g., compensations or rewards. This is similar in spirit to
the strategy of immunization to prevent the wide spread of
disease or virus in complex social or technological networked
systems [38–42], where certain individuals are preferred to
be immunized to the virus of concern. However, as we
show analytically and demonstrate numerically in this work,
the dynamical mechanism of pinning control in resource-
allocation systems is quite different from that underlying
the immunization problem in complex networks. In general,
we anticipate pinning control to be an effective strategy to
eliminate or suppress harmful herd behaviors in complex
systems describable by BG dynamics.

In Sec. II, we describe our BG model under pinning control.
In Sec. III, we present the conventional mean-field theory to
analyze the dynamics of free systems in the absence of control.
In Sec. IV, we point out the difficulties associated with the
conventional mean-field theory and develop a modified mean-
field theory to understand the system behavior under pinning
control. Different pinning schemes and network topologies are
considered. In Sec. V, we offer concluding remarks and discuss
the relevance of our results to real-world complex systems.

II. MODEL

A. Boolean-game dynamics

Similar to the MG dynamics, there are two alternative
resources: r = +1 and −1 in a BG dynamical system, and only
the agents belonging to the global minority group are rewarded
by +1. As a result, the system profit is equal to the number of
agents in the global-minority group. In particular, we consider
a BG dynamical system composed of N agents competing
for the two resources, both of which have accommodating
capacity N/2. If the number of agents choosing one given r

(+1 or −1) is smaller than N/2, then it is the global-minority
group, and the system profit is equal to the number of agents
in this group.

A unique feature of the BG dynamical system, in contrast to
the original MG dynamical system, is that agents make use of
only local information from immediate neighbors in making
their choice. The neighborhood of agents is determined by the
connecting structure of the underlying network. Each agent
receives inputs from its neighboring agents and updates its state
according to the Boolean function, a function that generates
either +1 and −1 from the inputs [30]. Here, to be concrete,
we assume that, an agent i who has ki neighbors, will choose
+1 at time step t + 1 with the probability

Pi→⊕ = nt
−/(nt

+ + nt
−) = nt

−/ki, (1)

and −1 with the probability Pi→� = 1 − Pi→⊕. Here, nt
+ and

nt
−, respectively, are the numbers of +1 and −1 neighbors of

agent i at time step t . Notably, an agent in the BG dynamics
attempts to take on a global-minority choice without any global
information (e.g., previous global-minority choice), but basing
its choice on the observation of neighbors’ previous behavior.

The dynamical variable of the BG system is At , the number
of +1 agents in the system at time step t . Apparently, the
optimal solution for the resource allocation is At = N/2.
A measure of the BG system’s performance is the variance
of At :

σ 2 = 1

T

T∑
t=1

(
At − N

2

)2

, (2)

which characterizes the statistical deviation from the optimal
resource utilization over time interval T [31]. A smaller value
of σ 2 corresponds to more optimal resource allocation and
thus leads to higher efficiency. A general phenomenon in the
BG system is that, as agents strive to join the minority group,
harmful herd behavior can emerge, associated with which a
large oscillation in At takes place. Our goal is to develop an
efficient control strategy to suppress or eliminate the harmful
herd behavior.

B. Pinning control scheme

Our basic idea to control herd behavior is to “pin” certain
agents to freeze their states so as to realize optimal resource
allocation, following the general principle of pinning control
of complex dynamical networks [43–49]. In our approach, the
fraction of agents to be pinned (fixed) is ρpin, and the fraction
of unpinned or free nodes is ρfree = 1 − ρpin. The numbers
of free agents and pinned agents are Nf = Nρfree and Np =
Nρpin, respectively. The free agents make choices according to
local information, while the inputs from the pinned agents are
fixed.

Our pinning scheme has two features: order of pinning
and pinning pattern. First, the order of pinning denotes the
way certain agents are chosen for pinning. We consider two
methods: random pinning (RP), where a number of agents are
randomly chosen to be pinned, and degree-preferential pinning
(DPP) in which agents are selected for pinning according to
their connectivity or degree in the underlying network. In
particular, agents with higher degrees are more likely to be
pinned. These two methods thus correspond to random error
and intentional attack in the literature on robustness of network
systems [50–53]. The second feature, pinning pattern, defines
the particular states that the selected agents are pinned to. Here
we define “All +1” (or “All −1”) as the pattern where all the
pinned agents are forced to choose +1 (or −1), and “Half
±1” as the situation where the agents are to be pinned at +1
and −1 alternately. The effect of pinning also depends on the
network topology. We consider four representative network
topologies: all-to-all coupling, random [54], scale-free [55],
and assortatively mixed scale-free networks [56].

To facilitate a comparative analysis between the free
and the pinned systems, we define a modified cumulative
variance as

σ 2 = 1

T

∑T
t=1

(
At − N

2

)2

1 − ρpin
, (3)

so that the fluctuations of the systems are comparable for
ρpin ∈ [0,1).
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C. Simulation results

Simulations are carried out for resource-allocation dynam-
ics on the following types of networks: fully connected net-
works (FCN), ER random networks [54], scale-free networks
(SFN) [55], and under the two pinning schemes (RP or DPP).
The states of the pinned agents are set according to “Half ±1”.
For all the free agents, +1 and −1 are uniformly distributed
initially. The evolutionary time is set to be T = 104. As an
example, Fig. 1 shows, for FCN and SFN, a time series of At

FIG. 1. (Color online) For (a) FCN and (c) SFN network, time
series At for ρpin = 0,0.01, 0.1, and 0.2. The network size is N = 600
and average degree is 〈k〉 = 6. The pinning rule is DPP with “Half
±1.” (b,d) The probability density distributions P (At ) for ρpin = 0.01,
0.1, and 0.2 calculated from time series At of length T = 104.

for different pinning fraction ρpin, where the pinning scheme
is DPP under the rule “Half ±1.” We observe that, in the
absence of pinning control (ρpin = 0), herd behavior prevails
in the free system, associated with which there are oscillations
with extremely large variances σ 2. Such a fluctuation state in
which At oscillates between 0 and N is in fact an absorbing
state of the system, in which the resource allocation is
extremely unreasonable and inefficient. As pinning control
is turned on, even when only a few agents are pinned, e.g.,
ρpin = 0.01, the fluctuations are weakened considerably and
the harmful absorbing state no long exists. Figure 1 also shows
the corresponding distributions of At for different cases. The
general numerical observation is that pinning control is highly
effective at suppressing or even eliminating herd behavior.

III. MEAN-FIELD THEORY OF FREE SYSTEMS

We aim to develop a comprehensive theoretical understand-
ing of the pinning control method to harness the herd behavior.
To gain insight, we first derive an analytic theory for free
systems.

In the mean-field framework, agents in different states are
well mixed. At time step t , An individual i of degree ki

has on average nt
+ = kiρ

t
⊕ neighbors that adopt +1, where

ρt
⊕ = At/N is the density of +1 agents in the whole system.

According to the updating rule Eq. (1), i will choose +1 at the
next time step t + 1 with the probability

Pi→⊕ = ki(1 − ρt
⊕)/ki = 1 − ρt

⊕. (4)

The probability for an agent to choose −1 is Pi→� = ρt
⊕. The

conditional transition probability for At+1 agents to select +1
at the next time step t + 1 obeys the binomial distribution
given by

P (At+1|At ) =
(

N

At+1

)
(Pi→⊕)At+1 (1 − Pi→⊕)N−At+1 . (5)

The expectation value of At+1 is E(At+1) = NPi→⊕, and the
variance of At+1 about E(At+1) can be explicitly written as
δ2 = NPi→⊕(1 − Pi→⊕). From Eq. (4), we have

E(At+1) = N (1 − ρt
⊕) = N − At . (6)

The expected difference of At+1 from the optimal solution
N/2 is

�At+1 = E(At+1) − N/2 = N − At − N/2 = −�At .

The relation of the expected departures from the optimal state
for two successive time steps is thus

|�At+1| = |�At |. (7)

If a large event takes place initially in the system (e.g.,
At=0 � N/2, or At=0 	 N/2), the departure from N/2 will
not decrease, so large oscillations will persist with the state
of the winning side reversing at each time step. In fact, At

is a Markov-chain process with successive random number
drawn from Eq. (5). As soon as At reaches zero or N in
the stochastic process, At will oscillate between 0 and N

continuously, landing the free system in an absorbing state.
Herd behavior is thus prevalent in the free system, a hallmark
of which is large oscillations in At .
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A key quantity in the stochastic description of the resource-
allocation process is the distribution P (At ), the probability
that At agents adopt +1 at time t . Since At fluctuates
about N/2, the choice +1 acts as the global majority and
minority choice alternately. The stable distribution thus obeys
P (At+2l) = P (At ) and P (At+2l+1) = P (At+1), for l ∈ N.

According to Eq. (5), the conditional transition probability
for two successive time steps t and t + 1, we have the following
two-step conditional probability, or the transition probability:

T (At+2,At ) ≡ P (At+2|At ) =
∑
At+1

P (At+2|At+1)P (At+1|At ).

(8)

To simplify notation, we set At = i, At+1 = k, and At+2 = j ,
with i,k,j ∈ [0,N ]. The conditional transition probability of
the free system is thus given by

T (j,i) ≡ P (j,t + 2|i,t)
=

∑
k

P (j,t + 2|k,t + 1)P (k,t + 1|i,t)

=
∑

k

[(
N

j

)(
1 − k

N

)j (
k

N

)N−j
]

×
[(

N

k

)(
1 − i

N

)k (
i

N

)N−k
]

.

The resulting balance equation governing the dynamics of the
Markov chain reads

P (j ) =
∑

i

P (j,t + 2|i,t)P (i) =
∑

i

T (j,i)P (i), (9)

which is in fact a discrete-time master equation. For large t , the
system evolves into the stable state defined by P (i) = P (j ).
Equation (9) can be written in the matrix form as

P (A) = TP (A), (10)

where T is an N × N matrix with element Tji = T (j,i). The
stable distribution of At is then P1(A), the eigenvector of
matrix T associated with eigenvalue λ = 1. For the free system,
we thus obtain P (A) = δA,0 or δA,N with equal probability
on average, where the exact value of P (A) depends on the
initial condition and the number of time steps (even or odd).
This explains the simulation results in Fig. 1 for the case of
ρpin = 0, where At = 0,N,0, . . . , is an absorbing state and
thus is the stable state of the free system. Once we obtain the
stable distribution P (A) analytically from Eq. (10), we can
calculate the cumulative variance [Eq. (3)] of the system as

σ 2 = (At − N/2)2

1 − ρpin
=

∑N
A=0 P (A)(A − N/2)2

1 − ρpin
. (11)

The fluctuation of the free system is thus given by σ 2 = N2/4.
While we have considered the resource-allocation dynam-

ics in networked systems in which agents interact with each
other without any restriction, the discrete-time master equation
Eq. (10) can be used to analyze and understand oscillatory
dynamics in general complex adaptive systems.

IV. MEAN-FIELD ANALYSIS OF SYSTEMS UNDER
PINNING CONTROL

We now develop a theory to understand the working of
pinning control in suppressing or eliminating herd behavior.
The setting is a networked system of N agents in which a
fraction ρpin of the agents are not allowed to choose resources
freely. Without loss of generality, we focus on the “Half ±1”
pinning rule.

A. Mean-field analysis for well-mixed free and pinned agents

We first consider the case of random pinning. Under the
assumption that the dynamical properties of pinned and free
nodes are identical, the interactions among them are well
mixed. Consequently, the probability for the neighbor of one
given free agent to be pinned is

Pp = Np/N = ρpin, (12)

where Np is the number of pinned agents in the system. For
a free agent i with degree ki , the average numbers of pinned
and free neighbors, denoted by np and nf , respectively, are

nf = (1 − Pp)ki = (1 − ρpin)ki,
(13)

np = Ppki = ρpinki,

where half of a pinned neighbor adopt +1, and the other
half adopt −1. According to the updating rule Eq. (1), the
probability for i to choose +1 at the next time step t + 1 is

Pi→⊕ = nf (1 − ρ
t,f
⊕ ) + np/2

ki

= (1 − ρpin)(1 − ρ
t,f
⊕ ) + ρpin

2
, (14)

where ρ
t,f
⊕ stands for the density of free agents who choose +1,

and ρt
⊕ is the density of +1 agents in the whole system. When

ρpin = 0, ρ
t,f
⊕ is reduced to ρt

⊕, and we have Pi→⊕ = 1 − ρt
⊕,

which is reduced to the result for the free system, that is,
Eq. (4).

Using a similar reasoning that leads to the conditional
transition probability of At+1 for the free system as in Eq. (5),
we obtain the corresponding result for the pinning system

P (At+1|At ) = P
(
A

f

t+1|Af
t

)
=

(
Nf

A
f

t+1

)
(Pi→⊕)A

f

t+1 (1 − Pi→⊕)Nf −A
f

t+1 , (15)

where At ′ and A
f

t ′ are related by At ′ = A
f

t ′ + Np/2, A
f

t ′ and
Np/2 are the numbers of free +1 agents and pinned +1 agents
in the system at time t ′, respectively. The deviation of At from
the optimal state N/2 is mainly due to the fluctuation of the free
agents. From the binomial distribution, we get the expectation
number of the free +1 agents at time t + 1, and the variance
about the expectation number as

E
(
A

f

t+1

) = Nf Pi→⊕,
(16)

δ2
f = Nf Pi→⊕(1 − Pi→⊕).
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The expectation number of +1 agents (including the pinned
+1 agents) is

E(At+1) = E
(
A

f

t+1

) + Np/2, (17)

which can be written as a function of ρpin and At

E(At+1) = (1 − ρpin)(N − At ) + ρpin
N

2
, (18)

= (N − At ) + ρpin

(
At − N

2

)
. (19)

From Eq. (19), we obtain the following expected difference
from N/2:

�At+1 = E(At+1) − N/2 = −(1 − ρpin)(At − N/2)

= −(1 − ρpin)�At. (20)

The relation between the expected deviations from the optimal
state N/2 for two successive time steps is then given by

|�At+1| = (1 − ρpin)|�At |. (21)

Comparing with the expected departure obtained in the free
system, as given by Eq. (7), we see that, once pinning is
implemented, the deviation from the optimal state decays by
the factor (1 − ρpin) at each time step and, consequently, the
oscillation of the system is suppressed. In case of large events,
pinning will make At to approach the equilibrium value N/2.

A stochastic analysis similar to that for the free system can
then be carried out for a pinning system. From Eqs. (8) and
(15), we can get the conditional transition probability from
time step t to t + 2 as

T (j,i)

≡ P (j,t + 2|i,t) =
∑

k

P (j,t + 2|k,t + 1)P (k,t + 1|i,t)

=
∑

k

{[(
Nf

j − 1
2Np

) (
1 − k

N

)j− 1
2 Np

(
k

N

)Nf −(j− 1
2 Np)

]

×
[(

Nf

k − 1
2Np

) (
1 − i

N

)k− 1
2 Np

(
i

N

)Nf −(k− 1
2 Np)

]}
,

(22)

where i,k,j ∈ [Np/2,N − Np/2], which denote At , At+1,
and At+2, respectively. Following the steps from Eqs. (9)
to (11) for a free system, we can derive formulas of P (Af )
and P (A) for the pinning system, based on the assumption
Eq. (12) that the pinned and free nodes are identical with
well-mixed interactions. Figure 2 shows the corresponding
results for different values of ρpin. We see that the stable
distribution P (A) has a Gaussian profile, with the expectation
value of E(A) = N/2, which should be compared with the
value P (A) = δA,0 or δA,N for the free system. This result
indicates that the harmful absorbing state associated with a
free system has essentially been eliminated even when only
a few agents are pinned. Representative numerical evidence
supporting this result is shown in Fig. 1 for FCN and SFN
with only 1% of the agents pinned.

From Eq. (11), we can calculate the variance σ 2 of the
system for different values of ρpin analytically, as shown by
the open circle marked “MF1” in Fig. 3. Simulation results for

FIG. 2. (Color online) Analytical results of the stable distribution
of (a) Af and (b) A for a system of N = 201 agents, from the
mean-field analysis under the assumption of well-mixed interactions
between the pinned and free agents, as given by Eq. (22). The graph
P (A) in (b) is on a logarithmic-normal plot.

FCN (open black square), SFN (solid triangle), and ER random
network (open triangle) under DPP (up triangle) or RP (down
triangle) and the “Half ±1” rule are also shown. We observe
that the variance σ 2 of the system decreases dramatically in
a power-law manner as pinning control is turned on, and the
agreement between the theoretical prediction and numerical
simulations for FCN is good. However, for the ER random
network and SFN, there is marked difference between the
theoretical and numerical results, especially for the DPP
scheme, indicating that the approach of mean-field, stochastic
type of analysis may not be adequate to account for the
behavior of the system under pinning control. In the following,
we shall develop a modified mean-field analysis to overcome
this difficulty.

B. Modified mean-field analysis

The assumption Eq. (12) in which free and pinned agents are
identical and well mixed may not be valid in general, especially
when the underlying network is heterogeneous, such as SFNs.
In such a case, the probability for a free node to contact with
a pinned node will deviate from ρpin, requiring modifications
to the conventional mean-field analysis.

1. Analysis of degree-preferential pinning on scale-free networks

We first discuss the DPP scheme on SFNs generated by
the classic preferential-attachment rule [55], with the degree
distribution given by P (k) = 2m2/k3, where m is the number
of edges each new node brings in as the system grows. The
average degree of the network is 〈k〉 = 2m, and the minimum
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FIG. 3. (Color online) Modified cumulative variance σ 2 [Eq. (3)]
as a function of ρpin from mean-field analysis (red circle marked by
“MF1”), where pinned and free nodes are well mixed as in Eq. (22).
Simulation results for FCN, SFN, and ER random network are also
shown, where all network size is N = 201, the pinning schemes are
RP and DPP under the “Half ±1” rule, the average degrees of SFN
and ER random networks are 〈k〉 = 6, and the number of network
realizations is 200. The graphs in (a) and (b) are on a logarithmic and
a logarithmic-linear scale, respectively.

degree is kmin = m. For the DPP scheme from large to small de-
gree, the density of pinned agents ρpin and the minimum degree
of pinned agents (denoted by k′) are related to each other as

ρpin =
∫ ∞

k′
P (k)dk, (23)

giving

k′ =
√

m2

ρpin
, (24)

which can be used to distinguish pinned and free agents in
terms of their degrees, i.e., an agent with k � k′ (or k < k′)
is pinned (or free). The total number of links in the whole
network, denoted by L, is

L = 1

2

∫ ∞

kmin

kNP (k)dk. (25)

The number of the so-called pinning-affected links Lpin and
that of free links Lfree can be defined, respectively, as

Lpin = 1

2

∫ ∞

k′
kNP (k)dk, (26)

Lfree = 1

2

∫ k′

kmin

kNP (k)dk, (27)

where Lpin + Lfree = L. From the fraction of pinning-affected
links, we have the following probability for one neighbor of
a given free agent to be a pinned agent:

Pp = Lpin/L. (28)

For a SFN under DPP, we have L = mN , Lpin = mN
√

ρpin,
and Lfree = mN (1 − √

ρpin) and, consequently, Pp = √
ρpin.

It should be noted that Eq. (28) differs from Eq. (12) in that
the former is expressed in terms of the pinning-affected links
but the latter is with respect to the fraction of pinned agents.
This difference underlies our modified mean-field analysis.

Utilizing Eq. (28), we can write the average numbers of the
free and pinned neighbors for a free agent i of degree ki as

nf = (1 − Pp)ki = (1 − √
ρpin)ki, (29)

np = Ppki = √
ρpin (30)

Similar to the analysis procedure from Eqs. (14) to (22),
we can obtain the corresponding results for SFNs with DPP
under the “Half ±1” rule. The probability for agent i to
choose +1 is

Pi→⊕ = nf (1 − ρ
t,f
⊕ ) + np/2

ki

= (1 − Pp)(1 − ρ
t,f
⊕ )

+Pp/2 = 1 − Pp

1 − ρpin
(1 − ρt

⊕)

+ Pp − ρpin

2(1 − ρpin)
≡ a(1 − ρt

⊕) + b. (31)

The expectation numbers of free +1 agents and all +1 agents
[E(Af

t+1) and E(At+1), respectively] can then be obtained from
Eqs. (16) and (17). The expected deviation of At from the
optimal state for two successive time steps is given by

|�At+1| = (1 − √
ρpin)|�At |. (32)

Furthermore, from Eqs. (15) and (31), we can get the
conditional transition probability from time step t to
t + 2 as

T (j,i)

≡ P (j,t + 2|i,t)=
∑

k

P (j,t + 2|k,t + 1)P (k,t + 1|i,t)

=
∑

k

⎧⎨
⎩

⎡
⎣(

Nf

j − 1
2Np

) (
Pp

2
+ Pf · Nf − k + Np

2

Nf

)j− 1
2 Np

×
(

Pp

2
+ Pf

k − Np

2

Nf

)Nf −(j− 1
2 Np)

⎤
⎦

×
⎡
⎣(

Nf

k − 1
2Np

) (
Pp

2
+ Pf · Nf − i + Np

2

Nf

)k− 1
2 Np

×
(

Pp

2
+ Pf

i − Np

2

Nf

)Nf −(k− 1
2 Np)

⎤
⎦

⎫⎬
⎭ , (33)

where i,k,j ∈ [Np/2,N − Np/2] are associated with At ,
At+1, and At+2, respectively, and Pf = 1 − Pp. Similar to
the analysis of free systems [Eqs. (10) and (11)], we obtain
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FIG. 4. (Color online) Modified cumulative variance σ 2 as a
function of ρpin as predicted by the mean-field analysis (red circle
marked by “MF1”), by our modified mean-field analysis (black square
marked by “MF2”), in comparison with the simulation results (blue
triangle). Note that “MF2” under RP scheme is the same as “MF1”
(see Sec. IV B3). Simulations are for (a) SFNs and (b) ER random
networks, all of average degree 6. Network size is N = 150 and the
pinning scheme is DPP under the “Half ±1” rule. The simulation
results are averaged over 1000 realizations.

the analytic results of P (A) and σ 2 of the pinning system in
terms of the fraction of pinning-affected links, as shown in
Fig. 4 [marked by “MF2 (DPP) on SFN”], together with the
corresponding simulation results [marked by “Simu.(DPP) on
SFN”]. For comparison, the result from the original mean-field
analysis (MF1) is also included. We see that our modified
mean-field analysis yields results that match more closely
those from simulations.

2. Degree-preferential pinning on random networks

The degree of ER random network [54] obeys the Poisson
distribution

P (k) = e−〈k〉〈k〉k
k!

. (34)

The relation between k′ and ρpin can then be written as

ρpin =
kmax∑

k=k′+1

P (k), (35)

where the maximum degree kmax for a network of size N can
be calculated by P (kmax) ≈ 1/N . The degree k′ for a given

ρpin can be calculated numerically. The quantities L, Lpin, and
Lfree are, respectively, given by

L = 1

2

∞∑
k=1

kNP (k) = 1

2

kmax∑
k=1

kNe−〈k〉〈k〉k
k!

, (36)

Lpin = 1

2

∞∑
k=k′+1

kNP (k) = 1

2

kmax∑
k=k′+1

kNe−〈k〉〈k〉k
k!

, (37)

Lfree = 1

2

k′∑
k=1

kNP (k) = 1

2

k′∑
k=1

kNe−〈k〉〈k〉k
k!

. (38)

Following a similar modified mean-field analysis for SFNs,
we can calculate k′ for a given value of ρpin. The quantities
Pp, Pi→⊕, T (j,i), the stable distribution P (A), and finally
σ 2 can then be obtained as a function of ρpin, as shown in
Fig. 4(b). We see that the modified mean-field analysis [marked
by “MF2 (DPP) on ER”] gives more accurate prediction about
the system behaviors.

3. Random pinning

For random pinning on a network of a given degree
distribution P (k), the number of pinning-affected links and
free links are

Lpin = 1

2

∫ ∞

kmin

kNρpinP (k)dk = ρpinL, (39)

Lfree = 1

2

∫ ∞

kmin

kN (1 − ρpin)P (k)dk = (1 − ρpin)L, (40)

respectively, where the number L of total links is given by
Eq. (25). In the RP process, the value of Lpin and Lfree are
independent of the degree distribution P (k). We thus have

Pp = Lpin/L = ρpin. (41)

Similar to the analysis of DPP on heterogeneous networks,
we can obtain nf and np and substitute them into Eq. (31)
to get Pi→⊕ = 1 − ρt

⊕. We see that the quantities Pp and
Pi→⊕ for RP are the same as those given by Eqs. (14) and
(31) from the idealized mean-field analysis, regardless of the
network structure. The reason is that, for RP, the pinned and
free nodes tend to mix well on the network, satisfying the
basic mean-field assumption. The relation between �At+1

and �At , the conditional transition probability T (j,i), and
the stable distribution P (A) are then identical to those given
by the idealized mean-field analysis [Eqs. (12) to (22)]. As a
consequence, the analytical results for random pinning from
the modified mean-field analysis [marked by “MF2 (RP)”]
are the same as those from the original mean-field analysis
[marked by “MF1”], as shown in Figs. 3 and 4.

V. CONCLUSION AND DISCUSSION

The collective behavior of herding can occur commonly in
complex resource-distribution systems, the hallmark of which
is strong and even extreme fluctuations in the usage of available
resources. In particular, for a free system without any external
intervention, typically the resources are accessed and utilized
in a highly nonuniform manner: there are time intervals in
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which almost all resources are used, followed by those in
which most agents in the system focus on only a few resources.
Such an uneven utilization of resources makes the system
inefficient and is generally harmful. What we have shown
in this paper is that implementing a simple pinning control
scheme can effectively eliminate herding. While the idea of
pinning control has been used widely to control complex
networked systems [43–49], our contribution is to introduce it
to complex resource-allocation systems. More importantly, we
have developed a solid physical theory based on the mean-field
approach and its variant to establish the theoretical foundation
of the pinning control in such systems. Specifically, we have
analyzed the approaches of random and degree-preferential
pinning on networks of distinct topologies, and demonstrated
that a nonrandom type of control strategy can be more effective
than a random one (cf. Figs. 3 and 4). The basic philosophy
underlying our control scheme is “to pin a few to benefit the
majority.” That is, fixing a few agents’ choice of resource
utilization can reduce significantly the fluctuations in the whole
system, resulting in remarkable improvement in its efficiency.

Our theory suggests that the best strategy to reduce
fluctuations is to pin the agents of high degrees. However,
one difficulty associated with the degree preferential pinning
scheme is that it requires fairly complete knowledge about
the degree of each agent in the network. This is especially
challenging for real-world networks, where global information
about the network may not be available to every agent. In
addition, the interactions among the agents when competing
for resources may not be readily quantified. An important
issue concerns thus how herd behavior can be controlled
when information about the network structure and interactions
among the agents is lacking. The immunization method
developed in controlling virus spreading on complex networks
[38], which requires no detailed knowledge about the network

and its interacting dynamics, may provide a viable approach.
For example, one can consider the scheme of acquaintance
pinning, in which random acquaintances of random nodes are
pinned in their selection of resources.

Real-world systems for which the BG model and pinning
scheme may be applicable include the financial market
systems, urban traffic systems, computer network systems, and
so on. In these systems, individuals’ choice can be “pinned”
by means of certain incentive policies with compensations
or rewards. The incentive policy for pinning can be modeled
as random fields in the dynamics and may introduce a cost
linearly dependent upon the number of pinned agents. We see
that the system welfare, i.e., the performance of the resource
allocation system measured by the variance of the number of
agents choosing a resource, improves rapidly as soon as very
few pinnings take place. Take the financial market system as
an example. The policies of the Market Makers are the strategy
to intervene the game dynamics in the market by certain
regulations or incentives so as to make the capital allocation
more efficient, i.e., to realize the goal of achieving efficient
markets. Our study of pinning control is directly relevant to
these real-world examples. In addition to its real significance,
our work represents a basic and general mathematical frame-
work to address the role of pinning in complex resource-
allocation dynamics in social, economical, and political
systems.
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