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Topological control of synchronous patterns in systems of networked chaotic oscillators
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Recent studies of network science have revealed the sensitive dependence of network collective behaviors on
structures; here we employ this feature of topological sensitivity for the purpose of pattern control. By simple
models of networked chaotic oscillators, we are able to argue and demonstrate that, by manipulating just a
single link in the network, the synchronous patterns of the system can be effectively adjusted or controlled. In
particular, by changing the weight or the connection of a shortcut link in the network, we find not only that
various stable synchronous patterns can be generated from the system but also that the synchronous patterns can
be successfully switched among different forms. The stability of the synchronous patterns is analyzed by the
method of eigenvalue analysis, and the feasibility of the control is verified by numerical simulations. Our study
provides a step forward to the control of sophisticated collective behaviors in more complex networks, as well as
insights to the evolution and function of some realistic complex systems.
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I. INTRODUCTION

A distinct feature of complex systems in nature is the
sensitive dependence of their dynamics on initial conditions
or system parameters [1]. A well-known example is chaotic
systems, where a small perturbation on the system initial
condition will result in a significant change of the system
state a moment later, namely, the butterfly effect [2]. To
tame this dynamical sensitivity, in the past decades there have
been extensive studies on the control of chaos [3], where
a significant finding is that the chaotic behaviors can be
efficiently tamed or controlled by adding small perturbations
onto the system states or parameters, e.g., the Ott, Grebogi, and
Yorke (OGY) method [4]. In terms of dynamical sensitivity, a
network analogy of chaos could be the dynamics of complex
networks, where a slight modification of the network structure
could change the collective behaviors of the system as a whole.
For instance, the failure of a single transmission line in the
power-grid network could lead to a large-scale blackout within
a few minutes, due to the mechanism of network cascading [5].
Being aware of this type of dynamics-induced catastrophe, in
the past years efforts have been given to the improvement of
the network robustness and performance. For instance, it is
found that by intentionally removing a few of the network
links at the beginning of the cascading the network damage
can be largely reduced [6]. Besides cascading, recently the idea
of topological control has been also employed in many other
problems in network science, e.g., epidemic propagation [7],
global synchronization [8], oscillatory patterns [9], and control
optimization [10].

Synchronous and coherent motions are commonly observed
in neural and biological systems and are widely recognized
as important to system operations and functions [11–14]. A
typical example is the human brain, where the networked
neurons are found to be firing synchronously in a group
fashion during the process of information processing (e.g.,
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perception recovery) [15] or when they are subjected to some
external stimuli (e.g., neural binding) [16]. That is, under
certain circumstances the neurons are able to self-organize into
different forms of synchronous patterns. These synchronous
patterns, as revealed from the experimental data, are very
unstable and can be largely changed by small perturbations.
For instance, a slight change of the network structure, as caused
by the aberrant axonal reorganization of the excitatory dentate
granule cell axons onto the neighboring granule neurons,
could lead to the emergence of a large-scale synchrony that
involves many neuronal assemblies—a network mechanism
for epileptic seizures [17]. In network science, an intriguing
and challenging question is whether we can stabilize the
synchronous patterns in complex systems or switch the
synchronous pattern among different forms, by only a slight
modification of the network structure.

Comparing to other types of network dynamics, e.g., global
network synchronization or Turing-like patterns [12–14,18],
the analysis of synchronous patterns in the complex networks
is much more difficult and challenging [19]. This is partially
due to the fact that the synchronous patterns, if they exist,
are highly fragmented and scattered, making them difficult to
figure out from the complex network [18,20], and also due
to the fact that the patterns are highly dynamic and unstable,
making them difficult to be manipulated [21,22]. Regarding
these difficulties, to investigate the control of synchronous
patterns in complex systems, a plausible and meaningful
approach would be adopting the simplified network structures
that capture some essential features of the general complex
networks, e.g., regular networks with a few random shortcut
links. In the present work, employing simple networks of cou-
pled chaotic oscillators, we will investigate how synchronous
patterns can be modified or manipulated by a small adjustment
of the network structure. Interestingly, we find that in these
network models, by adjusting the properties of just a single
link, not only can stable synchronous patterns be generated
but also the patterns can be switched among different forms.

The rest of the paper is organized as follows. In Sec. II
we will give our model of networked chaotic oscillators
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and propose the method of eigenvalue analysis used to
characterize the stability of the synchronous patterns. In
Sec. III, by different network models, we will demonstrate
numerically how the synchronous patterns can be generated
and manipulated by a slight change of the network structure.
Finally, in Sec. IV we will give our discussions and conclusion.

II. STABILITY OF SYNCHRONOUS PATTERNS

Consider a complex network of N identical nonlinear
oscillators. Let ẋ = F(x) be the node dynamics in the isolated
form, and let H(x) be the coupling function among the nodes;
then the evolution of the network could be described by the set
of equations

ẋi = F(xi) − ε

N∑
j=1

aij [H(xj ) − H(xi)], (1)

with i,j = 1, . . . ,N being the node indices and ε being the
uniform coupling strength. The network structure is captured
by the adjacency matrix A, with aij = −1 if nodes i and j

are directly connected and aij = 0 otherwise. For networks of
linearly coupled identical oscillators, the previous studies have
shown that by a suitable coupling strength the trajectories of the
oscillators can be converged to the same one after a transient
time, i.e., reaching the state of global synchronization. The
range of the coupling strength, as well as its dependence to the
network structure and the node dynamics, can be analyzed by
the method of master stability function (MSF) [23].

Besides the special state of global synchronization, a net-
work may also support other forms of synchronous behaviors.
For instance, for the network example plotted in Fig. 1(a), if in
numerical simulations we artificially set the initial conditions
of the paired nodes, (2,5) and (3,4), to be identical, then during
the process of the system evolution the trajectories of the paired
nodes will be always identical (since they have the same node
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FIG. 1. (Color online) (a) The model of a five-node network
used in our analysis. The network has the reflection symmetry
S, which may support the synchronous pattern (a,b,c,c,b). (b) A
schematic plot used to analyze the stability of the synchronous pattern.
The eigenvalues are divided into two groups: � for the transverse
modes and © for the synchronous modes. σc is a critical parameter
characterizing the boundary of the stable regime: a mode is stable if its
eigenvalue satisfies ελ = σ > σc. Case 1: For the pattern (a,b,c,c,b),
the distribution of the eigenvalues calculated from the network in (a).
Since λtr

1 = λ
syn
2 , which does not satisfy the eigenvalue condition, the

pattern is unstable. Case 2: A possible distribution of the eigenvalues
that may generate a stable pattern (satisfying the eigenvalue condition
λtr

1 > λ
syn
2 ), which is expected to be realized by a slight modification

of the network structure or properties.

dynamics and the same initial conditions and they receive the
same coupling signals during the system evolution). That is, the
system will be staying on the state of partial synchronization
characterized by the symbol sequence (a,b,c,c,b) [24,27].
Here, the symbols a,b, and c represent the trajectories of the
oscillators and are ordered by the node indices in the network.
Nodes of the same symbol are regarded as synchronized, and
they form an individual synchronous cluster. The number
of clusters in the system thus is counted as the number of
different symbols in the pattern sequence. It is straightforward
to find that the synchronous patterns that can be supported
by a network are closely dependent on the network symmetry.
Specifically, to have a specific form of synchronous pattern, the
network structure must own the corresponding symmetry. For
instance, for the network plotted in Fig. 1(a), the synchronous
pattern (a,b,c,c,b) is supported by the reflection symmetry S.

A network may possess different topological symmetries,
but not all the corresponding patterns are stable. The stability
of a synchronous pattern can be analyzed by the method of
eigenvalue analysis, with the details as follows. (This method
is originated from the group-theory analysis proposed in [25]
and is also a generalization of the method proposed in [26,
27].) Let xs be the synchronous manifold of the system (the
manifold for global synchronization), and let δxi = xi − xs be
infinitesimal perturbations added to the oscillator trajectories;
then the evolutions of the perturbations are mainly governed
by the equations

δẋi = DF(xs) − ε

N∑
j=1

aij DH(xs)(δxj − δxi), (2)

where DF and DH are the Jacobian matrices of the corre-
sponding vector functions evaluated on xs . Projecting {δxi}
into the eigenspace spanned by the eigenvectors of the network
coupling matrix C = A + K (K is the diagonal matrix whose
elements are the degree of the corresponding node, i.e.,
kii = ∑

j aij ), then the set of equations described by Eq. (2)
can be transformed into N decoupled equations:

δẏi = [DF(xs) − ελiDH(xs)]δyi , (3)

where 0 = λ1 < λ2 < · · · < λN are the eigenvalues of C and
δyi denotes the ith mode of the perturbations. Let �i be the
largest Lyapunov exponent calculated from Eq. (3) for the ith
mode; then the stability of this mode is determined by the sign
of �i : it is stable if �i � 0 and is unstable if �i > 0. The
mode of λ1 represents the motion parallel to the synchronous
manifold, which is always unstable due to the chaotic nature
of the node dynamics.

Network symmetry sets in when dividing the eigenval-
ues (modes) into groups. For any given symmetry, S, of
the network structure, we can construct the corresponding
permutation matrix PN×N : pij = pji = 1 if the exchange of
nodes i and j according to S does not change the network
structure, and pij = 0 otherwise. It is straightforward to find
that PP−1 = P2 = I, with IN×N being the identity matrix.
Let M be the transformation matrix of P, i.e., M−1PM = P′
(with P′ being the diagonal matrix); then the network coupling
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matrix can be transformed into the following blocked form:

G = M−1CM =
(

B 0
0 D

)
, (4)

where B and D are, respectively, n1- and n2-dimensional
matrices, with n1 + n2 = N . Because G and C are similar
matrices, they have the same set of eigenvalues. However, in
the blocked matrix G, the eigenvalues are divided into two
groups: n1 eigenvalues in B and n2 eigenvalues in D.

Let D be the matrix that contains the eigenvalue λ1 = 0;
then we know from the function of the transformation matrix
that the synchronous manifold of the pattern is embedded in
the n2 dimensional subspace spanned by the eigenvectors of D.
We order the eigenvalues of D as 0 = λ

syn
1 < λ

syn
2 � · · · � λ

syn
n2

and call the spanned subspace the synchronous subspace. In
a similar way, the eigenvalues of B are ordered as λtr

1 � λtr
2 �

· · · � λtr
n1. Since the subspace spanned by the eigenvectors of B

characterizes the perturbations transverse to the synchronous
manifold, we thus give it the name transverse subspace. To
have a stable pattern, it is necessary that all the transverse
modes in the transverse subspace should be damping with
time. More specifically, we should have �(λtr

l ) < 0 for l =
1, . . . ,n1. Meanwhile, to avoid the trivial pattern of global
network synchronization, it is also necessary that at least one
of the nontrivial modes in the synchronous subspace still
be unstable, i.e., �(λsyn) > 0 for some mode (modes) of D.
These are the two necessary conditions for generating stable
synchronous patterns in a complex network.

By the above method, we now give an analysis to the
stability of the pattern (a,b,c,c,b) in the network shown in
Fig. 1(a). First, from the reflection symmetry, S, we can
construct the permutation matrix, which reads

P =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎠ . (5)

Then, by calculating the eigenvectors of P, we can construct
the transform matrix:

M =

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0
0 1/

√
2 0 1

√
2 0

−1/
√

2 0 0 0 1/
√

2
1/

√
2 0 0 0 1/

√
2

0 −1/
√

2 0 1/
√

2 0

⎞
⎟⎟⎟⎟⎠ . (6)

Finally, by M, we can transform the coupling matrix C into
the blocked matrix G, in which

B =
(−4/3 −1/3

−1/3 −4/3

)
(7)

and

D =
⎛
⎝ −1

√
2/4

√
2/4√

2/3 −2/3 1/3√
2/3 1/3 −2/3

⎞
⎠ . (8)

For B, we have (λtr
1 ,λtr

2 ) = (1,1.67), while for D we have
(λsyn

1 ,λ
syn
2 ,λ

syn
3 ) = (0,1,1.33). Since the null eigenvalue be-

longs to D, the synchronous and transverse subspaces are
spanned by the eigenvectors of D and B, respectively.

Previous studies of MSF [28] have shown that, for the
typical nonlinear systems, the value of �(ελ), as calculated
from Eq. (3), is negative only when ελ = σ > σc, with σc

being a parameter jointly determined by the node dynamics
and the coupling function. The meaning of σc, as well as the
distribution of the two groups of eigenvalues, are schematically
plotted in Fig. 1(b). From this figure, it is straightforward to
find that the pattern (a,b,c,c,b) is unstable, as it does not
satisfy the eigenvalue condition [case 1 in Fig. 1(b)]. More
specifically, when the transverse mode of λtr

1 is inside of the
stable regime (which can be achieved by changing the coupling
strength), all other nontrivial modes of the system (λsyn

2,3 and λtr
2 )

will be also inside of the stable regime, which will lead to the
global network synchronization, instead of the synchronous
pattern.

Is there any method to stabilize the pattern in the network?
The remedy lies in the modification of the network structure.
As the network collective behavior is sensitively dependent on
its structure, it is possible that, by a slight change of the network
structure, the unstable pattern changes to stable. For example,
if by introducing a new link into the network the eigenvalues
can be redistributed in such a way that λtr

1 > λ
syn
2 [as illustrated

by case 2 in Fig. 1(b)], then the pattern (a,b,c,c,b) may
be stabilized. In the following section, employing a typical
chaotic oscillator as the node dynamics, we will show how
this idea of structure-based pattern control can be realized in
some simple network models.

III. TOPOLOGICAL CONTROL OF SYNCHRONOUS
PATTERNS

We first demonstrate how the pattern (a,b,c,c,b) can be
stabilized by adjusting the weight of a single link in the
network. To keep the network symmetry unaffected (so as
to support the same pattern), we will change only the weight
of the link L2,5 in the network, while keeping the weights of
other links fixed. For the sake of simulation convenience, here
we adopt the normalized coupling scheme for the weighted
network: cij = −wi,j /

∑
wi,j for the nondiagonal elements,

and cii = 1 for the diagonal elements [29,30]. Here wi,j

represents the weight of the network links, which is to be
adjusted for the link L2,5 while fixed to wi,j = 1 for other links.
We first check whether the eigenvalue condition, λtr

1 > λ
syn
2 ,

can be satisfied by this modification. In Fig. 2(a), we plot the
variations of the four nontrivial eigenvalues, λtr

1,2 and λ
syn
2,3 , as

a function of w2,5. It is clearly seen that, as w2,5 exceeds the
critical value wc = 1, λtr

1 is larger than λ
syn
2 . The crossover of

λtr
1 and λ

syn
2 thus suggests that, in the regime of w2,5 > 1, the

eigenvalue condition is satisfied.
In simulations, we adopt the chaotic Lorenz oscillator as

the node dynamics, which in the isolated form is described
by equations (dx/dt,dy/dt,dz/dt)T = (α(y − x),rx − y −
xz,xy − bz)T . By the parameters α = 10, r = 35, and b =
8/3, the oscillator is chaotic, with the largest Lyapunov
exponent being about 0.94. (This oscillator will be employed
throughout the paper, but the same results have been also
observed in other node dynamics, including the chaotic
Rössler oscillators and logistic maps.) By the coupling
function H([x,y,z]T) = [x,0,0]T (i.e., coupling through the
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FIG. 2. (Color online) For the network plotted in Fig. 1(a), the
stabilization of the pattern (a,b,c,c,b) by changing the weight of the
shortcut link L2,5. (a) The variations of the nontrivial eigenvalues,
λtr

1,2 and λ
syn
2,3 , as a function of the link weight, w2,5. When w2,5 >

wc = 1, we have λtr
1 > λ

syn
2 , indicating the possible existence of a

stable pattern in this regime. (b) By ε = 9.6, the time evolution of the
normalized synchronization errors, �xi . The control is activated at
t = 175, where w2,5 is changed from 1 to 1.5. It is seen that, with the
control, the system is gradually transferred from nonsynchronization
to the synchronous pattern (a,b,c,c,b).

x component of the oscillator), the critical parameter char-
acterizing the stable regime in MSF analysis is σc ≈ 10,
which is calculated from Eq. (3) by requiring � = 0. Thus,
to make the transverse mode λtr

1 stable, it is necessary that
the coupling strength should be larger than ε1 = σc/λ

tr
1 . In

the meantime, to prevent the system from reaching the state
of global synchronization, we should also keep the coupling
strength smaller than ε2 = σc/λ

syn
2 . These are the conditions

for the choosing the coupling strength. For example, if we
use w2,5 = 1.5, the two boundary eigenvalues of the coupling
matrix are λtr

1 = 1.06 and λ
syn
2 = 0.92. According to the above

analysis, to make the pattern stable, the coupling strength
should be chosen from the range ε ∈ (9.35,10.82).

By ε = 9.6, we plot in Fig. 2(b) the time evolution of
the normalized synchronization error for the oscillators, �xi .
Here, �xi = (xi − 〈x〉)/�xave, with 〈x〉 being the averaged
state of the network and �xave = 〈xi − 〈x〉〉 being a scaling
factor. If during the system evolution two nodes have the same
value of �xi , then they are identified as synchronized. (The
use of �x is just for the purpose of a clear presentation, which
can be replaced by other quantities, e.g., the state variables,
which do not affect the form of the synchronous patterns.) The
control is activated at time t = 175, where w2,5 is changed
from 1 to 1.5. In Fig. 2(b), it is shown that, before the control,
the synchronization errors are well separated from each other,
indicating the absence of synchronization among any pair of
the nodes; after the control, the five synchronization errors
are gradually merged into three individual ones. Specifically,
from the time t ≈ 250 on, we have simultaneously �x2 = �x5

and �x3 = �x4, and this synchronization relation remains
unchanged as the time increases; i.e., the system is stabilized
onto the synchronous pattern (a,b,c,c,b).

FIG. 3. (Color online) The control of the network synchronization by removing or rewiring a shortcut link. (a) The structure of the original
network, which is globally synchronized under ε = 10.8. (b) The modified network where the link L1,3 in (a) is removed. The new network
owns the reflection symmetry S1 and supports the pattern (a,b,c,b,a). (c) The new network constructed from (b) by rewiring the link L1,4. The
new network owns the reflection symmetry S2 and supports the pattern (a,a,b,c,b). (d–f) The time evolution of the synchronization errors,
�xi , for the networks in (a–c). The link L1,3 in (a) is removed at t = 60, which leads to the pattern (a,b,c,b,a). The link L1,4 in (b) is rewired
to L1,3 at t = 150, which results in the new pattern (a,a,b,c,b).
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We next demonstrate how the form of a synchronization
pattern can be adjusted by removing or rewiring a link in the
network. We still employ the unweighted five-node network
[Fig. 3(a)] and the normalized coupling scheme, but this time
we start from the state of global network synchronization,
and the targeting states are chosen as different synchronous
patterns. We first make the network globally synchronized,
which is accomplished by a larger coupling strength, ε =
10.8. The evolution of the network dynamics is plotted in
Fig. 3(d), where it is seen that after a transient period the
system is globally synchronized. Having reached the state
of global synchronization, we then at the moment t = 60
remove the link L1,3, so that the network structure is modified
to the structure plotted in Fig. 3(b). In the meantime, small
perturbations are added onto the oscillators, so as to diverge
the trajectories from the global-synchronization manifold. The
modified network [Fig. 3(b)] has the reflection symmetry,
S1, which can support the pattern (a,b,c,b,a), given that
the two conditions are satisfied. From the network coupling
matrix, we find that λtr

1 = 1.0 and λ
syn
2 = 0.86. The eigenvalue

condition thus is satisfied. Meanwhile, since we have set
ε = 10.8, which is just between the two critical strengths,
ε1 = σc/λ

tr
1 ≈ 10, ε2 = σc/λ

syn
2 ≈ 11.63. The condition for

the coupling strength thus is also satisfied. The numerical
simulation verifies this analysis. As shown in Fig. 3(e), after
removing the link L1,3, the network is gradually changed from
global synchronization to the synchronous pattern (a,b,c,b,a).
In Fig. 3(c), we further modify the network structure by
rewiring the link L1,4 in Fig. 3(b). Since the networks in
Figs. 3(b) and 3(c) are essentially the same (with a clockwise
rotation of 0.4π ), the network of Fig. 3(c) supports the
synchronous pattern (a,a,b,c,b), as verified by the numerical
simulations [Fig. 3(f)]. We would like to note that, although
the two patterns, (a,b,c,b,a) and (a,a,b,c,b), characterize
essentially the same network dynamics, the change of the
pattern from (a,b,c,b,a) to (a,a,b,c,b) is still nontrivial, as
the synchronization relations of the nodes have been modified.

Finally, we demonstrate how the network dynamics can be
switched between different forms of synchronous patterns, by
adding or removing a single link in the network. To illustrate
this type of control, we adopt the network structure plotted
in Fig. 4(a), which contains six nodes and one shortcut link.
As depicted in Fig. 4(a), this network owns two reflection
symmetries: S1 and S2. A check of their eigenvalues shows
that only S1 satisfies the eigenvalue condition λtr

1 > λ
syn
2 , which

corresponds to the pattern (a,b,c,c,b,a). Since λtr
1 = 0.833 and

λ
syn
2 = 0.5, to make the pattern stable, the coupling strength

should be chosen within the range ε ∈ (12,20). By ε = 12.8,
we plot in Fig. 4(b) the time evolution of the synchronization
errors, where the formation of the pattern (a,b,c,c,b,a) is
shown. To switch the pattern to another form, we add a new
link, L3,6, onto the network of Fig. 4(a), with the new network
structure shown in Fig. 4(b). The new network also possesses
two reflection symmetries, S3 and S4, which may support
different synchronous patterns. By analyzing the distributions
of their eigenvalues, we find that only the former satisfies the
condition λtr

1 > λ
syn
2 . As such, the stable pattern for Fig. 4(b) is

only (a,b,c,d,c,b). From λtr
1 and λ

syn
2 , we can also obtain the

range of the coupling strength, ε ∈ (10,15). Since ε = 12.8
is within this range, the switching from pattern (a,b,c,c,b,a)

FIG. 4. (Color online) The switching of the synchronous patterns
between different forms. The networks are unweighted, and the
normalized coupling scheme is employed. S1,2,3,4 are the network
symmetries. (a) The original network. (b) The modified network by
adding the new link L3,6 onto the network of (a). (c and d) By
ε = 12.8, the time evolutions of the synchronization errors, �xi ,
for the network structures in (a) and (b), respectively. In (c), the
system dynamics is stabilized onto the pattern (a,b,c,c,b,a), which
is supported by S1 in (a). In (d), the system dynamics is switched
to the pattern (a,b,c,d,c,b), which is supported by S3 in (b). The
topological control, i.e., the connection between nodes 3 and 6 in the
network of (a), is activated at t = 60.

[Fig. 4(a)] to pattern (a,b,c,d,c,b) [Fig. 4(b)] is expected to
be workable. This is confirmed by numerical simulations, as
shown in Figs. 4(c) and 4(d).

IV. DISCUSSIONS AND CONCLUSION

The topological control we have investigated is distinct
from the existing studies of network control in the literature
[31–33]. First, in topological control the targeting states are
chosen as the synchronous patterns (selected according to the
network symmetries), which are spatially nonuniform, while
in previous studies of network control the targeting states
are normally uniform in space. For instance, in the pinning
synchronization of complex networks [31], all the network
nodes are controlled to the same trajectory defined by the
external controller; i.e., the network is globally synchronized.
For this difference, the analysis of network controllability in
topological control is very different from the ones used in
previous studies; e.g., it requires a separation of the phase
space into two orthogonal subspaces. Second, unlike most of
the existing studies where the controlling signals are added
onto the node state [32,33], here in topological control the
perturbations are made on the network structure. While state
perturbation is popular in engineering systems, topological
perturbations may have more applications in biological and
neural systems, e.g., in understanding the evolution and
functions of the human brain [34]. Finally, in previous studies
of network control once the system is controlled, the instant
states of every node can be precisely predicted (from the
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FIG. 5. (Color online) For the same network model used in
Fig. 2(b) [which shows a stable synchronous pattern of the form
(a,b,c,c,b)], the effect of the parameter mismatch on the pattern.
The mismatch is introduced to the parameter r in the Lorenz
oscillator, which is implemented by a randomly chosen r from the
range [35 − δr,35 + δr]. The synchronization errors are evaluated
by 〈xi − x1〉, with 〈. . .〉 being the time average over a period of
t = 1 × 103 and over 100 system realizations. It is seen that, for a
smaller parameter mismatch (δr < 1), the system dynamics is still
strongly governed by the synchronous pattern (a,b,c,c,b).

trajectory of the controller), which is impossible in topological
control, as the manifold of the synchronous pattern is self-
organized by the network nodes.

Although established on the simplified models of clear
network symmetries, the control method proposed in the
present work could be potentially applied to large-size and
complex networks. In terms of the network size, in simulations
we have successfully applied this method to the control of
the synchronous pattern for symmetric networks of size up
to N = 100. In terms of complex networks, this method
may also be helpful and constructive, due to the ubiquitous
existence of topological symmetry in complex networks, either
globally or locally. First, for some special types of networks,
e.g., the commander and control system, the network has
a strict hierarchical structure, resulting in perfect network
symmetries [35]. Second, for the general complex networks of
practical interest, e.g., the small-world and scale-free complex
networks, although in general it is difficult to find a perfect
symmetry for the whole network, their local network structures
do present some regular and symmetric features, due to either
the high clustering coefficient (for small-world networks) or
the abundant motif and community structures (for scale-free
networks) [36]. Finally, even for the completely random

networks, e.g., the Erdös-Rènyi network, there still could be
some kinds of weak symmetries in the network structure (i.e.,
a permutation of a few of the network nodes does not affect
the network structure) [37]. All these symmetries, according
to our analysis, could provide plenty of room for the control
of synchronous patterns in complex systems.

However, in terms of controlling realistic complex systems,
the current study is still in its infancy, and many important
issues need to be investigated. Among others, nonidentical
node dynamics, directed and weighted links, and identification
of topological symmetries in large-size complex networks
are three of the most fundamental issues to be addressed.
For nonidentical node dynamics, our preliminary simulations
show that (Fig. 5), given that the parameter mismatch among
the oscillators is not significant, the system dynamics will
be still governed by synchronous patterns. For symmetry
identification in complex networks, we hope the rapid progress
of network research will provide solutions in the near future.
For instance, newly developed algorithms for network partition
have already shed some new light on the identification of
topological symmetries in large-size complex networks [38].
It is worth mentioning that, in controlling a realistic complex
network, both the analysis method and the control strategies
used in the present work should be largely improved; for
example, it will be necessary to adjust a number of the network
links simultaneously for effective control of synchronous
patterns in a large-scale complex network [22,39], a promising
issue deserving of further studies.

In summary, using the sensitivity feature of network dy-
namics on structure, we have proposed the idea of topological
control of synchronous patterns in complex systems and
demonstrated it on some simple network models of coupled
chaotic oscillators. Although based on simplified models, our
studies provide an alternative viewpoint to the control of
network dynamics, which, after some improvements, might
be applied to the control of large-scale complex networks as
well as provide insights into the operation and functioning of
some realistic complex systems.
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