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Universality of flux-fluctuation law in complex dynamical systems
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Recent work has revealed a law governing flux fluctuation and the average flux in complex dynamical systems.
We establish the universality of this flux-fluctuation law through the following steps: (i) We derive the law in a more
general setting, showing that it depends on a single parameter characterizing the external driving; (ii) we conduct
extensive numerical computations using distinct external driving, different network topologies, and multiple traffic
routing strategies; and (iii) we analyze data from an actual vehicle traffic system in a major city in China to lend
more credence to the universality of the flux-fluctuation law. Additional factors considered include flux fluctuation
on links, window size effect, and hidden topological structures such as nodal degree correlation. Besides its
fundamental importance in complex systems, the flux-fluctuation law can be used to infer certain intrinsic
property of the system for potential applications such as control of complex systems for improved performance.
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I. INTRODUCTION

In a finite physical system observed and probed in finite
time, fluctuations in quantities of interest are ubiquitous.
For a complete random process such as one that follows
the standard Gaussian distribution, its average and variance
are parameters that are independent of each other. In this
case, the fluctuations are an intrinsic property of the random
process, which does not depend on its average. However,
when the process contains a deterministic component, such
as those occurring on complex dynamical systems, the mean
and variance of a physical variable are typically correlated.
Consider, for example, traffic flow on a complex network. As
the average flux is increased, the fluctuations tend to intensify
as well. Exploration of issues such as the characterization
of fluctuations in complex dynamical systems, the precise
relation between the average and variance, and the effect of
fluctuations on system dynamics, has formed a particular area
of recent research [1–8].

An issue of significant physical interest is whether there ex-
ists a universal scaling law between the fluctuation and the av-
erage flux [1–6]. In particular, the importance of fluctuations in
complex dynamical systems was recognized and a power-law
scaling relation between the fluctuation and the average flux
was reported [1], where the power-law exponent can take on a
finite set of discrete values, such as 1/2 or 1 [1]. Subsequently,
it was shown [2] that, in contrast to the result in Ref. [1], the
power-law exponent can assume continuous values in the range
[1/2,1] [2]. Quite recently, the notion of power-law scaling
between the fluctuation and the average flux was refuted and a
non-power-law type of relation between the two quantities was
obtained by Meloni et al. [3]. Besides providing an analytical
argument, the authors also presented numerical support from
both model systems and a realistic communication network
system for the flux-fluctuation law [3].
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In this paper, we generalize the flux-fluctuation law, first
obtained in Ref. [3], and address the universality of this law as
applied to general complex networked systems. Our approach
consists of three steps. (i) We present a straightforward but
more general derivation of the relation, which does not rely on
system details. In particular, let fi denote the flux of some kind
of physical flow of node i in a complex network and let 〈fi〉
and σi be the average flux and the corresponding fluctuation,
respectively. The law between 〈fi〉 and σi is then given by

σi =
√

〈fi〉 + α2〈fi〉2, (1)

where α ≡ (σRT
)/〈RT 〉 is a single parameter determined by the

property of the external driving R(t) only, and σRT
and 〈RT 〉

are the standard deviation and the expectation value of R(t),
respectively. We note that, in Ref. [3], the flux-fluctuation law
has the same form as Eq. (1), but it was derived based on a
random-diffusion picture under the assumption of uniformly
distributed external driving. In our expression, the parameter
is generally given by the ratio between the variance and the
mean square of the external driving. Equation (1) is thus more
general. (ii) We carry out extensive numerical computation
using various network models and traffic dynamics to establish
the validity of Eq. (1). (iii) We demonstrate that the flux-
fluctuation law holds for real traffic flow in a major city
in China and we point out the special caveats that must be
taken into account in order to observe Eq. (1) in real physical
systems. Our results corroborate those in Ref. [3] in that the
relation between flux fluctuation and average in general is not
a power law, but these two basic quantities obey a law that is
apparently universal in complex physical systems.

II. THEORY

We begin by demonstrating how Eq. (1) can be obtained in a
more general setting than that of Ref. [3]. Here we assume that
the traffic dynamics of the system is conservative and packets
can flow from one node to another if there is a connection
between them.
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FIG. 1. Schematic illustration of obtaining flux f observationally
with respect to external driving RT : (a) RT is constant and f is random
variable with Poisson distribution and (b) RT is assumed to change
with time.

We first consider the simple case of a single-node traffic-
flow model in the free-flow state without any congestion. Let
R(t) be the probability that, during a time unit, a package
passes through this node. Let T be the length of the time
window of measurement of flux fi and σi be the deviation of fi

from its average. For an arbitrary time window [t,t + T ], there
are on average RT = ∫ t+T

t
R(τ )dτ packets passing through

this node. The quantity RT can thus be regarded as a kind
of external driving that represents systematic or random
variations upon the system from the outside environment,
which determines the total flux of the system in a given period.
For example, in a river network, the external driving can be
the precipitation in the basin region, while for traffic flow in
a city, the external driving can be the daily rhythmic behavior
of human activities such as commuting between one’s place
of residence and place of work. External driving should be
distinguished from intrinsic fluctuations of the system. For
traffic flow on the network, such intrinsic fluctuations are
caused, for example, by randomness in the package-generating
process and in the selection of paths.

The external driving RT does not need to be uniform
in time. Let PRT

(r) be the probability of RT = r . If RT

is constant, fi follows the standard Poisson process so that
the expectation of fi is 〈f 〉 = RT , as shown in Fig. 1(a).
The probability of fi = n is then given by the Poisson
distribution Pπ (n,RT ) = e−RT Rn

T /n!. In the more general case
where RT is time dependent, as shown in Fig. 1(b), we can
regard it as a random variable with some kind of probability
distribution PRT

(r), which can be quite arbitrary. In this case,
the probability of fn = n can be expressed as

Pfi
(n) =

∫ ∞

0
Pπ (n,r)PRT

(r)dr, (2)

which allows us to calculate the average and variance of fi in
a straightforward manner. In particular, we have

〈fi〉 =
∞∑

n=0

nPfi
(n)

=
∞∑

n=0

n

∫ ∞

0
Pπ (n,r)PRT

(r)dr

=
∫ ∞

0

( ∞∑
n=0

nPπ (n,r)

)
PRT

(r)dr

=
∫ ∞

0
rPRT

(r)dr = 〈RT 〉 (3)

and

〈
fi

2〉 =
∞∑

n=0

n2Pfi
(n)

=
∞∑

n=0

n2
∫ ∞

0
Pπ (n,r)PRT

(r)dr

=
∫ ∞

0

( ∞∑
n=0

n2Pπ (n,r)

)
PRT

(r)dr

=
∫ ∞

0
(r + r2)PRT

(r)dr

= 〈RT 〉 + 〈RT
2〉. (4)

We thus have

σi
2 ≡ 〈

fi
2
〉 − 〈fi〉2 = 〈fi〉 + 〈fi〉2 σRT

2

〈RT 〉2
, (5)

which is Eq. (1).
The above argument suggests that, in the case of an arbitrary

packet-generation distribution, there is a single parameter in
the relationship between σi and 〈fi〉, which is the ratio between
the standard deviation and the mean of RT . Depending on this
ratio, the asymptotic expression of Eq. (1) has two scaling
forms. In particular, for small α or fi , Eq. (1) becomes

σi =
√

〈fi〉,
a power-law scaling with the exponent 1/2. For large α or fi ,
Eq. (1) reduces to

σi = α〈fi〉.
The previously observed [1,2] two forms of the power-law
scaling between the flux fluctuation and the average flux are
thus two limiting cases of Eq. (1) in terms of the ratio α.

Equation (1) is for a single node under external driving.
In a complex networked system, packets flow among various
nodes, e.g., data packets in the Internet, traffic flow in a city,
and stream flows in a branched river. If the system is under
a single and spatially uniform external driving, the effective
driving on different nodes will be different, e.g., nodes with
a larger basin will have a larger flux. However, we expect
the statistical properties of the driving forces at the level of
individual node to be the same. That is, the ratio α should be
node independent, which can be argued as follows. For a given
total number of packets Np, when the routing protocol is fixed,
the average number of packets 〈fi〉 on a node i is given and
because of the randomness in the selection of the source and
destination of the packets, fi is a random variable following a
Poisson distribution. The parameter RT characterizes Np. The
variation in RT corresponds to the variation in the total number
of packets in the network and hence it is a global parameter
and is the same for all nodes, as is α (=σRT

/〈RT 〉). This
reasoning is independent of network topology and routing
protocol and is thus valid for different variations in network
topology and routing protocol. For example, if the network has
correlation and hidden structures, the flux of two neighboring
nodes fi and fj may be correlated, however, the dependence
of σi on 〈fi〉 and σj on 〈fj 〉 will both follow Eq. (1) with the
same parameter α. Specifically, if we plot (〈fi〉,σi) for every
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node, all points should fall on the same curve with a single
value of the ratio α.

Note that the above analysis is based on two observations:
(i) For a given total number of packets Np and a given routing
protocol, the average flux 〈fi〉 at node i is fixed and 〈fi〉 ∼ Np

and (ii) because of the randomness in selecting a source and
destination for each packet, fi is a random variable following
a Poisson distribution. As indicated in Ref. [6], if we consider
the flux behavior through links in network instead of nodes,
the above two observations still hold, e.g., 〈fij 〉 ∼ Np and
fij is a random variable following a Poisson distribution.
Therefore Eq. (1) should hold with respect to links with the
same parameter α.

Our derivation of Eq. (1), while straightforward, provides
a deeper understanding of the physical origin of the
flux-fluctuation law. It can also be seen that the dynamical
details of the external driving within the observational time
window have no effect on the form of the law. Note, however,
that the size of the window matters. Assume we have a given
R(t) for a different observational time window; the resulting
external driving RT will be different, leading to a different
value of α = σRT

/〈RT 〉. Since Eq. (1) only depends on α, the
resulting plot (σi , 〈fi〉) will be different, but the form of the
equation will be the same. Another point is that for a larger
window, the average flux 〈fi〉 will be larger. When the change
in α is small, the power-law fitting can yield exponent 0.5 for a
small window and exponent 1 for large observational windows,
as noted by Kujawski et al. [6]. In the special case treated in
Ref. [3] where the external driving RT is uniformly distributed
in the range [W − δ,W + δ], we have (σRT

)2 = δ2/3 and
〈RT 〉 = W . Equation (1) then reduces to Eq. (7) in Ref. [3].

III. NUMERICAL TESTS OF UNIVERSALITY

To demonstrate the universality of Eq. (1), we carry
out numerical simulations of packet-flow dynamics [9] on
a number of standard complex network models, namely,
scale-free, random, and small-world networks. In each case,
at each time step, the system generates R packets whose

sources and destinations are selected randomly. The packets
start to flow in the network until they reach their respective
destinations. The delivery capacity of the nodes is assumed
to be infinity and packets are delivered according to a certain
routing strategy. In our simulation, we have considered two
specific protocols: shortest-path and efficient protocols, where
for the latter a path along which the sum of degrees is minimum
[10] is selected. The computations are performed for different
RT distributions (uniform, Poisson, power-law) on networks
of different topologies. In our simulation, we set T = 100
and 〈RT 〉 = 10T . For a uniform distribution, the range of
RT is 〈RT 〉[1 − √

0.3,1 + √
0.3]. For a Poisson distribution,

RT = 〈RT 〉x, where x follows the Poisson distribution with
〈x〉 = 10. In the case of a power-law distribution, RT =
〈RT 〉 × x(γ − 2)/(γ − 1), where x follows the distribution
function (γ − 1)x−γ and γ = 5.3166. The above parameters
give rise to α2 = (σRT

)2/〈RT 〉2 = 0.1 for all three cases so that
a meaningful comparison can be made. In addition, in order to
show that the details of the flow dynamics in the observational
time window have no effect on Eq. (1), we choose two forms
of R(t) series for every case considered: (a) fixed R(t) in the
observational window, where R(t) is a constant in any window
but varies from window to window, i.e., R(t) = RT /T , and
(b) R(t) being chosen randomly in the observational window
from a uniform distribution, e.g., (RT /T ) [0,2]. In both (a) and
(b) the total driving RT within each window is the same.

Equation (1) indicates that the external driving contributes
to the flux fluctuation through the ratio α, implying that for
external driving with different RT distributions but the same
ratio, the dependence of the flux fluctuation on the average flux
should follow the same curve. Figure 2 shows simulation re-
sults for different RT distributions but the same ratio, together
with the corresponding analytical results. The simulations are
performed on a scale-free network with degree distribution
P (k) ∼ k−2.436, N = 1000 nodes, and mean degree 〈k〉 = 4,
which is generated by the preferential-attachment rule [11].
The routing protocol is based on the shortest path. The total
observational time is 106 time steps. Figure 2(a) shows the
results for the case of constant R(t) in an observational time

FIG. 2. (Color online) For a Barabási-Albert (BA) scale-free network with N = 1000 nodes and mean degree 〈k〉 = 4, under the shortest-path
routing protocol, nodal flux fluctuation σi versus the average flux 〈fi〉 for various distributions of R(t) related to external driving: (a) R(t) is
constant within each observational window, (b) R(t) varies with time but has the same value of RT as in (a), and (c) overlay of the two cases
under uniform distribution of RT , where R1 is represented by circles in panel (a), and R2 is represented by circles in panel (b). The scattered
data points are simulation results from all nodes, where each point represents one node, and the solid curves are from the theoretical prediction
(1). Other parameters are T = 100, 〈RT 〉 = 10T , and (σRT

)2/〈RT 〉2 = 0.1.
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〈      〉 〈 〈  〉

FIG. 3. (Color online) Flux fluctuation σij (σi) as a function of
the average flux 〈fij 〉 (〈fi〉) for all the links (nodes) in the network.
The parameters are the same as in Fig. 2(a). The solid curves are from
theory [Eq. (1)]. The dashed line (σij ∼ √〈fij 〉) and the dotted line
(σij ∼ 〈fij 〉) are guides for the eye.

window and Fig. 2(b) corresponds to the case where R(t)
varies according to a uniform distribution in the observational
window while having the same RT distribution as in Fig. 2(a).
It can be seen that, insofar as the ratio α is the same, the
data points all fall on the same theoretical curve. Figure 2(c)
shows, for the uniform distribution of RT , the results from
cases (a) and (b), which completely overlap with each other,
corroborating that only the external driving RT matters, while
the details of the flow dynamics within the observational time
window have no effect on Eq. (1). This gives strong support for
the universality of Eq. (1). All these suggest that the dynamical
details within the observational window have little effect on
the window-to-window fluctuation behaviors.

We have also checked the fluctuation behavior of the flux
through links [6], where for a link (i,j ), flows in both directions
are considered and denoted by fij . In Fig. 3 we plot the flux
fluctuation σij as a function of the average flux 〈fij 〉 for the
links. The flux fluctuation versus the average flux of the nodes
(σi , 〈fi〉) for the same network is also plotted for comparison.
The parameters are the same as in Fig. 2(a). We see that data
from links and from nodes both fall on the same theoretical
curve (1) with the same parameter α = 0.1, implying that there
is no difference between fluctuation phenomena observed with
respect to links and nodes. One difference, is that the flux
on links is typically smaller than the flux on nodes, so the
link-based and node-based fluctuation-flux relations fall on
different regions of the plot.

We now demonstrate that Eq. (1) holds regardless of
the network topology and traffic routing protocol, despite
the known fact that network structure and routing strategy
can affect the traffic-flow dynamics in a significant manner
[6,9,12–24]. We consider four types of well-studied network
topologies: scale-free [11], random [25], small-world [26], and
assortatively mixed scale-free networks [27]. The results for
scale-free, random, and small-world network topologies with
R(t) constant and time-varying cases within the observational
window are shown in Figs. 4(a) and 4(b), respectively. Results
from the assortatively mixed networks are plotted in Fig. 4(c).
Using the Pearson correlation coefficient r to measure the

〈 〈  〉

〈 〈  〉

〈 〈  〉

(c)

FIG. 4. (Color online) Nodal flux fluctuation σi versus the average
flux 〈fi〉 for complex networks of different topologies. The solid
curves are from theory [Eq. (1)]. (a) R(t) is constant within one
observational window but varies from window to window and (b) R(t)
varies in every observational window. In both panels, results from
BA scale-free networks with P (k) ∼ k−2.436 and 〈k〉 = 4, random
networks with 〈k〉 = 6.5, and small-world networks with 〈k〉 = 4
and rewiring probability p = 0.3 are shown. (c) Results from the
assortatively mixed scale-free networks with P (k) ∼ k−2.436, 〈k〉 = 4,
and different Pearson correlation coefficient r . Other parameters are
the same as in Fig. 2(a). In all cases, Eq. (1) holds.

degree correlation and a rewiring process to adjust the degree-
correlation coefficient [27], we compare three scale-free
networks with the same degrees for assortative cases with
r = 0.102 and 0.305 and the disassortative network with r =
−0.306. We see that, for all cases considered, the behaviors of
flux fluctuation versus the average flux collapse into a single
curve as predicted by Eq. (1), indicating that the relation
holds universally with respect to different network topologies.
We have also tested two different traffic routing protocols:
shortest-path and efficient routing protocols [10]. As shown in
Fig. 5, computations reveal that Eq. (1) holds for traffic flows
on complex networks, regardless of the routing protocol used.

We now turn to the observational window issue [2,3,5]. We
carry out simulations by setting R(t) as a rectangular wave of
period 200 and duty cycle 0.5:

R(t) =
{

10, t ∈ [1,100],[201,300],[401,500], . . .

0, t ∈ [101,200],[301,400],[501,600], . . . .
(6)

The observation starts from t = 1 and we consider two window
lengths: T = 100 and 200. For the case of T = 100, RT =
1000,0,1000,0, . . . , we get α = (σRT

)2/〈RT 〉2 = 1, while for
the case of T = 200, RT = 1000, which is a constant in time;
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FIG. 5. (Color online) Nodal flux fluctuation σfi
as a function

of 〈fi〉 with different routing strategies. The solid curves are from
theory [Eq. (1)]. (a) R(t) is constant within one observational window
but varies from window to window and (b) R(t) varies in every
observational window. Other parameters are the same as Fig. 2(a).

thus (σRT
)2 = 0 and we get α = 0. Then, from Eq. (1) we have

σi =
√

〈fi〉 + 〈fi〉2 for T = 100 and σi = √〈fi〉 for T = 200.
The simulations with R(t) given by Eq. (6) are performed on a
BA scale-free network with N = 1000, 〈k〉 = 4, and the other
parameters are the same as those in Fig. 2(a). The data of
(σi , 〈fi〉) are plotted in Fig. 6, which coincide well with the
analytical results. We see that, although α can be sensitive
to the observational time window, the law governing the flux
fluctuation and the average flux in Eq. (1) apparently holds.

All examples illustrated so far share one feature: Nodes
(or links) in the network possess the same value of the ratio
α, despite that the flow flux 〈f 〉 ∼ 〈RT 〉 can have a wide
distribution with respect to nodes (or links). As a result,
the behaviors of fluctuation versus average flux for different
network topologies and traffic routing protocols can all be
collapsed into a single curve as given by Eq. (1). However,
when there is a heterogeneous distribution of the values of α

on nodes in the network, there can be distinct segments in the
plot of fluctuation versus the average flux and we anticipate
this situation to arise in real-world network systems, as we will
demonstrate below.

〈 〈  〉

FIG. 6. (Color online) Nodal flux fluctuation σi as a function
of 〈fi〉 observed under observational time window T = 100 and
200 with external driving as a rectangular wave [see Eq. (6)]. The
simulation is performed on a BA scale-free network with N = 1000
and 〈k〉 = 4. The solid curves are from theory [Eq. (1)].

〈 〈  〉

FIG. 7. (Color online) For real-world traffic data over a two-year
period collected from a major city in China, flux fluctuation σi versus
the average flux 〈fi〉, where squares correspond to data in a whole day
(00:00–24:00) and circles correspond to the data in the hourly period
03:00–04:00. The curves underlying the squares and the circles are
from Eq. (1) with α2 = 0.2989 and 0.0604, respectively. The dashed
line (σi ∼ √〈fi〉) and the dotted line (σi ∼ 〈fi〉) are guides for the
eye.

IV. REAL-WORLD EXAMPLE

The real-world system we study is vehicular flow passing
through 32 intersections in Lanzhou, the capital city of Gansu
province in western China. The original data were collected
every 15 min over 2 yr at various intersections. Each data
point is the total number of vehicles that pass through the
intersections over the observational window (T = 15 min).
Since in general flux time series of traffic in social or
technological systems are driven by human activities [14], the
vehicular traffic flow is periodic with the period of 24 h. For
each intersection i, the available data fi(t) has about 70 000
points, from which the mean 〈fi〉 and the standard deviation σi

can be calculated. The results for all intersections are plotted
in Fig. 7 as squares, where the underlying curve is Eq. (1) for
α2 = 0.2989. We see that the data agree well with the theory.
In addition, there is a strong signature of a power-law relation
as σi ∼ 〈fi〉. The reason is that the average flux 〈fi〉 is large.

In order to reveal the fluctuation behavior for small average
flux values, we divide the data set from each intersection
into 24 hourly intervals. The minimum of the traffic-flow flux
occurs between 3 and 4 a.m. We then take all the data points
(about 3000 for each intersection) in this period and calculate
the fluctuation and average for each intersection i. The results
are plotted in Fig. 7 as circles, where the underlying curve is
again Eq. (1) but for α2 = 0.0604. We observe that Eq. (1)
characterizes the real data well for both relatively large and
small α values. A crossover from the behavior σi ∼ √〈fi〉 to
〈fi〉 occurs about 〈fi〉 = 100. Note that there are a few outliers
(solid circles). From Eq. (1), we can express the ratio α as

α =
√

σ 2
i − 〈fi〉
〈fi〉 . (7)

We see that the value of the ratios for the outliers are indeed
quite different from the values associated with the curves.
For the outliers, the corresponding external driving (human
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activity) during this time period has larger fluctuations σRT

than those in other “normal” intersections.

V. CONCLUSION

By considering a general setting of complex networked
systems, we are able to obtain the law governing the flux
fluctuation and the average flux in a straightforward manner,
suggesting universal applicability of the law to complex
dynamical systems. Further support for the universality is
gained by extensive computations with respect to different
behaviors of the external driving, different network topologies,
and different traffic routing protocols. Depending on the
property of the external driving, the flux-fluctuation law
exhibits a crossover between power-law scaling behaviors of
distinct exponents, which has been observed in a real-world
vehicular traffic network. Conversely, by measuring the flux

fluctuation with respect to the mean flux, the values of the key
parameter σRT

/〈RT 〉 for different nodes in the network can
be obtained, allowing abnormal nodes with relatively large or
small driving fluctuations to be detected. This can be useful
for monitoring the health of the system and controlling the
system for improved performance. Fluctuation phenomena
play an important role in the dynamics of complex systems.
Uncovering universal phenomena is of fundamental interest.
The universal flux-fluctuation law that this work aims to
establish is one such example.
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Phys. Rev. E 82, 036119 (2010).
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