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Scarring in quantum systems with classical chaotic dynamics is one of the most remarkable phenomena in
modern physics. Previous works were concerned mostly with nonrelativistic quantum systems described by the
Schrödinger equation. The question remains outstanding of whether truly relativistic quantum particles that obey
the Dirac equation can scar. A significant challenge is the lack of a general method for solving the Dirac equation
in closed domains of arbitrary shape. In this paper, we develop a numerical framework for obtaining complete
eigensolutions of massless fermions in general two-dimensional confining geometries. The key ingredients of our
method are the proper handling of the boundary conditions and an efficient discretization scheme that casts the
original equation in a matrix representation. The method is validated by (1) comparing the numerical solutions to
analytic results for a geometrically simple confinement and (2) verifying that the calculated energy level-spacing
statistics of integrable and chaotic geometries agree with the known results. Solutions of the Dirac equation in a
number of representative chaotic geometries establish firmly the existence of scarring of Dirac fermions.
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I. INTRODUCTION

Given a closed Hamiltonian system that exhibits fully
developed chaos in the classical limit, one might expect the
quantum wave functions associated with various eigenstates to
be more or less uniform in the physical space. This had been
thought to be quite natural because of ergodicity associated
with chaos in the classical phase space. The notion of uniform
wave functions was nevertheless proven to be wrong about
three decades ago, when strongly nonuniform eigenfunctions
were discovered by McDonald and Kaufman in their study of
the eigensolutions of the Schrödinger equation in the chaotic
stadium billiard [1]. A systematic study was subsequently
carried out by Heller [2], who established the striking tendency
for wave functions to concentrate about classical unstable
periodic orbits, which he named quantum scars. Semiclassical
theory was then developed by Bogomolny [3] and Berry [4],
providing a general understanding of the physical mechanism
of quantum scars. It should be noted that the phenomenon
was deemed counterintuitive and surprising solely because of
chaos, as the phase space of an integrable system is not ergodic
so the quantum wave functions are generally not expected to
be uniform. Quantum scars are one of the most remarkable
phenomena in modern physics and have become an active
area of research [5].

Existing works on scarring so far have focused on the
nonrelativistic quantum regime governed by the Schrödinger
equation. A fundamental issue is whether, in a closed chaotic
billiard, relativistic quantum particles obeying the Dirac
equation can scar. This issue was partially addressed in the
context of closed graphene [6] confinements, where signatures
of quantum scars were identified in the patterns of the local
density of states [7]. The framework used in the study, however,
was based on tight-binding Hamiltonian and nonequilibrium
Green’s function derived still from the Schrödinger equation.

The question of whether truly Dirac fermions, particles strictly
obeying the Dirac equation, can scar in chaotic billiards has
not been addressed.

In fact, a general method for completely solving the Dirac
equation in closed system of arbitrary geometry did not exist.
The main reason is that, although the Dirac equation is the
cornerstone of relativistic quantum mechanics and quantum
electrodynamics, solutions were focused on free space and
perturbation types in situations where relativistic quantum
behaviors occur. Prior to the discoveries of graphene and
topological insulators [8], it was not generally thought that
relativistic quantum mechanics would practically be relevant
to solid-state devices. As a result, there was little interest
in studying the Dirac equation in finite domains. The only
exception was the work of Berry and Mondragon [9], who in
1987 developed a boundary-integral type of method to solve
the energy levels (eigenvalues) of a chaotic neutrino billiard.
To obtain the eigenfunctions, a closed form of the boundary of
the domain is needed. To our knowledge, for closed domains
of arbitrary shapes, a general method for obtaining both
the eigenvalues and eigenstates of Dirac fermions did not
exist [10].

A number of areas in physics can benefit enormously from
an efficient method for solving the Dirac equation. The most
relevant area is graphene physics. Graphene ribbons exhibit
a linear energy-momentum relation near any of the Dirac
points in the energy-band diagram, which is a characteristic
of relativistic quantum motion of massless fermions. In the
presence of short-range potentials, two Dirac points are
coupled together. It is, thus, of basic interest to investigate
the behavior of pure Dirac fermions to distinguish them from
those due to the coupling of two relativistic particles. In
a recent work [10], a method was developed to study the
effect of Dirac fermions in graphene employing the transfer-
matrix technique, which addresses the transport properties
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of a graphene ribbon with periodic boundary conditions in
the transverse direction. However, most existing works on
quantum transport properties of graphene systems were carried
out in, for example, the tight-binding Hamiltonian framework
derived from the nonrelativistic Schrödinger equation [11].

In this paper, we develop a general and efficient method
to solve the Dirac equation for massless fermions in a
two-dimensional closed system. An obstacle to obtaining
a complete solution of the Dirac equation, which includes
both eigenvalues and eigenfunctions, is the proper handling
of the boundary conditions. We shall develop an efficient
discretization scheme and a physically meaningful approach
to treating the boundary conditions, based on converting the
Dirac equation into a set of matrix equations. In our method,
the physical symmetries of the system are well preserved. To
validate our method, we consider three types of representative
geometric confinements, which include domains that generate
both integrable and chaotic motions in the classical limit,
and calculate the complete spectrum of eigenvalues and
the associated eigenvector set. In particular, in the case
of integrable geometries for which analytic predictions of
the eigenvalues and eigenvectors are available, we obtain
excellent agreement between the numerical and analytic
results. For more general geometries, including classically
chaotic systems, the properties of our calculated eigenvalue
spectrum, such as the energy level-spacing statistics, agree well
with the known results for different symmetry classes [9]. In
fact, our method is capable of finding eigenstates of Dirac
fermions under arbitrarily electrical potential profiles. Our
matrix formulation can be applied directly to one-dimensional
systems and, by a straightforward extension of the Dirac
spinor to four components and by a proper revision in the
discretization and boundary constraints, the method can be
extended to solving the Dirac equation in three dimensions as
well. Our main finding is that the relativistic, spinor type of
wave functions associated with Dirac fermions can be highly
nonuniform in chaotic billiards, and truly relativistic quantum
scars do exist.

We remark that in the earlier work of Berry and Mondragon
on neutrino billiards [9], eigenvalues were computed using
the boundary-integral method. However, the Green’s function
utilized in the boundary integral is the one associated with open
systems. They showed that the higher-order correction terms
of the Green’s function due to boundaries do not contribute
to the energy spectrum. However, for a complete solution
set, where not only eigenvalues but also eigenfunctions are
of interest, it is necessary to obtain the Green’s function
for the closed system, which is not feasible for arbitrary
shaped domains and not necessarily smooth boundaries under
the framework of boundary integrals. Consequently, one still
needs an appropriate discretization scheme to solve the closed-
system Dirac equation, either by numerically evaluating the
Green’s function or by solving the eigenvalue problem directly.

In Sec. II, we detail our method for obtaining complete
solutions of the Dirac equation in two-dimensional closed
systems, focusing on proper handling of boundary conditions
and on the articulation of discretization scheme. In Sec.
III, we test our algorithm using an idealized domain for
which analytic solutions of the Dirac equation can be written
down, and obtain further validation by calculating the energy

level-spacing statistics for three different types of closed
geometries. Calculation of the eigenstates establishs firmly
the existence of relativistic quantum scars in Dirac fermion
systems. In Sec. V, we present conclusions and a discussion.

II. METHOD

A. Background

A subtle and challenging issue in solving the Dirac equation
is the proper treatment of the boundary conditions [12]. Due
to the finite domain and the first-order nature of the Dirac
equation, a naive treatment of the boundary conditions will
lead to trivial or even nonphysical solutions. One example is
the relativistic particle in a one-dimensional box. By simply
letting the whole spinor go to zero at the walls of the
box, only a trivial (all-zero) solution of the eigenfunctions
are obtained. To overcome this difficulty, many self-adjoint
extensions of the boundary conditions in both Dirac and Weyl
representations have been proposed [13]. For example, in
(1 + 1) dimensions, one family of boundary conditions is to
force either the large or the small component of the spinor
to be zero at the walls of the box. Some variances of these
boundary conditions also exist [14,15], e.g., by assuming that
the large component vanishes at one boundary and the small
component vanishes at the other or by assuming that both
components differ by factors ±i. Some of these boundary
conditions also preserve the physical symmetries, such as P
and CPT symmetries. However, these types of conditions are
not all appropriate in (2 + 1) dimensions, because the walls
of the box are impenetrable. Physically, this means that the
relativistic current j = cψ†σψ normal to the boundaries must
vanish. The vanishing current condition has been used in the
bag model [16–18] of quark confinement, which solves the
Dirac equation with a Lorentz scalar potential. It was assumed
that the rest mass of the particle m(r) is a position-dependent
parameter. One could then solve this infinite-well problem
for the particle of varying mass, letting the mass go to infinity
outside the box in order to take into account the Klein paradox.
A similar method was adopted by Berry et al. [9] for studying
random-matrix theory and energy level-spacing statistics for
relativistic neutrino billiards. We consider a two-dimensional
closed system within which a relativistic, massless fermion
is confined, as shown schematically in Fig. 1. The system is
governed by the Dirac equation in (2 + 1) dimensions,

ih̄∂tψ(t) = Ĥψ(t), (1)

where the general form of the Hamiltonian is given by

Ĥ = c(α · p) + βmc2 (2)

and ψ is a two-component Dirac spinor. Assuming stationary
solution ψ(t) = ψ exp(−iEt/h̄), we obtain the steady-state
Dirac equation

Ĥψ = Eψ. (3)

In two dimensions, α = σ = (σx,σy) and β = σz are choices
satisfying all anticommutation/commutation relations of
Dirac/Lorentz algebra [19].

To obtain the proper boundary conditions, two methods can
be employed: We either replace the mc2σz term with a potential
U (r)σz in the Hamiltonian and let U (r) go to infinity outside
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FIG. 1. (Color online) Schematic picture of closed Dirac system
with arbitrary geometry and zero outgoing flux boundary condition
j · n = 0. This boundary condition is equivalent to χ/φ = i exp(iθn)
with θn being the argument of the surface normal n.

the domain or use the vanishing current condition j · n = 0,
where n is the boundary surface normal, as shown in Fig. 1.
The latter method yields

Re(eiθnφ/χ ) = 0,

where φ and χ are the components of the Dirac spinor, ψ =
(φ,χ )T , and θn is the argument of the surface normal n. The
boundary condition can then be written as [9]

χ/φ = i exp(iθn). (4)

When an external electric potential energy V is present, E is
replaced by E − V . For massless fermions, we then can write
the Dirac equation as

[v(σ · p) + V ] ψ = Eψ, (5)

where we replace c by v for more generalized cases or, for
instance, in graphene, by the Fermi velocity vF ∼ 106 m/s.

B. Discretization scheme and elimination of fermion
doubling effect

To numerically solve the Dirac equation, it is necessary to
develop an efficient and physically meaningful discretization
scheme. Unlike the standard discretization of second-order
differential equations such as the Schrödinger equation,
discretization for the massless Dirac equation is a much harder
problem. An important issue is that the usual finite difference
methods fail because they introduce the so-called fermion-
doubling effect, even for open or periodic boundaries. Fermion
doubling is also a problem for lattice QCD computations
[16–18].

To explain the fermion-doubling phenomenon, we take the
one-dimensional Dirac equation,

ih̄∂tψ = ih̄vσx∂xψ, (6)

 

 

Spinor

Dirac Eq.

Boundary

Δ

Δ

FIG. 2. (Color online) Proposed discretization scheme to elimi-
nate any fermion-doubling effect. A two-dimensional domain, which
exhibits chaos in the classical limit, is illustrated to show the
discretized lattice. Red solid circles and blue open circles spaced by
	 represent the boundary and inner lattice points, respectively, where
the Dirac spinor values are sampled. The actual Dirac equations are
evaluated at black cross points, the centers of unit cells.

as an example. Using the usual lattice grid x = n	 and the
central difference approximation,

∂xψ(n) = [ψ(n + 1) − ψ(n − 1)]/(2	),

the Fourier transformed equation is

ih̄∂t ψ̃ = [h̄vσx sin(px	)/	]ψ̃ = H̃ ψ̃. (7)

We see that the energy is given by

|E| = |h̄vσx sin(px	)/	|. (8)

In the first Brillouin zone (BZ) where p ∈ [−π/	,π/	], the
energy expression means that there are more than one point
satisfying the linear energy-momentum relation, implying
fermion doubling. Previous works [20,21] provided a solution
to eliminate this effect.

Figure 2 shows our proposed discretization method, which
consists of two steps. First, we discretize the whole do-
main using a two-dimensional lattice. The Dirac spinors are
evaluated at lattice points (m,n). Second, we evaluate the
Dirac equation at the center of each unit cell, (m + 1

2 ,n + 1
2 ).

In the Hamiltonian, the derivatives of the Dirac spinor are
approximated by

∂xψm+ 1
2 ,n+ 1

2
= ψm+1,n+1 + ψm+1,n − ψm,n+1 − ψm,n

2	
,

∂yψm+ 1
2 ,n+ 1

2
= ψm+1,n+1 + ψm,n+1 − ψm+1,n − ψm,n

2	
.

The spinors at the unit cell centers are approximated as the
average of the four spinor values from the neighboring lattice
points, i.e.,

ψm+ 1
2 ,n+ 1

2
= 1

4 (ψm+1,n+1 + ψm,n+1 + ψm+1,n + ψm,n). (9)

Using this numerical scheme, the phenomenon of fermion
doubling can be eliminated.

C. Incorporation of boundary conditions and matrix
representation of Dirac equation

It is worth noting that in closed systems, such as rectangles
and billiards, the number of Dirac equations at unit cell centers
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(denoted as M) is less than the number of total spinors at lattice
points (denoted as N ), i.e., M < N . The difference needs
to be accounted for by the boundary conditions. To explain
how boundary conditions are incorporated in our solution
procedure, we write the Dirac equation in matrix form. In
particular, we let � = (ψ1,ψ2, . . . ,ψN )T be the column vector
containing all spinor values on the lattice, where � actually
has 2N components. Let Dx/(2	), Dy/(2	), and A/4 be the
matrix form of the operators ∂x , ∂y , and the averaging operator
in Eq. (9), respectively. These matrices are all of dimension
M × N . In matrix form, Eq. (5) becomes[

−2ih̄v

	
(Dx ⊗ σx + Dy ⊗ σy) + V A ⊗ 12

]
� = EA ⊗ 12�.

(10)

Since we have 2M equations, we need 2N − 2M boundary
conditions that can be written as

B� = 0, (11)

where B is a (2N − 2M) × 2N matrix. Realizing that not all
spinors are independent, we permute the spinor vector by

� ′ = P� =
[

�D

�B

]
, (12)

where �D are independent Dirac spinors and �B are spinors
at the boundary that can be expressed by other components in
�D , and P is an orthogonal permutation matrix. Defining

H ′ =
[
−2ih̄v

	
(Dx ⊗ σx + Dy ⊗ σy) + V A ⊗ 12

]
P T ,

A′ = A ⊗ 12P
T , and B ′ = BP T , we obtain

H ′� ′ = EA′� ′, B ′� ′ = 0. (13)

Utilizing the boundary conditions, �B can be explicitly
expressed by �D . Let B ′ = [B1,B2], where B2 is a square
matrix. We write

�B = −B−1
2 B1�D.

Letting H ′ = [H1,H2] and A′ = [A1,A2], where H2 and A2

are square matrices, and substituting �B into H ′� ′ = EA′� ′,
we finally obtain

HD�D = E�D, (14)

where

HD = (
A1 − A2B

−1
2 B1

)−1(
H1 − H2B

−1
2 B1

)
.

One issue with the newly defined Hamiltonian HD is that it is
not Hermitian in general. This non-Hermitian characteristic is
caused by the finite domain and lattice approximation of the
original smooth boundaries. However, the eigenvalues of HD

are all real. To overcome this difficulty, we introduce

H = (HD + H
†
D)/2, (15)

the Hamiltonian for a new physical system, where the diffi-
culties associated with nonsmooth boundaries due to lattice
discretization are overcome. For small values of 	, the energy
spectra of the two systems are identical, and the eigenstates
of the two systems are very close to each other, especially at

low energies, where the discretized system mimics the Dirac
equation perfectly.

III. RESULTS

A. Solutions in analyzable geometry

To validate our method, we, first, choose a simple ge-
ometry, for which the eigenvalues and eigenstates of the
Dirac equation can be calculated analytically, and compare
directly the numerical results with the analytic ones. Even for
very simple geometry, due to the entanglement of the two
Cartesian coordinates in the Dirac equation, the problem is
not analytically solvable except for certain special types of
boundary conditions for which the variables can be separated.
One particular class of solvable systems are those with circular
boundaries, whose general solutions are

ψn = Nne
inθ

[
Zn(kr)

sgn(E − V )ieiθZn+1(kr)

]
, n = 0, ± 1, . . . ,

(16)

where k = |E − V | /(h̄v) and Nn is a normalization constant.
For rings, Zn(x), the radial function of the spinor components,
is a linear combination of the first- and second-kind Bessel
functions, Jn(x) and Yn(x). However, for circles, Zn(x) =
Jn(x) because of the divergence of Yn(x) at the origin. For
our analytical calculation, we consider a ring with inner and
outer radii of R1 = 0.5 and R2 = 1, respectively. The electrical
potential is set to zero, V = 0, for simplicity. Analytically, one
can arrive at the above general solution with potential having
a staircaselike profile in the radial direction but constant in
the angular direction. However, one can solve the case with
arbitrary potential numerically, even when the ring is not full.
Setting the potential to be zero, we can find the energy levels
for each angular mode through the inner and outer boundary
conditions, E(n)

m = h̄vk(n)
m , where k(n)

m is obtained by solving

[Jn+1(kR1) + Jn(kR1)] [Yn+1(kR2) − Yn(kR2)]

[Jn+1(kR2) − Jn(kR2)] [Yn+1(kR1) + Yn(kR1)]
= 1. (17)

The eigenstates can be calculated after the normalization
constants N (n)

m are computed. Results of these analytical
calculations as compared with those from numerics are shown
in Fig. 3. Almost no discrepancy can be observed. As indirect
evidence, the analytical energy spectrum gives statistical
results (to be discussed below) identical to numerical results,
as shown in Figs. 4–6 (first column) and in Fig. 7.

B. Relativistic quantum energy-level statistics and eigenstates
in two-dimensional geometries

We validate our method by calculating the energy level-
spacing statistics [22,23] for relativistic quantum billiards.
Figures 4–6 show results of level-spacing statistics for three
representative geometric domains: a relativistically integrable
ring, a chaotic billiard with one geometric symmetry about
the central vertical line, and the so-called Africa shaped
billiard [9] without any geometrical symmetry, respectively. In
relativistic quantum systems, we have a linear relation between
energy level and the square root of spectral staircase N (E),
E ∝ √

N (E), where N (E) denotes the number of eigenstates
between zero and energy E. To confirm that the numerical
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FIG. 3. (Color online) Comparison of numerical and analytical
results of eigenenergies and eigenstates for the ring cavity. The lowest
80 positive eigenenergy levels and two examples of the eigenstates
from numerics (blue square or above the energy spectrum) and
theory (red cross or below the energy spectrum) are compared. The
convenient unit convention h̄ = v = 1 was used in the numerical
computation.

results preserve the physical properties of the system, we
investigate the nearest-neighbor fluctuations of the energy
spectra. For relativistically integrable quantum systems, for
example, circles or rings governed by the Dirac equation, the
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FIG. 4. (Color online) Level-spacing statistics for eigenenergies
of the ring domain. Inset (a) shows spectral staircase N (E) as a
function of E2. The dashed lines represent the linear relationship
between N (E) and E2. Horizontal axes are linear mappings of E2 to
the range [0,N ], where N is the total number of eigenstates. Panel
(b) is the cumulative distribution of the nearest-neighbor spacing
FS(S) as a function of spectral spacings Sn = E2

n+1 − E2
n . Panel

(c) represents the density distribution fS(S) of FS(S) in (b). In
both the middle and bottom rows, green dash-dotted, red solid, and
cyan dashed lines denote theoretical distribution curves for Poisson,
GOE, and GUE statistics, respectively. The results of the ring are
obtained through a polar coordinate version of our numerical method
to preserve the perfect circular symmetry.
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FIG. 5. (Color online) Level-spacing statistics for eigenenergies
of the chaotic bow-tie domain. Figure legends are the same as for
Fig. 4.

level spacing statistics should be Poisson. For nonintegrable
systems, if the system preserves geometric symmetry of some
kind (such as a stadium billiard), the nearest energy-level
spacing statistics fall between those of Poisson and GOE
(Gaussian orthogonal ensemble). In the fully chaotic case, e.g.,
the chaotic billiard in Figs. 5 and 6, the GOE statistics apply.
However, if no geometric symmetry is present in the system,
e.g., the Africa billiard, the level-spacing statistics should be
those given by GUE (Gaussian unitary ensemble) according
to the result of Berry and Mondragon [9].

In addition to the linear statistics, we also consider an
informative least-squares statistic of the energy spectra, the
spectral rigidity of the third type, 	3 [22,23], as a function
of energy range L, where [0,L] denotes the range of energy
levels under consideration. Figure 7 shows the 	3 statistics
for the three domains we considered, as well as theoretical
expectation curves for Poisson, GOE, and GUE statistics,
where an excellent agreement is obtained for all cases.
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FIG. 6. (Color online) Level-spacing statistics for eigenenergies
of the chaotic Africa domain. Figure legends are the same as for
Fig. 4.
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FIG. 7. (Color online) Spectral rigidity 	3(L) for the three
domains in Figs. 4–6. Lines with different styles denote theoretical
expectations of spectral rigidity for the respective statistics.

Representative eigenstates for nonintegrable billiards are
shown in Fig. 8 for the bow-tie chaotic billiard and in Fig. 9
for the chaotic Africa billiard. These are examples of truly
relativistic quantum scars from the Dirac equation. We note
that quantum scars have been observed in graphene systems [7]
in the regime where the energy-momentum relation is linear,
but they are still solutions of the Schrödinger equation obtained
by the tight-binding method. The scars shown in Figs. 8 and
9 are obtained by solving the Dirac equation which, to our
knowledge, have not been reported previously.

IV. BOUNDARY CONDITIONS IN GRAPHENE SYSTEMS

Because of the high relevance of our method for solving
the Dirac equation to experimental graphene systems, it
is insightful to examine such systems with the kind of

(a) (b)

(c) (d)

FIG. 8. (Color online) Examples of eigenstates of the Dirac
equation for a bow-tie chaotic billiard. The maximum height (vertical
distance from tip to base) is set to 1, and the distance between two
tips is 2. Panels (a)–(d) are for E = 36.1335, 43.0190, 27.9300, and
36.2729, respectively. Panels (a) and (b) show the φ component, while
(c) and (d) show the χ component.

(a) (b)

(c) (d)

FIG. 9. (Color online) Examples of eigenstates of the Dirac
equation for the chaotic Africa billiard. The domain is confined
within a rectangular box x ∈ [−0.99,1.35] and y ∈ [−1.22,0.92].
Panels (a)–(d) are for E = 15.0468, 32.7638, 13.4838, and 15.2402,
respectively. Panels (a) and (b) show the φ component, while (c) and
(d) show the χ component.

boundary conditions treated in Ref. [12]. As explored there,
graphene lattice terminated in an arbitrary orientation usually
possesses complicated boundary conditions, as can be seen
from Eqs. (3.8) and (3.9) in Ref. [12]. In the summation
form in Eq. (3.10), only the terms with |λ| = 1 form the
four-component spinor in the Dirac equation, and the rest
of them describe how the boundary modes decay from the
edge. By such an analysis, the authors of Ref. [12] found
that, for most orientations, the boundary condition should be
zigzag-like. The staggered boundary potential in graphene
mimics the infinite-mass confinement for Dirac particles,
leading to a boundary condition that sits on an extreme point
opposite from the zigzag one. Consequently, the boundary
conditions for confined Dirac particles and for the terminated
graphene lattice differ somewhat.

From the point of view of symmetry, graphene system
in the absence of magnetic field preserves the time-reversal
symmetry, which is the starting point of Ref. [12]. The
staggered lattice potential breaks the pseudospin symmetry
of the sublattice, which resembles the symplectic symmetry of
a spin system but preserves the true time-reversal symmetry.
A unique characteristic of graphene systems is the occurrence
of pseudospins. However, the Dirac equation describes the
behavior of a single relativistic quantum particle, for which
the phenomenon of pseudospins does not exist. As a result,
for relativistic quantum systems described by the Dirac
equation, the mass term (not necessarily infinite) breaks the
true time-reversal symmetry. This difference can be revealed,
for example, by the statistics of the energy-level spacing in the
corresponding classes of classically chaotic billiards, where
the graphene billiard exhibits GOE statistics, while the Dirac
billiard has the GUE statistics.

Reference [12] studies the boundary conditions of a
continuous Dirac-like equation for the pseudoparticles of
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graphene systems, as imposed by the discrete-lattice structure
of graphene. A complete description of graphene incorporating
boundaries needs four-component spinors due to the presence
of a pseudospin for A and B atoms in a unit cell and a
pseudospin for the two nondegenerate valleys. The method
we have developed to solve the 2D Dirac equation with
two-component spinors thus describes the relativistic quantum
motion of the graphene pseudoparticles in the absence of
intervalley scatterings. Since the boundaries of graphene flakes
will, in general, mix quantum dynamics associated with the
two valleys, the two-component Dirac equation cannot provide
a complete description of such situations. Our point is that
we have developed an efficient method to solve the Dirac
equation in an arbitrary shaped billiard, and the method can
be used to provide deep understanding of phenomena such as
scars and pointer states in quantum dots made of materials with
linear energy-momentum dispersion relation such as graphene.
While, in general, systems described by the Dirac equation are
not identical to experimentally widely investigated quantum-
dot systems, locally the dispersion relation is the same. Our
method thus can be used to probe such quantum-dot systems
and gain deeper insights through investigation of the Dirac
billiards for the low-energy states, despite the differences in
the boundary conditions between the Dirac and experimental
graphene systems.

V. CONCLUSION AND DISCUSSIONS

To obtain solutions of the Dirac equation in arbitrary two-
dimensional geometries, which includes complete sets of both
eigenvalues and eigenfunctions, it is essential to address the
question of whether truly relativistic quantum scars in chaotic
billiards exist. Such a method is also necessary for studying

and exploring relativistic quantum behaviors and phenomena
in graphene systems. We have developed a general method to
address this outstanding issue. The innovative aspects of our
method are a proper incorporation of the boundary conditions
and an efficient discretization scheme to represent the Dirac
equation in matrix form. For a classically integrable system in
a circular domain for which analytic solutions of the Dirac
equation are available, our method yields results that are
in excellent agreement with the analytic ones. For general
geometries, including those whose dynamics are chaotic in
the classical limit, our method yields the correct statistics of
the solutions, such as the energy level-spacing distributions.

We anticipate that our method or its variants will become
a basic tool to address a host of problems arising in the
study of relativistic quantum mechanics in condensed matter
devices. We have focused our effort on planar system mainly
because graphene is two dimensional. However, our method
can be reduced straightforwardly to one-dimensional systems.
Extension to three-dimensional systems is also feasible.
Particularly, in three dimensions, the Dirac spinor consists of
at least four components and the Dirac tensors α and β should
be modified accordingly. One can still use the zero outgoing
current flux and a similar lattice discretization, where now the
Dirac equation needs to be evaluated at the centers of unit
lattice cubes.
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