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We study the collective dynamics of oscillator-network systems in the presence of noise. By focusing on the
time-averaged fluctuation of dynamical variable of interest about the mean field, we discover a scaling law
relating the average fluctuation to the node degree. The scaling law is quite robust as it holds for a variety of
network topologies and node dynamics. Analyses and numerical support for different types of networks and
node dynamics are provided. We also point out an immediate application of the scaling law: predicting
complex networks based on time series only, and we articulate how this can be done.
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I. INTRODUCTION

An outstanding topic in nonlinear and statistical physics is
concerned about the effect of noise on dynamical systems.
Significant phenomena discovered so far include stochastic
resonance �1�, coherence resonance �2�, and noise-induced
synchronization �3�, etc. Our interest in this paper is in the
dynamics of large complex networks in the presence of
noise. Despite tremendous recent efforts on complex-
network dynamics, the issue of noise has been somewhat
overlooked. The presence of noise is, however, ubiquitous in
realistic, physical, and other natural systems. Since our dy-
namical system consists of a large number of oscillatory
units interacting with each other in a complicated manner, it
is meaningful to define, for any given time, a mean field �x�E
based on some dynamical variable of interest, say x�t�, where
� · �E stands for “space” average over the network elements.
For node i, because of dynamical evolution under noise, in
time its corresponding dynamical variable will fluctuate
about the mean field. The average fluctuation over a long
observational time interval can then be defined: �xj

2

���xj�t�− �x�E�2�T, where � · �T denotes the time average. The
phenomenon that we wish to report here is that this time-
averaged fluctuation scales with the degree kj �the number of
links� of the node as

�xj
2 � kj

−1. �1�

A feature is that this scaling law holds for a variety of net-
work topologies and node dynamics �4,5�. An application of
our finding is that, since �xj

2 can be calculated purely and
efficiently from time series and because of the one-to-one
correspondence between �xj

2 and the node degree, the scal-
ing law provides an efficient way to predict the node degrees
and consequently hub nodes from network whose detailed
topology and node dynamics are not known. Thus, our main
result, besides being fundamental to nonlinear physics, also
addresses a pressing issue of significant practical interest:
network prediction based on time series �6�.

In Sec. II, we describe the general method that we use to
establish scaling law �1�. In Sec. III, we provide extensive
numerical evidence for Eq. �1�. A theoretical derivation of
Eq. �1� is offered in Sec. IV. In Sec. V, we articulate a sig-

nificant application of scaling law �1�: prediction of complex
networks based on measured time series. Conclusions are
presented in Sec. VI.

II. METHOD

An oscillator network of N nodes under noise can be mod-
eled by the following set of coupled stochastic differential
equations:

ẋ j = F�x j� − c	
l=1

N

GjlH�xl� + � jM , �2�

where j=1, . . . ,N, Gjl is the coupling matrix, H�x� is a cou-
pling function, c is the coupling strength, M= �1,0 , ¯ ,0�T,
and � j denotes noise. To establish scaling law �1�, we con-
sider three types of complex-network topologies �scale free
�7�, small world �8�, and random �9�� and the following three
representative dynamical processes:

�1� consensus dynamics �10�. Consensus problems have a
long history in computer science and form the foundation of
the field of distributed computing. In a network of agents, for
example, “consensus” means reaching an agreement regard-
ing a policy that depends on the states of all agents. A typical
consensus dynamics in the presence of noise can be de-
scribed as ẋj =c	l=1

N Ajl�xl−xj�+� j, where xj�t� is node j’s
state at time t and Ajl is the adjacency matrix of the network.

�2� Chaotic dynamics. We use the chaotic Rössler system
described by


ẋj = − yj − zj + c	l=1

N
Ajl�xl − xj� + � j ,

ẏ j = x + 0.2yj + c	l=1

N
Ajl�yl − yj� ,

ż j = 0.2 + zj�xj − 9.0� + c	l=1

N
Ajl�zl − zj� .

� �3�

�3� Kuramoto phase oscillators �11�. The model has been
a paradigm for studying biological and physical systems of

large numbers of units interacting through their phases: �̇ j
=� j +c	l=1

N Ajl sin��l−� j�+� j, where � j and � j are the phase
and the natural frequency of oscillator j.
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III. NUMERICAL RESULTS

A. Model networks

We begin by presenting numerical evidence for Eq. �1�.
Figure 1�a� shows the scaling of �x2�k� with k for consensus
dynamics for different types of networks under noise of vari-
ous amplitudes, where �x2�k� is computed after the system
settles in a steady state. We observe that, regardless of the
network topology and of the noise strength, on a logarithmic
scale all scaling curves fall on parallel straight lines of slope
−1. After a proper rescaling of �x2�k� �as suggested by our
theoretical analysis below�, all data collapse into the single
curve 1 /k. Essentially the same results have been obtained
for the chaotic Rössler dynamics and for the Kuramoto
model, as shown in Figs. 1�c� and 1�e�, respectively. All
these suggest strongly the existence of scaling law �1�.

B. Real-world networks

Since realistic networks may possess topological proper-
ties that are not captured by model networks, we set out to
test whether scaling law �1� holds for real-world networks. In
particular, we investigate the three types of node dynamics
on six real-world networks from social, biological, and tech-
nological contexts. Simulation results are shown in Figs.
2�a�–2�c�. Again, the rescaled average fluctuations collapse
to the curve 1 /k, indicating the applicability of Eq. �1� to
real-world networks.

C. Clustered network and nonidentical oscillators

We also test the applicability of the scaling law for clus-
tered networks with community structures and coupled non-
identical oscillators. In the community networks, nodes are
densely connected within a community but there are sparse
links between communities. Simulation results are carried
out by adopting the identical Rössler systems on community
networks. For the nonidentical oscillators, we choose the
nonidentical Rössler systems as an example to make a com-

parison with the identical oscillators. The nonidentical
Rössler system is described as follows:


ẋi = − �iyi − zi + c	 j=1

N
Aji�xj − xi� + �i

ẏi = �ixi + 0.2yi + c	 j=1

N
Aji�yj − yi�

żi = 0.2 + zi�xi − 9.0� + c	 j=1

N
Aji�zj − zi�

� , �4�

where �i governs the natural frequency of an individual os-
cillator and �i for an arbitrary node i is randomly chosen
from a range �a1 ,a2�. As shown in Fig. 3. One can still find
the scaling law for both community networks and noniden-

FIG. 1. �Color online� Average fluctuation �x2�k� as a function of the node degree k for different values of noise variance �2 and coupling
strength c on scale-free, random, and small-world networks for �a� consensus dynamics, �c� Rössler dynamics, and �e� Kuramoto dynamics.
�b�, �d�, and �f� Rescaled quantity �x2�k� /�, where �=�2�1+1 / �k�� / �2c�, versus k for consensus, Rössler and Kuramoto dynamics,
respectively. Data points are from a single network configuration, and �x2�k� is obtained by averaging over all nodes of degree k with error
bars. The parallel lines in �a�, �c�, and �e� are theoretical predictions from Eq. �13�, and the lines in �b�, �d�, and �f� are the function 1 /k.
Network size is 500. For the scale-free network, the lowest degree is kmin=5. For the random network, the connection probability among
nodes is 0.03. For the small-world network, the average degree is 8 and the rewiring probability is 0.1. The natural frequency �i in the
Kuramoto model is chosen independently from a prescribed probability distribution g���=3 /4�1−�2� for ����1 and g���=0 otherwise.

FIG. 2. �Color online� For six different types of real-world net-
works and the three types of node dynamics �a� consensus, �b�
Rössler, and �c� Kuramoto considered in this paper; rescaled quan-
tity �x2�k� /� versus k. The blue line is the rescaled theoretical
result 1 /k. The real-world networks are from social, biological, and
technological contexts. In particular, they are: �1� network of politi-
cal book purchases �book� �14�; �2� social network of friendships of
karate club �karate� �15�; �3� network of American football games
among colleges �football� �16�; �4� electron circuit networks �elec-
tronic circuit� �17�; �5� dolphin social network �Dolphins� �18�; and
�6� the neural network of C. Elegans �8�.
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tical Rössler systems with good agreement with the theoret-
ical prediction.

IV. THEORY

A. Unweighted networks

We now provide an analytic theory for scaling law �1�.
For the consensus dynamics, the variational equation about
the consensus state is

�ẋj = − ckj�xj + c	
l=1

N

Ajl�xl + � j , �5�

where �xj =xj − �x� and �x�= �1 /N�	l=1
N xl�t�. Under noise,

�xl�t� is also a random variable. However, comparing to the
Gaussian noise � j, we numerically find that the contribution
of the summation term to the fluctuation of �xj is negligible.
Therefore, we shall first neglect this term to obtain the
zeroth-order approximation for �xj�t� �or �xl�t��. The result
can then be used to obtain the first-order correction due to
the summation term. Neglecting this term in Eq. �5� leads to

�ẋj + ckj�xj = � j . �6�

This is a linear stochastic differential equation. Regarding � j
as the input and �xj as the output, the transfer function is
given by

Hj�2�if� =
1

2�if + ckj
. �7�

The power spectral densities �PSDs� of the output �xj can
then be written as

S�xj
�f� = �Hj�2�if��2S�j

�f� , �8�

where i is the imaginary unit, and S�j
=�2 is the PSD for the

Gaussian white noise � j. From numerical observations we
find that �xl are approximately independent. Denoting
c	l=1

N Ajl�xl as X j, we have,

SXj
 c2	

l=1

N

AjlS�xl
= c2	

l=1

N
Ajl�

2

4�2f2 + c2kl
2 

c2kj�
2

4�2f2 + c2�k�2 .

�9�

Here, the approximation in Eq. �9� to neglect any degree-
degree correlation can be considered as a higher-order ap-
proximation. Equation �5� can then be rewritten as

�ẋj + ckj�xj = X j + � j . �10�

Treating X j and � j as independent noise inputs, we have
S�xj

�f�= �Hj�2�if��2�SXj
�f�+S�j

�f��. The variance of output
�xj is thus given by

��xj
2�T = �

−	

	

S�xj
df = �

−	

	

�H�2�if��2�SXj
�f� + S�j

�f��df .

�11�

Inserting the results for SXj
and S�j

and integrating Eq. �11�,
we obtain

��xj
2�T 

�2

2ckj
+

�2

2c�k��kj + �k��
, �12�

where the second term on the right-hand side is the contri-
bution from c	l=1

N Ajl�xl. For nodes with large degrees, kj

 �k�, we have

��xj
2�T 

�2

2ckj
�1 +

1

�k�
� . �13�

For nonlinear or chaotic node dynamics, the technique of
variational equations can be used. In general, this can be
done as follows. Without noise, the dynamical system can be
written as ẋ j =F�x j�−ckjx j +c	lAjlxl, where x��x ,y ,z�T.
When oscillators are in the vicinity of the synchronization
state, a variational approach yields �ẋ j −ckj�x j
+c	lAjl�xl. Consider, for example, the case where noise is
applied to the first component of the Rössler system. We
have �ẋj =−ckj�xj +c	lAjl�xl+� j, which is identical to Eq.
�5�. Scaling law �1� should then hold for generic chaotic
node dynamics.

For the Kuramoto model, in the vicinity of the synchro-
nization state, the sinusoidal function can be approximated
by a linear function: sin��l−� j��l−� j. The dynamical sys-

tem thus becomes �̇ j =� j −ckj� j +c	l=1
N Ajl�l+� j. The varia-

tional equation is given by ��̇ j =−ckj�� j +c	l=1
N Ajl��l+� j,

which is the same as Eq. �5� for the consensus dynamics. We
thus expect scaling law �1� to hold for the nonidentical Kura-
moto type of node dynamics as well.

Note that, although a complete synchronization state in
the absence of noise is not necessarily required for scaling
law �1�, all oscillators should be in an approximately syn-

FIG. 3. �Color online� �x2�k� as a function of degree k for �a� a
clustered network of identical Rössler oscillators and �b� noniden-
tical Rössler oscillators on a scale-free network. The clustered net-
work has two clusters of different sizes: one contains 400 nodes and
another has 100 nodes. The connection probability within each clus-
ter is 0.1, and that between nodes from different clusters is 0.001.
The scale-free network is the same as in Fig. 1. The lines are the-
oretical predictions from Eq. �13�.
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chronous state to ensure similar oscillation modes. For the
consensus dynamics, a consensus state �synchronization� can
be naturally achieved, regardless of the network structure
and the coupling strength. In this case, we expect scaling law
�1� to be robust. For nonlinear dynamics such as those give
by the Rössler system, the master-stability function provides
a sufficient condition for the validity of scaling law �1�. For
instance, for a V-shape master-stability function, to drive the
system to an approximately synchronization state, coupling
strengths among nodes should be chosen in a certain range
determined by both the master-stability function and the ei-
genvalues of the Laplacian matrix. Otherwise, for relatively
low or high values of the coupling strength, node degrees
and fluctuations may be uncorrelated or the system may di-
verge, respectively. For a complex clustered network, if the
clusters are loosely connected and coupling strengths are
small, oscillators in different clusters cannot achieve syn-
chronization due to the weak coupling among clusters, and
scaling law �1� may not be valid. Analogously, strong hetero-
geneity in degree distribution precludes synchronization as
well, so scaling law �1� can break in strongly heterogeneous
networks. However, for nonlinear dynamics, when oscilla-
tors’ states are reasonably correlated, the variational equation
by linearization is applicable. In this case, the derivations for
the scaling law can be valid even under a first-order approxi-
mation. Indeed, our theoretical predictions for the three types
of dynamics agree with the numerical results very well.

B. Weighted networks

In general, we can show that the scaling law is a property
of weighted networks associated with the general dynamical
system described by Eq. �2�. The variational equation is

�ẋ j = DF�x��x j − c	
l=1

N

GjlDH�x��xl + � jM

= �DF�x� − cDH�x�sj��x j − cDH�x� 	
l=1,l�j

N

Gjl�xl + � jM ,

�14�

where sj =Gjj is the strength of node j and 	l=1
N Gij =0. For

high-degree nodes and large c, we have DF�x�−cDH�x�sj
−cDH�x�sj. Focusing on one component �derivations for
other components are similar�, say �xj, we have

�ẋj = − c�DH�11sj�xj − c�DH�11	
l�j

Gjl�xl + � j , �15�

where �DH�11 is a constant for linear coupling and the small
influences of the couplings from other components have
been neglected �12�. Note that this equation has the same
form as Eq. �5�. We can thus obtain a general scaling law

��xj
2�T 

�2

2c�DH�11sj
�1 +

1

�s�
� . �16�

To be more general, we note that the coupling matrix G can
be weighted: Gij =−Aijwij, where wij is the edge weight. For
unweighted networks, we have sj =kj. We study both the ho-

mogeneous and heterogeneous edge weights to test the
theory for weighted networks. The homogeneous edge
weight wij is randomly chosen from a range �a1 ,a2�. The
heterogeneous edge weight is

wij = �kikj��, �17�

where ki and kj are the degrees of nodes i and j. Figure 4
shows examples of general scaling law �16� for both homo-
geneously and heterogeneously weighted networks, where
the node dynamics are that of the chaotic Rössler oscillator.
We see that simulation results agree well with the prediction
from Eq. �16�.

V. APPLICATION: PREDICTING COMPLEX NETWORKS

We shall elaborate a significant application of scaling law
�1�: network prediction based on time series �13�. The prob-
lem can be stated as follows. Given an unknown network and
given a set of measured time series from the network, can
one infer certain properties of the network based solely on
the time series? Our point is that scaling law �1� allows an
important characteristic of the network, the node degree
�consequently hub nodes�, to be detected. Our proposed
method is as follows. We first estimate the degree kl of an
arbitrary node �say l�. This can be done by disabling any
node that is connected to node l. Denote this node by m.
When it is disabled, the degree of node l becomes kl−1 and
its average fluctuation becomes

FIG. 4. �Color online� Average fluctuation �x2�s� as a function
of the node strength s for weighted small-world and scale-free net-
works for �a� homogeneous edge weight wij randomly chosen from
�a1 ,a2� and �b� heterogeneous edge weight wij = �kikj��, where ki

and kj are the degrees of nodes i and j. The node dynamics are
chosen �quite arbitrarily� to be that of the chaotic Rössler oscillator.
The lines are theoretical predictions from Eq. �16�. The quantities
��2 ,c� are �10.0,4.0�, �2.0,5.0�, �1.0,10.0�, and �0.5,20.0� �from top
to bottom� in �a� and �10.0,2.0�, �2.0,2.0�, �1.0,5.0�, and �0.5,10.0�
in �b�. The network parameters are the same as in Fig. 1.
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�xl�
2 =

�2

2c�kl − 1�
�1 +

1

�k�
� , �18�

which can be measured. It should be emphasized that this
can be done without explicit knowledge about the network
structure and dynamics. Taking the ratio between the original
fluctuation �xl

2 and �xl�
2 yields

�xl
2

�xl�
2 =

�2�1 + 1/�k��/�2ckl�
�2�1 + 1/�k��/�2c�kl − 1��

, �19�

which gives

kl =
1

1 − �xl
2/�xl�

2 . �20�

After kl has been estimated, the degree of any node j in the
network can be determined according to scaling law �1�,

kj = kl

�xl
2

�xj
2 . �21�

The advantage of this method is that the errors in the predic-
tions of ki and c can be eliminated. As shown in Fig. 5�a�, the

prediction error Ek of different degrees for the three types of
dynamics is generally less than 5%. The overall prediction
error averaged over all nodes is shown in Fig. 5�b�. One can
see that E for the consensus and for the Rössler dynamics is
insensitive to the increase in �, even large noise variance
�e.g., �2=200�. For the Kuramoto dynamics, if the noise
variance is not too large �say the noise amplitude is of the
order of the range of typical dynamical variables�, the pre-
diction error is small.

The noise variance can also be estimated from time series.
Consider, for example, consensus dynamics on nodes. Sum-
ming up equations for all nodes yields

	
i=1

N

ẋj = 	
i=1

N

� j . �22�

Denoting 	i=1
N xj as � and 	i=1

N � j as �, we have �̇=�, where
� follows a Gaussian distribution but of variance ��

2 =N�2.
The power spectral density of � is

S��f� =
N�2

4�2f2 . �23�

The variance �2 can be obtained by fitting the power spectral
density curve to �f−2 with �=N�2 / �4�2�. With the estimated
node degrees and noise variance, the coupling strength c can
be estimated from Eq. �13�.

VI. CONCLUSIONS

In conclusion, we have presented a scaling law for com-
plex networks: the average fluctuation of a dynamical vari-
able characterizing the node state has a power-law depen-
dence on the node degree. The scaling law holds for a variety
of network topologies and node dynamics. We have provided
theoretical analysis and extensive numerical evidence to es-
tablish the scaling law. As a significant application, the scal-
ing law can be used to address the important but challenging
problem of network prediction. In particular, based on a set
of measured time series only, the scaling law allows the node
degree and a set of hub nodes to be predicted in a computa-
tionally efficient way.
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