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Finite-size scaling of clique percolation on two-dimensional Moore lattices
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Clique percolation has attracted much attention due to its significance in understanding topological overlap
among communities and dynamical instability of structured systems. Rich critical behavior has been observed in
clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite
dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest
size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling
scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found,
interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter
dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional
site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging
two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the
critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.
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I. INTRODUCTION

It is widely accepted that the universality class of phase
transitions in percolation depends only on the space dimension
of the system and the dimension of the order parameter space
[1]. Recent studies of modified percolation models, e.g., k-
clique percolation, indicate that besides the dimensions of
space and of order parameter there exist extra degrees of
freedom in determining the universality classes. Intriguing
critical behavior deviating from the bond (site) percolation was
observed from these modified percolation models, therefore
much attention has been attracted to them recently [2–10].

The clique percolation model [11,12] can be regarded as
a minimal modified percolation model with respect to bond
percolation. A k-clique is a complete subgraph with k nodes
that are all connected with each other and plays a fundamental
role in community structure recognization and dynamical
instability characterization [13–15]. In general, two cliques are
considered to be connected if they share at least l (l < k) nodes.
Normal bond percolation can be considered as a special case of
the k-clique percolation model with parameters k = 2 and l =
1. Introducing the two variable parameters effectively expands
our understanding of the critical behavior in percolation. For
example, for the Erdős-Rényi (ER) random graph [16], as the
connection probability p between different sites increases, the
number of k-cliques also increases. The clique percolation
will take place as the density of cliques increases and the
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clusters of cliques begin to merge. A single giant clique cluster
appears at a critical point p = pc. In contrast to normal bond
percolation, around pc, the values of the critical exponents not
only depend on the definition of the order parameter [11] but
also depend on the clique parameters. Recently Fan et al. [17]
found that, for (k,l) clique percolation in an ER graph, the
critical exponents depend, surprisingly, not on the clique size
k, but only on l, the number of common nodes between two
cliques that they can be regarded as connected. For example,
when l = 1, no matter what the clique size k is, the exponents
return to the case of the normal site percolation. When l is
larger than 1, the critical exponents are different, indicating
new universal classes. Moreover, the values of the critical
exponents, e.g., the most general exponent β, decay as the
clique connection parameter l increases, which may lead to a
transition from continuous (β > 0) to discontinuous (β = 0)
phase transition at large l. Li et al. [18] also proposed a
theoretical analysis for the k-clique percolation and observed
the dependence of the critical exponents on l. Therefore, the
parameter l serves as a new crucial factor to the critical behavior
of the system and induces new universality classes different
from the normal bond percolation model. Clique percolation
is thus a general model very succinct and appropriate for
understanding various critical behaviors, universality classes,
and discontinuous transition in percolation.

The above works associated with k-clique percolation are
mainly on ER random graphs [11,15,17–19], a typical infinite
dimensional system which has solid analytical results. How-
ever, the conclusion obtained from such an infinite dimension
system may not be applicable to low-dimensional systems
[20–23]. Therefore, the critical behavior of k-clique
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percolation in low-dimensional systems is still an open issue,
and is important to gain better understanding of the clique
percolation model. In this paper, we study the clique percola-
tion on a well-defined two-dimensional (2D) lattice. We have
found that the critical behavior of the clique percolation on
the 2D lattice is quite different from that on an ER graph. For
example, the critical exponents of the (k,l)-clique percolation
on 2D lattices are independent of both k and l, and they
are the same as the normal site or bond percolation in 2D
space. A brief discussion is provided to explain the effects
from the low space dimension as well as the finite-size effect
of the system. In addition, a new method for analyzing the
finite-size effect in k-clique percolation is proposed by taking
into account both the first and the second largest jumps of the
largest clique cluster in adding bonds, which is self-consistent
and effective in obtaining the scaling exponents associated
with the correlation lengths, fluctuations, and so on. Our work
is an important supplement to the previous works of clique
percolation on ER graphs, which broadened our understanding
of the universality classes.

II. FINITE-SIZE SCALING

To understand clique percolation in 2D space, we choose
the so-called Moore lattice [25] with a periodic boundary con-
dition, where each site on a base square lattice connects to its
next-nearest neighbors, e.g., the first eight neighbors (Fig. 1).
This ensures the whole lattice is a connected clique cluster. In
our simulation, all the bonds in the Moore neighborhood are
removed initially, and bonds are randomly selected and placed
back one by one into the lattice, with the fraction of added
bonds denoted by p. During adding bonds (i.e., increasing
p), for a finite-size system, the size of the the largest clique
cluster increases due to the merger of isolated small clusters.
Typically, when varying p, the largest size jump (increment)
�1 happens due to the merger of the original first and second
largest clusters, with the size denoted by S1(p) and S2(p),
respectively. At the critical point for a finite system, which
is characterized by the peak of the susceptibility of the system,
the size of the second largest clusters also peaks [26,27]. This
leads to a maximized cluster size jump �1 at p ∼ pc, which
is S2(p). This has been widely used to estimate the critical
point and critical exponents of both real-world structures and
artificial percolation models [27,28].

In particular, for a finite system, the mergers of clique
clusters also correspond to jumps in the susceptibility χ , which

(a) (b)

FIG. 1. Illustration of Moore lattice and k-clique percolation with
the blue solid bonds occupied, and gray dashed bonds unoccupied. (a)
One local configuration on Moore lattice. (b) The largest (4,1)-clique
cluster for the configuration in (a).

is defined as [29]

χ =
∑

k

s2
k /N,

where k is the index of the finite clusters and s is the cluster’s
size. If two clusters are merged by adding a single bond, the
increment of susceptibility �χ is given by 2sisj /N , where si

and sj are the sizes of the two merging clusters. Thus the largest
cluster size jump �1 by connecting the largest clusters should
correspond to the sharpest incline of susceptibility. For an
infinite system, this should also be the point where χ diverges
[30,31], i.e., the critical point pc.

Here we propose a new computationally efficient method
in analyzing the phase transition by examining the historically
largest mergers. Given p1 where �1 takes place, in the
parameter range p < p1, we can identify the largest jump and
denote it as �2, assuming it occurred at p2. Apparently, �2 <

�1 and p2 < p1 since �2 is selected at p < p1. Repeating
this, with �i occurring at pi , we can identify the largest
jump �i+1 in the range p < pi and denote the location of
p when �i+1 occurs as pi+1. Therefore a series of historically
largest mergers of {�1,�2,�3, . . .} at p1 > p2 > p3 > · · · ,
respectively, can be determined. In the following, we shall see
that this setting in identifying the historically largest mergers
is crucial for the description of finite-size effects in clique
percolation processes.

We select the last four largest jumps, �1, �2, �3, and �4,
as examples and plot the corresponding values of 〈pc − pi〉
as a function of the system size N in Fig. 2. The scaling
behavior of 〈pc − pi〉 with N is clearly exhibited. Strikingly,
〈pc − pi〉 of different �i share the same scaling exponent.
That is to say, no matter what the value of i is, for the case with
N → ∞, the values of pi for �i approach the same critical
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FIG. 2. The average distance 〈pc − pi〉 between the theoretical
critical point pc and the ith largest jump for (2,1)-clique percolation
(the normal bond percolation) on a square lattice with respect to
network size N . The critical point for infinite system is 1/2 [24].
In each realization, the positions pi for each �i are recorded. For
different i, the fitting lines of 〈pc − pi〉 are parallel with each other,
sharing the same slope of −0.376. According to Eq. (1), the critical
exponent ν is 1.33 and coincides well with the theoretical result. For
all data, 8000 ensembles are used to do the statistics.
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value pc, which implies that all the jumps of different i will
take place simultaneously and an infinite number of clusters
will merge into one single giant cluster at pc in the case of
N → ∞. From the above observation, we obtain a clear picture
of how a cluster with infinite size abruptly emerges at pc for
the system with N → ∞, which intuitively explains the origin
of the divergence of the susceptibility at the critical point.
Furthermore, a new finite-size scaling method can be proposed
accordingly.

Typically, the correlation length ξ of the system close to
the critical point scales with p as ξ ∼ |pc(∞) − p|−ν . The
correlation length at pi is denoted by ξ (pi), thus ξ (pi) ∼
|pc(∞) − pi |−ν . As p1 is the point where the largest merger
occurs when typically the largest cluster spans the lattice,
one has ξ (p1) ∼ L [32], where L is the boundary length
of the lattice, and N = L × L is the system size. Since the
lines of 〈pc − pi〉 versus N are parallel to each other in the
loglog scale (Fig. 2), one has (pc − pj )/(pc − pi) = const.
Alternatively, by subtracting one on both sides, it can be written
as |pi − pj |/(pc − pi) = const. Since pc − pi ∼ ξ (pi)−1/ν ,
one has |pi − pj | ∼ ξ (pi)−1/ν . One can show that ξ (pi) ∼ L

by noting that

ξ (pi)

L
∼

∣∣∣∣
pc − pi

pc − p1

∣∣∣∣
−ν

= const. (1)

We finally get

|pi − pj | ∼ L−1/ν ∼ N−1/(dν), (2)

where d = 2 is the spatial dimension for the Moore lattice.
Since Eq. (2) does not require the value of the critical

point pc, the critical exponent ν can be estimated directly and
more accurately based on the values of pi , avoiding extra error
introduced when estimating pc. Moreover, when ν is obtained,
pc can be calculated by fitting |pc − p1| ∼ L−1/ν with the
least square method. For the largest cluster S1(p1), the fractal
dimensional df can be obtained by the asymptotic relation

S1(p1) ∼ ξ (p1)df ≈ Ldf = Ndf /d . (3)

After getting ν and df , all the other critical exponents can be
obtained according to the hyperscaling relations:

α = 2 − νd,

β = ν(d − df ),

γ = ν(2df − d),

σ = 1

νdf

. (4)

It should be noted that comparing with Refs. [33,34], our
method may not be able to get better accuracy in estimating
the critical exponents on 2D lattices, but it can be easier to be
adopted in analyzing percolation on realistic complex systems
of finite size.

III. RESULTS AND DISCUSSIONS

Compared to the square lattice, the Moore neighborhood
has diagonal connections, and therefore the lattice is uniformly
embedded with 4-cliques. For two neighboring 4-cliques in the
Moore neighborhood, they share at most two nodes with each
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FIG. 3. The average distance 〈p1 − p2〉 between the largest jump
and second largest jump for (k,l)-clique percolation. As the system
size is increased, the value of 〈p1 − p2〉 decays in the form of Eq. (2).
The dashed lines are linear fitting to the numerical results, and the
resulting critical exponents ν are shown in Table I. The distance 〈p1 −
p2〉 are averaged over 10 000 realizations. The error bars are smaller
than the symbol size. The data for (2,1)-clique percolation are shifted
upward by multiplying by 2.

other, which constrains that the maximum value of (k,l) is (4,2)
in the (k,l)-clique percolation.

In the bond-adding process, two different clique clusters
merge when a newborn clique connects them, and the size of
the smaller cluster will be the size jump. After all the bonds are
added, the largest jump �1 and the corresponding bond density
p1 can be identified, and the second largest jump can be found
before �1 happened at bond density p2, and so on. According
to Eq. (2), the critical exponent ν is associated with p1 − p2

and the system length L. In contrast to clique percolation on
an ER graph where the critical exponents depend on l [17],
we find that the clique percolation with different (k,l) on 2D
Moore lattices shares the same value of ν, as shown in Fig. 3,
and, interestingly, it is the same as the critical exponent of
normal site or bond percolation on 2D lattice systems. The
specific values are shown in Table I. These results indicate that
clique percolation on a low-dimensional lattice belongs to the
ordinary bond (site) percolation universality class, which is
independent to the specific values of k and l. To verify this,
we compare other critical exponents of clique percolation with
site percolation for a systematic understanding.

TABLE I. The critical points and the critical exponents for clique
percolation on the 2D Moore neighborhood. To compare, for 2D
lattices, ν = 4/3 and df = 91/48 � 1.896.

(k,l) p∞
c ν df

(2,1) 0.250 1.34 ± 0.02 1.897 ± 0.02
(3,1) 0.597 1.35 ± 0.03 1.894 ± 0.02
(3,2) 0.729 1.29 ± 0.09 1.894 ± 0.02
(4,1) 0.870 1.29 ± 0.1 1.894 ± 0.02
(4,2) 0.911 1.29 ± 0.08 1.894 ± 0.02
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FIG. 4. The size of the largest cluster S1 versus the system size N

at p1. The dashed lines are fitting results for different combinations of
k and l. According to Eq. (3), since N = L2, the fractal dimension df

of the giant cluster is half of the slope. The values of the fractal di-
mension are shown in Table I. The lines for (4,1), (3,2), (3,1), (2,1) are
shifted downward by multiplying by 1/2, 1/4, 1/8, 1/16, respectively.

According to the hyperscaling relations shown in Eq. (4),
there is another critical exponent that needs be chosen to
determine its universality class together with ν. In previous
works, β is commonly selected since it can indicate the type
of phase transition. However, the estimation method of β is
associated with finite-size scaling S1(p1)/N ∼ L−β/ν , thus the
error in estimating ν will decrease the accuracy of β. Here we
choose the fractal dimension df of the giant cluster as the
other base. When the largest jump occurs, the largest cluster
size S1(p1) and the cluster diameter L1 obey the asymptotic
relation S1(p1) ∼ L

df

1 . Since S1(p1) is the spanning cluster,
L1 � L. Therefore the asymptotic relation can also be written
as S1(p1) ∼ Ldf . It is noticed that, for higher fractal dimension,
the asymptotic relation holds only for extremely large clusters,
requiring larger systems. Otherwise, the lower terms may
dominate and give wrong fitting values. As is shown in Fig. 4,
the fractal dimension of the giant cluster has the same value for
different cases of k and l (see Table I), and they are basically
identical to the fractal dimension of site or bond percolation
on 2D systems with high numerical accuracy.

It was found that the value of the critical exponent β depends
on the definition of the order parameter [11,18]. There are
two ways to define the order parameter. One definition is
ψ = N ∗/N , the ratio of the number of k-cliques in the giant
cluster, N ∗, to the total number of k-cliques in the system, N .
The other definition is φ = N∗/N , the ratio of the number of
sites N∗ in the giant cluster to the number of sites N in the
system. The finite-size scaling theory in this paper does not
involve any details of order parameter definition. However,
since the correlation length ξi and cluster size Si are counted
with the number of sites rather than k-cliques, all critical
exponents we obtained should be in accordance with the second
definition of the order parameter. In addition, one may note that
the difference of the two definitions does not affect the value
of critical exponents for the Moore neighborhood. The reason
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FIG. 5. The scaling of the standard deviation (std) of (p1 − p2)
versus the system size N . The slopes are 0.376 for (2,1), 0.370 for
(3,1), 0.394 for (3,2), 0.388 for (4,1), and 0.3876 for (4,2). Comparing
with the values of ν in Table I, it suggests the same scaling relation
as 〈p1 − p2〉, i.e., std(p1 − p2) ∼ N−1/(dν). The corresponding ν

obtained in this scaling is then 1.35 for (3,1), 1.27 for (3,2), 1.29 for
(4,1), and 1.29 for (4,2) percolation, respectively, which agree with
the values in Table I very well. The line for (2,1)-clique percolation
is shifted upward by multiplying by 2.

is that the cluster size N∗ counted based on the sites and N ∗
counted based on the k-cliques are proportional to each other
for large L, thus the same asymptotic behavior can be expected
around the critical point.

In Fig. 3 we have considered the scaling of 〈p1 − p2〉 versus
system size N , which yields the critical exponent ν. It is curious
that how the fluctuation of p1 − p2 scales with system size. We
have plotted the standard deviation of p1 − p2 versus system
size N in Fig. 5. Interestingly, the scaling exponent is the same
as that for p1 − p2, i.e., dν. This indicates that the scalings
of the mean value and the fluctuation of p1 − p2 are highly
correlated. It has been noticed that for an ER random graph,
the standard deviation of pc − p1 scales in the same way as
pc − p1 when l = 1, but in general they are not equal [17].
This is consistent with our result, as in our case the scaling
exponents are not depending on l, and they all have the same
values with the case l = 1.

�i is introduced as the historically largest merger of two
clusters. The second largest merger, corresponding to �2, can
be considered as the largest merger in the local (or smaller) sys-
tem, and this concept is applicable for the other characteristic
mergers in the sequence {�3,�4, . . . }. So there should be no
inherent difference between different characteristic mergers.
In this sense, the distribution of pi could be rescaled into a
uniform function only by the size of �i and 〈pi〉. As shown
in Fig. 6, for the same (k,l)-clique percolation, the distribution
of x = (p2 − 〈p2〉)�1/df ν

2 collapses into the same curve for
different system sizes. Furthermore, for fixed system size, the
curves can also be rescaled for different i, which can be seen
clearly from the upward triangles in Fig. 6.

In this paper we have investigated the critical behavior of
clique percolation on 2D lattices. It is obviously different from
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FIG. 6. For different system sizes, the distribution of p2 − 〈p2〉
can be rescaled by �σ

2 . The seven lattices of different sizes in Fig. 4
are plotted with the same colors and symbols, each for a clique
percolation with a given combination of k and l. Furthermore, for
different values of i, the distribution of pi − 〈pi〉 can be rescaled with
�σ

i to collapse over each other. The upward triangles are pi − 〈pi〉 of
a bond percolation with L = 500 and i = 2,3,4,5,6.

the results on an ER graph, in which the critical exponents
depend on the parameter l. For the 2D Moore lattice, the critical
exponents ν and df are found to be the same as the results from
normal 2D site or bond percolation on a 2D lattice. This result
implies that clique percolation on a 2D Moore neighborhood
belongs to the same 2D percolation universality class. This
can be understood from the fact that, for two special types
of clique percolation, there exists a map to bridge the clique
percolation on the Moore neighborhood to the site percolation
on a Moore or 2D square lattice. In particular, if each clique
is regarded as a site, as shown in Fig. 7, for the (4,1)-clique
percolation and (4,2)-clique percolation, at the critical point,
each configuration of a percolated cluster can be mapped to
the site percolation on Moore or square lattices, respectively,

(a) (b)

FIG. 7. The connection between clique percolation on a Moore
lattice and normal site percolation for some special cases. If each
4-clique in Fig. 1 is regarded as a site, the (4,1)-clique percolation
and (4,2)-clique percolation can be mapped into site percolation on
a Moore neighborhood shown in panel (a) and site percolation on
a square lattice shown in panel (b), respectively. The sites (blue
circles) correspond to the 4-cliques shown in Fig. 1. The blue bonds
correspond to the existing connections between cliques, i.e., (a)
for neighboring cliques sharing at least one node in (4,1) clique
percolation and (b) sharing at least two nodes for (4,2) clique
percolation.

and vice versa. Since the giant cluster is formed by clusters
merging in a narrow parameter range, loops should be sparse at
the critical point, thus the giant cluster can be approximated by
a tree. Then the critical point of clique percolation pc satisfies
p

γ
c = p̂c under a treelike approximation, with p̂c being the

critical point of the site percolation on the mapped lattice, and
γ is determined by the number of inner bonds in a clique on
average. For the case with k = 4,l = 1, the clique percolation is
equivalent to a site percolation on a Moore neighborhood with
γ = 5 as the (4,2) connections are dominant at the critical
point [Fig. 7(a)]; while for the case with k = 4,l = 2, the
clique percolation is equivalent to the site percolation on the
square lattice with γ = 5 [Fig. 7(b)]. Indeed, for (4,1) clique
percolation, the critical point pc is 0.870. The critical point p̂c

of site percolation on the Moore neighborhood is 1/2, thus
(1/2)1/γ = 0.87, and agrees well with pc. For (4,2) clique
percolation, the critical point pc is 0.911. The critical point
p̂c of site percolation on a square lattice is 0.59274, thus
0.592741/γ = 0.901, also agreeing with the corresponding pc.

Since p
γ
c = p̂c, assume that pγ = p̂, and then the difference

of p from the critical point pc can be expanded as

|p − pc| = ∣∣p̂1/γ − p̂1/γ
c

∣∣

≈
∣∣∣∣∣
p̂

1/γ−1
c (p̂ − p̂c)

γ
+ O((p̂ − p̂c)2)

∣∣∣∣∣

≈ const|p̂ − p̂c|. (5)

Therefore, for a system with the bond density p approaching
the critical point pc, the corresponding mapped site percolation
has the same order of p̂ approaching toward p̂c, which infers
that the critical exponents of the clique percolation are identical
with those of the site percolation, thus belonging to the same
universality class.

It is known that clique network on an ER graph can
also be mapped onto a new ER graph [17,18]. However, the
clique percolation on an ER graph does not belong to the
same universality class as the bond percolation, as the critical
exponents of clique percolation on an ER graph also depend
on the value of l. These differences between the ER graph and
the Moore neighborhood can be attributed to the following two
factors. Firstly, for site percolation on an ER graph, the critical
point p̂c ∼ 1/N , thus in the thermodynamical limit N → ∞,
one will have p̂c = 0. Therefore the relation Eq. (5) will no
longer hold. In addition, it has been shown that when the critical
point goes to zero, the critical exponents for bond percolation
and those for site percolation will be different, leading to
complex scaling behaviors [35]. Secondly, the number of sites
and the density of bonds in a clique cluster not only depend on
the number of cliques, but also depend on the system size N

as the critical point depends on N , and therefore γ cannot be
uniquely determined.

IV. CONCLUSION

To conclude, we have investigated the clique percolation on
2D Moore lattices. We have developed a new finite-size scaling
scheme by noting the equivalence of different historically
largest size jumps at the critical point. Thus instead of pc − p1,
one can use pi − pj , for example, p1 − p2, and its scaling
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with the system size N to determine critical exponents. This
avoids the uncertainty in estimating pc, leading to a better
accuracy in determining the critical exponents. We found
that, although the clique percolation is defined in a more
complicated way with respect to normal site percolation, and
previous results indicate that the scaling exponents may depend
on the number of common nodes l defining the connection
between two cliques [17,18], interestingly, clique percolation
on 2D Moore neighborhoods belongs to the same universality
class as the normal site percolation, and the scaling exponents
are independent of neither the number of nodes k defining a
clique nor l. This phenomenon can be understood that for two
special types of clique percolation on a Moore neighborhood,
they can be directly mapped onto site percolation on a 2D

lattice. The main difference between the 2D lattices and the
ER graph can be attributed to the fact that for the latter case
the critical point for normal site percolation is p̂c ∼ 1/N , thus
p̂c varies significantly with system size N and goes to zero in
the large size limit, which is accompanied by many side effects,
leading to complex critical behaviors.
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