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A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties
of classically integrable systems generically are described by Poisson statistics, whereas those of time-reversal
symmetric, classically chaotic systems coincide with those of random matrices from the Gaussian orthogonal
ensemble (GOE). Does this result hold for two-dimensional Dirac material systems? To address this fundamental
question, we investigate the spectral properties in a representative class of graphene billiards with shapes of
classically integrable circular-sector billiards. Naively one may expect to observe Poisson statistics, which is
indeed true for energies close to the band edges where the quasiparticle obeys the Schrödinger equation. However,
for energies near the Dirac point, where the quasiparticles behave like massless Dirac fermions, Poisson statistics
is extremely rare in the sense that it emerges only under quite strict symmetry constraints on the straight boundary
parts of the sector. An arbitrarily small amount of imperfection of the boundary results in GOE statistics. This
implies that, for circular-sector confinements with arbitrary angle, the spectral properties will generically be
GOE. These results are corroborated by extensive numerical computation. Furthermore, we provide a physical
understanding for our results.
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I. INTRODUCTION

A fundamental result in quantum chaos, a field that studies
the quantum signatures of classical chaos, is that distinct
properties of the classical dynamics lead to characteristically
different fluctuation properties in the energy spectra of the
corresponding quantum system. In particular, for classically
integrable systems, the energy levels behave like random num-
bers from a Poisson process, whereas the spectral properties of
generic, classically chaotic systems coincide with those of the
eigenvalues of random matrices from the Gaussian orthogonal
ensemble (GOE), if time-reversal invariance is preserved
[1–3]. When time-reversal invariance is violated, the statistics
is described by the Gaussian unitary ensembles (GUE).
We note that in nonrelativistic quantum chaotic systems, a
magnetic field induces time-reversal symmetry breaking and
changes the level statistics from GOE to GUE [4–8]. Although
the above correspondences may be violated for certain non-
generic cases, they are generally expected to hold for typical
nonrelativistic quantum systems and even for relativistic quasi-
particles in two-dimensional systems governed by the Dirac
equation such as graphene flakes, also called graphene billiards
[9–14].

Berry and Mondragon found in their seminal work [15]
that for relativistic neutrino billiards, i.e., massless spin- 1

2
particles governed by the two-dimensional Dirac equation and
confined to a bounded region, the spectral properties follow the
Poisson statistics if the shape of the confinement corresponds
to a billiard with classically integrable dynamics, like a
circular billiard. Here, a billiard is a bounded two-dimensional
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domain inside which a pointlike particle moves freely and
is reflected specularly at the walls. On the contrary, when
the shape of the neutrino billiard corresponds to that of
a classically chaotic billiard, the spectral properties agree
with those of random matrices from the GUE, even in the
absence of a magnetic field. This feature is attributed to
the time-reversal invariance violation induced by the mass
confinement.

Since the discovery of graphene [16–22], the fluctuation
properties in the energy spectra of graphene billiards, i.e.,
finite-size graphene sheets formed by a single-layer of atoms
arranged on a honeycomb lattice, have been investigated
intensively. Figure 1 shows an example for a graphene billiard
with the shape of a circular sector.

In view of the result of Berry and Mondragon on chaotic
neutrino billiards, the spectral properties of chaotic graphene
billiards were expected to follow GUE statistics (see Ref. [14]
and references therein). However, extensive simulations using
different chaotic graphene billiards clearly indicated GOE
statistics [10–12]. The physical mechanism for the GOE
rather than GUE statistics has its origin in the hexagonal
lattice structure of graphene, which is composed of two
independent triangular sublattices A and B. As a consequence,
the conduction and the valence band exhibit conically shaped
valleys that touch each other at the six corners of the hexagonal
first Brillouin zone, which, like the graphene lattice, is
composed of two independent triangles, each corresponding
to one of the two independent Dirac points. In each of the
independent valleys the electron excitations are governed
by a two-dimensional Dirac equation for massless spin- 1

2
quasiparticles. The components of the associated pseudospin
are related to the wave function amplitudes ψA and ψB on the
triangular sublattices of the honeycomb lattice [20,23].
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FIG. 1. Schematic view of a graphene billiard with the shape of
a circular sector. The hexagonal lattice is formed by two independent
triangular sublattices marked by solid and empty circles, respectively.
Similar to the circular part of the sector, the boundaries of the
graphene billiards considered in the present article are formed by
pieces of zigzag and armchair edges.

The scattering at the boundaries of a finite-size graphene
sheet leads to a mixing of the valleys. Accordingly, there
the Dirac equations are coupled and the hexagonal lattice
is described by a four-dimensional Dirac equation which
preserves the time-reversal invariance. Naturally, it was spec-
ulated that a reduced degree of valley mixing might cause the
level statistics to deviate from GOE toward GUE. In order
to reduce the mixing, a smoothly varying mass potential
was introduced in Ref. [10] in the vicinity of the domain
boundary in order to diminish the intervalley scattering.
However, in general, the spectral statistics tended to GOE
statistics irrespective of the residual scattering, which hence
seems to be non-negligible. Consequently, GUE statistics
may only be observed in graphene billiards with zigzag
edges formed by atoms from the same sublattice like in an
equilateral triangle [24]. In this case, introducing a smoothly
varying disorder potential will induce a transition from Poisson
statistics to GOE statistics, if all three sides are formed by
zigzag edges, and to GUE statistics if the sheet is terminated
by armchair edges [24]. However, in the latter case, weak
disorder can turn the statistics back to GOE in larger systems.
Figure 1 shows for illustration the structure of a zigzag and an
armchair edge. It was subsequently shown [25] that, if a zigzag
triangular nanoflake is deformed so that it does not possess
any geometric symmetry, a strain-induced gauge field can
effectively break the time-reversal symmetry, leading to GUE
statistics. Furthermore, the effects of random disorder and edge
roughness were studied in Refs. [26,27], with the result that
increasing disorder or edge roughness is accompanied by a
transition from Poisson to GOE statistics.

Current understanding of the energy level statistics of
graphene billiards can be summarized as follows. Without
magnetic field, if the shape of the bounded domain leads
to a classically integrable dynamics, the spectral fluctuations
coincide with that of Poissonian random numbers [26,27]. If
the shape of the confinement coincides with that of a billiard
with classically chaotic dynamics, the statistics is described
by the GOE [10–12]. The main result of the present article
is the uncovering of counterintuitive features of the spectral
statistics: Finite-size graphene sheets with the shapes of certain

classes of classically integrable billiards generically exhibit
GOE statistics. We present extensive numerical results and
physical reasonings to establish our finding.

II. MODEL

We investigate the fluctuation properties in the eigenvalue
spectra of finite-size graphene sheets, so-called graphene
billiards with shapes of circular sectors of angles π/n, where
n is an integer. The corresponding classical billiards exhibit an
integrable dynamics. The confined billiard domains were cut
from a perfect graphene sheet. For most cases, the orientation
was chosen such that one of the straight boundaries of the
sector was formed by a zigzag edge.

Qualitative [28] and also some quantitative insight [29] into
the band structure of infinitely extended graphene has been
obtained using a tight-binding model. Its application is based
on the assumption that interactions of the graphene pz orbitals
are non-negligible only for nearest, second-nearest, and third-
nearest neighbors. The same model may be used to determine
the energy levels in finite-size graphene sheets. The dimension
of the associated tight-binding Hamiltonian coincides with the
number of atoms forming the graphene sheet, with each diag-
onal element corresponding to one atom. This corresponds to
imposing Dirichlet boundary conditions along the first row of
atoms outside the boundary of the graphene billiard. Setting the
on-site energies of the isolated atoms equal to zero and taking
into account only couplings between neighboring atoms, the
tight-binding Hamiltonian is given by Ĥ = ∑−t |i〉〈j |, where
the summation is over all pairs of nearest-neighbor atoms,
and t ≈ 2.8 eV is the corresponding hopping energy [16–22].
Diagonalizing the Hamiltonian matrix yields the energy
eigenvalues and eigenfunctions of the system. We diagonalized
matrices corresponding to lattice sizes of up to 2 × 105 atoms.
For the presentation of the characteristic eigenfunction patterns
it was sufficient to consider lattices consisting of ≈5 × 104

atoms.
Table I lists the lattice structures considered in the present

article. To be more specific, we considered altogether eight
sectors with varying edge structures along the straight bound-
aries and angles π/n with n = 2,3,4,6,12, corresponding
to 15◦,30◦,45◦,60◦,90◦, respectively, whereas the curved
boundary was obtained by fitting the hexagonal lattice into
the corresponding sector billiard. For the 15◦ and 45◦ sectors,
one straight boundary was terminated by a zigzag edge, while

TABLE I. Graphene sector billiards investigated in this paper,
where “N” denotes the nonperfect cases where a few atoms at the
corner or one row of atoms at a straight boundary was missing; i.e.,
their shapes slightly deviated from that of a sector billiard. The letters
“Z” and “A” stand for zigzag and armchair edges along the straight
boundaries (see Fig. 1), respectively. The size of the graphene sheets
is specified by the number of lattice sites.

Angle 15◦ 45◦ 30◦ 30◦ N
Size 226 993 244 664 220 862 221 944

Angle 90◦ 60◦ Z 60◦ A 60◦ AN
Size 217 615 226 042 227 254 226 315
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the other one consisted of a mixture of zigzag and armchair
segments. For the 30◦ and 90◦ domains, a perfect cut resulted
in a zigzag edge for one straight boundary and an armchair
edge for the other one, so there was no reflection symmetry.
For the 30◦ sector, besides the perfect-cut case, also the
non-perfect-cut case was studied, the only difference being
one additional layer of atoms along the armchair edge. A
60◦-sector graphene billiard can be cut out of a hexagonal
lattice such that both straight boundaries are zigzag or armchair
edges. Accordingly, these graphene billiards can possess an
exact reflection symmetry. In addition, we considered a 60◦
lattice structure in which the reflection symmetry was broken
by removing one atomic layer along one of the straight
boundaries.

Taking into account only the nearest-neighbor hopping
term in the Hamiltonian yields eigenstates that are sym-
metric under the E → −E and the [�A,�B] → [�A,−�B]
operations [30]. Accordingly, it is sufficient to consider only
states corresponding to positive energy values, 0 � E/t � 3.
The quasiparticles in graphene exhibit distinct behaviors in
different energy ranges [13]. In particular, in the lower energy
range close to the Dirac point, E/t ∈ [0.02,0.2], the quasipar-
ticles are described by the two-dimensional Dirac equation for
massless Dirac fermions with little trigonal warping so that
the corresponding motion is isotropic. Note that by restricting
to E � 0.02 we discard eigenvalues corresponding to edge
states [12] present in the vicinity of the Dirac point. For higher
energies, trigonal warping becomes important, especially close
to the van Hove singularities at E/t = ±1. There, the motion
of the quasiparticles is limited to the six directions parallel
to zigzag edges within the graphene billiard. This becomes
visible in the intensity distributions of the wave functions,
which exhibit a striped structure along these directions [31].
Close to the band edges Eedge = ±3t , the dispersion relation
becomes parabolic. There, the quasiparticles are governed by
the nonrelativistic Schrödinger equation. Thus, we consider a
quantum billiard with the same confinement as the graphene
sector billiard.

The eigenstates of a quantum billiard in a sector domain [32]
of unit radius and arbitrary angle α, i.e., of a quantum
particle trapped in an infinitely-high potential well with the
shape of a sector, are obtained by solving the Schrödinger
equation with Dirichlet boundary conditions along the border
of the domain. They are given in terms of the Bessel
functions, �mn ∝ sin(mπϕ/α)Jmπ/α(kmnρ), where ϕ and ρ

are the angular and radial polar coordinates, respectively,
and the indices are integers, m,n = 1,2,3, . . .. The eigenwave
vectors kmn > 0 are obtained from the zeros of the Bessel
functions along the boundary, i.e., for ρ = 1, Jmπ/α(kmn) = 0,
yielding the eigenenergies EQB = �

2k2
mn/(2m), where m is

the mass and � is the reduced Planck constant. For large x,
we have Jmπ/α(x) ∼ √

2/(πx) cos [x − (mπ/α)π/2 − π/4]
so that asymptotically the zeros for different m are shifted
by integer multiples of π2/2α with respect to each other,
similar to the situation discussed in Ref. [33], where the
spectral properties were shown to be described by the Poisson
statistics. Accordingly, the intuitive expectation is that the
eigenvalues of sector-shaped graphene billiards exhibit a
similar behavior regardless of the value of α. However, as
we shall demonstrate in the sequel, generally the results may

be contrary to this speculation depending on the energy range
under consideration.

III. RESULTS

A. Spectral properties of graphene sector billiards

For illustration, we first discuss the spectral properties of a
graphene billiard with the shape of a sector with angle π/12
corresponding to a 15◦ sector. The structure of one straight
boundary is purely zigzag, while the other one consists of a
mixture of zigzag and armchair segments. Before analyzing the
spectral properties, the energy levels Ei need to be unfolded to
a uniform average level density. This is done by replacing
Ei with the smooth part of the integrated level density,
E

(u)
i = Ñ (Ei), yielding an average spacing unity between

adjacent unfolded levels. Here, Ñ (E) was determined from a
polynomial fit to N (E) = ∫ E

−∞ dE′ ∑
i δ(E′ − Ei). This, how-

ever, is not possible in the vicinity of the van Hove singularities
at |E/t | ≈ 1. There we accordingly used the analytical result
for the level density in terms of an integral given in Ref. [34].
Figure 2(a) shows the density of states, Figs. 2(b)–2(f) the
distributions of the spacings between adjacent energy levels,
and Fig. 3 the 	3 statistics, which yields the least-squares
deviation of the integrated level density of the unfolded
eigenvalues from the straight line best fitting it in the interval
L [35]. Since classical sector billiards possess an integrable
dynamics, one would expect the fluctuation properties in the
spectra of the corresponding graphene billiard to be Poisson.
This is indeed the case for energy values close to the upper and
the lower band edges at E = ±Eedge = ±3t , as demonstrated
in Fig. 2(f) and in Fig. 3 by the pentagons. In fact—except for
very few states—there is a one-to-one correspondence between

FIG. 2. Spectral properties of a graphene billiard with the shape
of a 15◦ sector. (a) The density of states. (Inset) Integrated density
of states. (b)–(f) Nearest-neighbor spacing distributions in the energy
ranges: (b) E/t ∈ [0.02,0.2], 837 levels; (c) E/t ∈ [0.5,0.6], 2575
levels; (d) E/t ∈ [2.0,2.1], 3804 levels; (e) E/t ∈ [2.6,2.7], 3321
levels; (f) E/t ∈ [2.95,3], 1509 levels. The histograms show the
numerical results, the dashed and solid lines exhibit the Poisson and
GOE distributions, respectively. Inset in panel (f): normalized ratio
(E − Eedge)/EQB for the first 1509 eigenenergies, where EQB is the
eigenenergy of the corresponding quantum billiards.
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FIG. 3. 	3 statistics of the 15◦ sector. The energy ranges are the
same as in Fig. 2. The dashed and solid lines exhibit the Poisson and
GOE results, respectively.

the eigenenergies of the tight-binding Hamiltonian and the
lowest ones of the corresponding quantum billiard in these
energy ranges; see the inset of Fig. 2(f), where they agree with
each other well, with small systematic discrepancies due to the
discretization. Similarly, the associated intensity distributions
of the graphene billiard exhibit the same patterns as the squared
wave functions of the corresponding quantum billiard [see
Figs. 4(a)–4(d)], again except for a few cases where we
observe slight distortions [see, e.g., Fig. 4(c)]. Actually, in
these energy ranges the quasimomenta of the graphene billiard
may be identified with the low-energy eigenwave vectors of
the corresponding quantum billiards [13]. Accordingly, close
to the band edges, the effective wavelengths are long compared
to the distances between the neighboring atoms and the lengths
of the armchair and zigzag line segments along the boundaries.
Consequently, the eigenfunctions and eigenwave vectors are
insensitive to small distortions of the boundary, which is
effectively continuous. This analogy between a graphene
billiard and the quantum billiard of corresponding shape close

FIG. 4. Intensity distributions in the 15◦-sector graphene billiard.
Panels (a)–(l) correspond to energy values 2.991, 2.981, 2.976,
2.974, 2.667, 2.664, 2.663, 2.661, 0.195, 0.140, 0.100, and 0.063,
respectively. In panels (a)–(d), the energies are close to the band edge,
corresponding to eigenstates with (m = 5, n = 4), (m = 3, n = 22),
(m = 5, n = 18), and (m = 11, n = 1) in the quantum billiard of
corresponding shape, respectively. Panels (e)–(h) show results for the
transitional region around E/t ∼ 2.66. In panels (i)–(l) the energies
are close to the Dirac point.

to the band edges was observed for all the sectors considered
in the present article, implying that the spectral properties
coincide with Poisson statistics for E  ±3t , also in the 30◦
and 60◦ sectors with nonperfect boundaries.

In summary, near the band edges E/t = ±3, the graphene
billiards are essentially described by the nonrelativistic
Schrödinger equation for the corresponding quantum billiard
implying Poisson statistics for the fluctuations in the eigenen-
ergy spectra. With increasing deviation of the energy values
from E/t = ±3, e.g., for E/t ∈ (2.6,2.7), the spectral statis-
tics evolves toward that of random matrices from the GOE, as
exemplified in Fig. 2(e) and in Fig. 3 by the diamonds. Some
representative intensity distributions are shown in Figs. 4(e)–
4(h) for energy values around E/t = 2.66. In this energy range
the structure of the boundary, which is not perfectly smooth,
leads to a spectral statistics, which is not purely Poisson like in
the corresponding quantum billiard with Dirichlet conditions
along the whole perimeter, but intermediate between Poisson
and GOE statistics. There are some intensity distributions
of which the patterns are similar to those of the squared
wave functions of the corresponding quantum billiard close
to the circular boundary. However, in distinction to the latter,
they are also peaked along a circle around the tip of the
sector in the interior of the billiard, such as the intensity
distribution shown in Fig. 4(h). As the energy is further
increased, e.g., for E/t ∈ [2.0,2.1], the spectral properties
show an increasing similarity with the GOE signatures, as
exemplified in Fig. 2(d) and in Fig. 3 by the plus signs. In
this energy range, while the eigenfunctions may retain certain
features of the wave functions of the corresponding quantum
billiard, the pattern structure can also be quite different, as is
visible, e.g., in the intensity distribution shown in Fig. 4(e).
These features are reminiscent of the fluctuation properties
in the eigenvalue spectra of quantum billiards with mixed
Dirichlet and Neumann boundary conditions [36], where in
the present case the boundary conditions might not be purely
Neumann or Dirichlet in some parts of the boundary. We would
like to remark that mixed boundary conditions are a purely
wave-dynamical feature with no classical analog.

For energy values close to the Dirac point, excluding
the edge states, the quasimomenta may be identified with
the low-energy Dirac eigenvalues obtained by solving the
Dirac equation for a graphene flake of corresponding lattice
structure. Accordingly, like in the vicinity of the band edges,
the effective wavelengths are long, so one may expect that the
spatially discrete nature of the boundaries has little effect on the
statistical properties of the eigenstates, and thus, the fluctuation
properties in the energy spectra are described by Poisson
statistics. However, first, the occurrence of the Dirac point
has its origin in the two interpenetrating triangular sublattices
forming the hexagonal lattice of graphene; that is, it is a result
of the lattice structure. Second, our computations, as exempli-
fied in Fig. 2(b) and by the circles in Fig. 3, yielded that the
spectral properties agree well with those of random matrices
from the GOE [37]. While surprising, the phenomenon can be
qualitatively understood from the properties of the intensity
distributions. Figures 4(i)–4(l) show examples for energies
close to the Dirac point, which exhibit disordered patterns
which are spread over the whole billiard plane. Furthermore,
the intensities are peaked at some of the zigzag edges of the
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straight boundary which is formed by a mixture of armchair
and zigzag edges, like the squared wave functions in a quantum
billiard with Neuman conditions at these parts of the boundary.
The effect of the varying boundary conditions visible in the
intensity patterns of the graphene billiard leads to correlations
in the wave amplitudes at the sites of the corresponding
sublattice and, via the hopping, between the sublattices and,
hence, in the present example, to level repulsion between
neighboring eigenenergies. This phenomenon persists for the
other graphene sector billiards. In general, we came to the re-
sult that, when the lattice structure of the graphene billiard has
a higher symmetry including uniform boundary conditions for
each sublattice along its perimeter, like in graphene billiards
with the shapes of equilateral triangles [24] or a rectangular
billiard [13], the patterns of the intensity distributions had an
ordered (periodic) structure and spectral properties tended to
be more Poisson-like. However, introducing a slight variation
of the boundary conditions by removing just one row of atoms
or a slight roughness by removing just a few atoms, may lead
to drastic changes in the eigenstates leading to GOE statistics.
This extreme sensitivity on the structure of the boundary arises
but only for energies close to the Dirac point. Note that for
quantum billiards a slight change in the shape of the boundary
will not affect the nature of the spectral properties in the
low-energy region. On the other hand, the introduction of a
pointlike perturbation, implying a change in the boundary at a
singular point, will also lead to drastic changes in the properties
of the wave functions and the spectral properties [38,39]. We
also investigated distributions of the moduli of the wave-
function components on the lattice sites and came to the
result that they are well described by a Gaussian distribution
typical for chaotic systems in energy regions where the spectral
properties are described by GOE statistics. Here, we had to
exclude states localized along zigzag rows like they occur
near the Dirac point and the van Hove singularities [31].

B. Length spectra

Figure 5 shows length spectra [3,40] for the energy ranges
considered in Fig. 2 above E/t = 1.7. The insets of Fig. 5
show the periodic orbits with lengths corresponding to the
peak positions. Before computing length spectra the wave
vectors were normalized as described in the following. For
the sector billiard, each orbit belongs to a family of periodic
orbits characterized by the order and the orbital length, as
demonstrated by the light gray orbits in the inset for the
shortest periodic orbit. For a graphene billiard with the shape
of a sector with angle α and radius L = L0a, where a =
2.46 Å is the graphene lattice constant, we have E = �vF q

for energies close to the Dirac point [28]. Here, q is the
quasimomentum, which may be identified with the eigenwave
vectors of the graphene billiard in the vicinity of the Dirac
point, and vF = √

3ta/(2�) is the Fermi velocity. This yields
E/t = √

3aq/2 = √
3(qL)/(2L0), with (qL) corresponding

to the normalized, dimensionless quasimomentum. The value
of L0 can be obtained either from L or from the total
number of atoms through L0 =

√√
3N/(2α). For energies

close to the band edges, where [28] E − Eedge = ±ta2q2/4,
we have (E − Eedge)/t = (qL)2/(4L2

0). In this energy region
the quasimomenta may be identified with the eigenwave
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FIG. 5. Length spectra for a billiard with the shape of a 15◦

sector. The three lower curves show results for the graphene billiard.
From bottom to top, the curves correspond to the energy intervals
E/t ∈ [1.7,2.1] with 14 660 levels, E/t ∈ [2.4,2.7] with 8814 levels,
and E/t ∈ [2.95,3] with 1509 levels. The number of levels used
for the computation of the length spectra was chosen such that the
average wave-vector differences equaled 	k  388 m−1 to achieve
comparable widths of the peaks for the three cases. The curves for
different energy ranges have been shifted with respect to each other
for visualization. The topmost curve shows the length spectrum of the
corresponding quantum billiard, with 1509 computed levels equaling
the number of levels in the energy interval E/t ∈ [2.95,3]; see Table I.
(Insets) Periodic orbits with lengths corresponding to the positions of
the peaks, with the two numbers in the parentheses indicating their
lengths and orders.

vectors of the corresponding quantum billiard. Using these
relations, we determined the wave vectors in units of the
radius from the calculated energy spectrum and used these to
compute the length spectra and to compare them in different
energy ranges. In Fig. 5 the length spectra in the energy
ranges E/t ∈ [1.7,2.1] (first curve from bottom to top), E/t ∈
[2,4,2.7] (second curve), and E/t ∈ [2.95,3.0] (third curve)
are compared to the length spectrum of the corresponding
quantum billiard (topmost curve). Best agreement between the
latter and the length spectra of the graphene billiard is obtained
for energies closest to the band edge, i.e., for E/t ∈ [2.95,3.0],
whereas the peaks broaden and additional ones become visible
with decreasing energy. These observations are in line with the
observed analogy between the eigenstates of the quantum and
graphene billiard, which is lost with decreasing energy. For
energy values close to the Dirac point we did not find any
analogy between the peak positions in the length spectra and
those of the corresponding quantum billiard. This suggests
that, while there can be eigenfunctions localized on periodic
orbits [41], the main fraction of eigenstates appears more
random as compared with those close to the band edge
(Fig. 4).

C. The effect of edge states and next-nearest-neighbor
interactions on the spectral properties

A pertinent issue concerns the effects of nonvanishing next-
nearest-neighbor interactions in the graphene Hamiltonian on
the spectral properties, which have been studied previously
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for edge states and in chaotic graphene billiards. In particular,
in Ref. [42] the edge states occurring close to the Dirac point
were studied in a disordered graphene billiard, with the finding
that the spectral properties are of GOE type for vanishing
next-nearest-neighbor hoppings. However, due to the fact
that the edge states are localized, regardless of the nature
of the underlying classical dynamics [10], in such systems
the spectral properties should be expected to be described by
Poisson statistics. The fact, that GOE statistics is observed
may be attributed to the chiral symmetry of the graphene
Hamiltonian including only the nearest-neighbor hopping
terms, implying that each eigenstate occupies sublattices A
and B with equal probability. Because the zigzag segments
are formed by the atoms from one sublattice, an edge state
occupying one such segment must also be nonvanishing on a
zigzag segment of the boundary formed by the other sublattice.
This leads to a long-range connection between the edge states,
thus explaining the observed level repulsion. By introducing
a next-nearest-hopping term t ′ = 0.1t , the chiral symmetry
and thus this coupling are lifted. As a result, the spectral
properties of the edge states change to Poisson statistics as
they are spatially localized.

Note that the graphene billiards studied in Ref. [10] had
shapes of billiards of which the classical dynamics was far from
integrable. This may also be a contributing factor to the GOE
statistics. Similar results were obtained in experiments with an
Africa-shaped graphene billiard [31] with nonvanishing first-,
second-, and third-nearest-neighbor couplings of the atoms.
There, the edge states had to be excluded in order to obtain
pure GOE statistics. Furthermore, the spectral properties of
graphene billiards with shapes of classically chaotic billiards
and nonvanishing next-nearest-neighbor couplings t ′ were
studied numerically in Ref. [12]. There, agreement with GOE
statistics was obtained, even when taking into account all
energy levels close to the Dirac point. We have systematically
tested the effect of nonvanishing t ′ interactions in sector-
shaped graphene billiards. A representative result for t ′ = 0.1t

is shown in Fig. 6, so the Dirac point is at E = 3t ′ = 0.3. We
observe that, while the density of states differs considerably
from that for t ′ = 0t , the spectral properties are comparable in
the different energy ranges (see Fig. 2); that is, in the vicinity
of the Dirac point GOE statistics persists.

D. Spectral properties near the van Hove singularities

The GOE statistics found in the graphene billiards with
shapes of classically integrable sector billiards in the vicinity
of the band edges and the Dirac point were at first unexpected
since the effective wavelengths are large as compared with
the distance between the neighboring atoms along the edges.
As outlined in the previous sections deviations from the
expected Poisson statistics may be explained by the mixed
boundary conditions, applying to the circular and partly to
the straight boundaries. Furthermore, the condition of much
larger effective wavelengths is not met particularly as the
energy approaches the van Hove singularities at E/t = 1
either downward from the upper band edge or upward from
the Dirac point. There, the density of states diverges [34]
logarithmically with increasing size, i.e., number of atoms
forming the graphene billiard. Furthermore, the effective

FIG. 6. Nearest-neighbor spacing distributions in the presence of
next-nearest-neighbor hoppings for the 15◦-sector graphene billiard.
Choosing the next-nearest-neighbor hopping energy as t ′ = 0.1t , the
Dirac point is at 3t ′ = 0.3t . (a) the density of states; (b)–(d) same
as in Fig. 2 for E/t ∈ [0.3,0.5], [−2.7,−2.6], and [−3.6,−3.5],
respectively.

wavelength decreases and eventually becomes comparable
to the lattice constant. In addition, the trigonal warping
effect [43–46] becomes dominant implying that the motion
of the quasiparticle is constrained to the six angular directions
along the zigzag rows within the graphene lattice. Note that
this constraint is compatible with the lattice symmetry, which
guarantees specular reflections at the discretized boundary.
Thus, close to the van Hove singularities, the corresponding
classical motion is nonergodic. This is compatible with the
features of the wave functions in the vicinity of the van Hove
singularities, which are localized along zigzag rows within
the hexagonal lattice [31]. One may therefore expect that the
spectral properties return to Poisson. In this regard, it was
demonstrated experimentally and numerically on the basis of
the tight-binding model that for a rectangular graphene billiard
the spectral properties at the van Hove singularity are indeed
Poisson [31]. On the other hand, for a graphene billiard with the
shape of a chaotic Africa billiard the spectral properties were
shown to coincide with GOE statistics after extraction of the
energy values close to the van Hove singularities associated
with wave functions localized along zigzag rows. However,
our calculations surprisingly revealed persistent GOE statistics
even for energies near the van Hove singularity.

In order to get an idea concerning the mechanisms that
lead to GOE statistics, we recall previous results for the
spectral properties in nonrelativistic quantum billiards with the
shapes of polygons, which support pseudoperiodic orbits in the
classical limit but exhibit GOE statistics [47–50]. According
to Richens and Berry [47], the GOE statistics may be attributed
to the bifurcation of the trajectories scattered at the corners of
the polygons formed by the discrete boundaries. Although this
picture is more accurate when the wavelength is much smaller
than the distance between the adjacent corners, corresponding
to the distance between two neighboring boundary atoms in
graphene billiards, random scattering at the boundaries can
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become influential when the wavelength is comparable with
the lattice constant, leading to GOE statistics, like in rough
billiards [51]. For the energy range between the Dirac point
and the van Hove singularity, effects induced by the discretized
boundary and trigonal warping are both important, leading
again to GOE statistics. We have tested that these features
of the spectral properties hold for all the sectors in Table I
with different angles. The only exception consists of the
60◦ sectors with perfect edges along the straight boundaries,
whose statistics are the combination of two GOEs. We may
conclude that in graphene billiards with the shape of classically
integrable sector billiards the spectral properties are dominated
by GOE statistics except in the energy range close to the band
edges Eedge/t ∼ ±3, where the quasiparticles are essentially
described by the nonrelativistic Schrödinger for quantum
billiards of corresponding shape, and the fluctuation properties
follow the Poisson statistics.

E. Effect of structural perturbations on the spectral properties

When both straight boundaries of the sector coincide with
zigzag edges formed by one of the two sublattices or with
armchair edges, the boundary of the sector is deemed to be
ordered or perfect. As a result, the spectral properties are
expected to be closer to Poisson statistics as compared with
those of the 15◦ and 45◦ sectors. In this regard, the 30◦ and 90◦
sector boundaries comprise one straight zigzag edge, whereas
the other one is an armchair edge; see insets of Fig. 7. Our
simulations show that for all energy ranges except that close
to the Dirac point, the spectral statistics exhibits essentially
the same features as for the 15◦ or 45◦ sectors where no
perfect zigzag- or armchair-edge boundary may be realized.
That is, we observe Poisson statistics near the band edges
and, otherwise, GOE statistics. Close to the Dirac point, e.g.,
for E/t ∈ [0.02,0.2], the statistics is a mixture of GOE and

FIG. 7. Effect of structural perturbations on the spectral proper-
ties in the energy range E/t ∈ [0.02,0.2] near the Dirac point for a
graphene billiard with the shape of (a) a 30◦ sector, (b) a 30◦ sector
with an additional row of atoms along the armchair edge, and (c) a
90◦ sector. (d) 	3 statistics of the cases (a)–(c). (Insets) Magnified
view of the lattice structure around the tip of the sector in order to
illustrate the differences.

FIG. 8. Effect of structural perturbations on the intensity distribu-
tions for a graphene billiard with the shape of a 30◦ sector. (a)–(c) As
in Fig. 7(a) for energies 0.085, 0.099, and 0.117, respectively. (d)–(f)
As in Fig. 7(b) for energies 0.086, 0.099, and 0.117, respectively.

Poisson, as shown in Figs. 7(a) and 7(c). This may be attributed
to the distinct boundary conditions along the straight parts
of the boundary. Under structural perturbation, e.g., when
an additional row of atoms is added to the upper straight
boundary for the 30◦ sector, indicated by the additional row
of red colored atoms in the inset of Fig. 7(b), the statistics
becomes GOE. These results are in accordance with those
obtained in Ref. [52], where the spectral properties of a
Bunimovich stadium billiard consisting of a quarter circle and
an infinitesimally sized rectangular part were studied. The
same phenomenon occurs when just the four atoms at the tip
of the sector are removed. Similar results were obtained, when
introducing a singular perturbator into a circle billiard [39].
Like in such a singular billiard the effect on the intensity
patterns by such a change is drastic, as shown in Fig. 8, even
though the classical orbits hitting this corner or the singular
scatterer are of measure zero in classical phase space. The
intensity patterns are more ordered for the 30◦ sector with no
structural perturbation.

For the 60◦-sector-shaped graphene billiard, both straight
parts of the boundary are zigzag edges formed by the same
sublattice or armchair edges, so the system possesses an
exact reflection symmetry. Alternatively, the 60◦ domain can
be viewed as constituted by two 30◦ sectors with differing
boundary conditions along its symmetry line for symmetric
and antisymmetric eigenstates, so the eigenenergies and eigen-
states are related to those of the 30◦ sector. Figure 9 shows the
level spacing statistics for E/t ∈ [0.02,0.2] (left columns) and
for E/t ∈ [0.7,0.8] (right columns). For energies close to the
band edges, the spectral statistics follow Poisson in all cases.
For the other energy ranges, the nearest-neighbor spacing
distributions coincide with those shown for E/t ∈ [0.7,0.8].
For either the zigzag- or the armchair-edge case, when the
system possesses a perfect reflection symmetry, the spectral
properties are close to Poisson in the vicinity of the Dirac
point, in accordance with the results obtained for a rectangular
graphene billiard in [13]. However, for the zigzag-edge case,
a deviation from Poisson is observed close to spacing zero,
S ∼ 0. The reason is that, when the system has a perfect
reflection symmetry, the eigenstates are either even or odd
with respect to the symmetry line. Accordingly, near the Dirac
point, the energy values corresponding to the even and odd
eigenstates are nearly degenerate, the spacings being of the
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FIG. 9. Effect of structural perturbation on the nearest-neighbor
spacing distribution for a graphene billiard with the shape of a
60◦ sector. (a),(b) Zigzag edges; (c),(d) armchair edges; (e),(f)
armchair edges with one row of atoms removed along one edge. The
left and right panels are for E/t ∈ [0.02,0.2] and E/t ∈ [0.7,0.8],
respectively. (Insets) Magnified view of the lattice structure close to
the tip of the sector to illustrate the differences.

order of S ∼ 10−2, as compared to the average spacing unity,
yielding the unusually large count in the nearest-neighbor
spacing distribution observed in Fig. 9(a) close to S ∼ 0. After
separation into even and odd states, this abnormally large count
is removed. Also in the armchair-edge case, shown in Fig. 9(c),
there are even and odd eigenstates, but they are not nearly
degenerate. Accordingly, the corresponding nearest-neighbor
spacing distribution agrees with the Poisson distribution. When
increasing the energy towards E/t ∈ [0.7,0.8], the nearest-
neighbor spacing distributions coincide with neither the
Poisson distribution nor the Wigner distribution, as illustrated
in Figs. 9(b) and 9(d), but are between Poisson and GOE. A
further investigation reveals that the statistics coincides with
that of two independent GOEs; i.e., they are the result of
combining two sets of energy levels, each of GOE nature.
The corresponding nearest-neighbor spacing distribution [53]
is shown as dash-dotted line. This is consistent with the fact
that in this energy range, the spectral statistics for the 30◦
domain is described by the GOE. This behavior persists until
the energy approaches a band edge, the combination of two
independent Poisson distributions still being Poisson.

Figures 9(e) and 9(f) show the nearest-neighbor spacing
distributions for 60◦-sector-shaped graphene billiards with
armchair edges subject to a structural perturbation realized by
removing one row of atoms from the right straight boundary
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FIG. 10. Length spectra for the 60◦-shaped graphene billiard with
armchair edges along the straight boundaries. The insets show the
periodic orbits corresponding to the peaks, with the two numbers
in the parentheses indicating the length and the order of the orbit,
respectively. The middle and bottom curves show the length spectrum
of the graphene billiard in an energy range E/t ∈ (2.95,3) for the
perfect case (1530 levels) and the nonperfect case (1524 levels),
respectively. The topmost curve is obtained from the first 1530
eigenvalues of the quantum billiard of corresponding shape. The
different curves are shifted vertically for clear visualization.

in the inset of Fig. 9(c). The perturbation breaks the reflec-
tion symmetry. Nevertheless, certain eigenstates still exhibit
features which are similar to those of the unperturbed sector
billiard. Intuitively, since the structural changes are small and
the boundaries retain the armchair-edge structure, one may
expect that there will be little change in the statistical properties
of the eigenstates. However, it turned out that the perturbation
had a significant effect on the intensity distributions in that their
patterns are distributed more randomly than in the unperturbed
case. The effect, actually, is similar to that observed in Fig. 8
for the 30◦-sector-shaped graphene billiard. Also, the effect on
the spectral properties is dramatic in the sense that the nearest-
neighbor spacing distributions coincide with the Wigner
distribution, not with the Poisson distribution in the vicinity
of the Dirac point. This agreement persists in the higher
energy regime. Furthermore, it is reminiscent of the results ob-
tained for half-circular billiards with an infinitesimal straight
cut, which corresponds to omitting one row of atoms in
the graphene billiard of corresponding shapes and leads to
a fully chaotic classical dynamics [54]. Generally, for the
60◦-sector shape, Poisson statistics arises only near the band
edges E/t ∼ ±3. A similar behavior was observed for the
15◦- and 45◦-sector shapes. A general feature is that, while the
level spacing statistics are Poisson for graphene billiards that
possess an exact lattice symmetry along the boundaries, a small
structural perturbation, i.e., the removal of a few of the 2 × 105

atoms forming the lattice, like the introduction of a singular
perturbator into a quantum billiard with a classically regular
dynamics, can induce a transition of the spectral properties
from Poisson to GOE statistics, or singular statistics [39].

Figure 10 shows length spectra of the 60◦-sector-shaped
graphene billiard with perfect (middle curve) and nonperfect
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(bottom curve) armchair-edge boundaries for the energy
ranges E/t ∈ (2.95,3). For comparison, we also display the
length spectrum obtained from the eigenvalues of the quantum
billiard of corresponding shape (top curve). We came to the
result that the removal of one row of atoms has little effect on
the energy levels from the vicinity of the band edges and on
the corresponding length spectrum. Furthermore, the peaks in
the length spectra for E/t ∈ (2.95,3) agree with those of the
quantum billiard.

IV. DISCUSSION

One of the pillars in the field of quantum chaos is the
discovery of GOE characteristics in the statistics of the energy
level spacing for Hamiltonian systems that are fully chaotic in
the classical limit [1,33,55–70]. GOE statistics has been gener-
ally regarded as an unequivocal quantum signature of classical
chaos, whereas the spectral properties of classically integrable
systems are believed to exhibit Poisson statistics [2,3,71,72].
The most pronounced difference between GOE and Poisson
statistics is that, for the former, the probability for zero
level spacing is essentially zero, while for the latter this
probability is maximal, that is, classical chaos gives rise to
the phenomenon of energy level repulsion in quantum systems.
The GOE fingerprint of classical chaos persists apparently into
the realm of relativistic quantum mechanics, as it has been
demonstrated for two-dimensional Dirac material systems
such as graphene [9–12,14,31]. In this work we investigated
the spectral properties of graphene billiards versus quantum
billiards. The latter are the quantum counterpart of a classical
billiard and are described by the Schrödinger equation with
Dirichlet conditions along the boundary. It has been found
that actually it is not the shape of a billiard that determines
the spectral properties of the quantum system, but instead
the boundary conditions. Deviations from Poisson were found
in quantum billiards with the shape of classically integrable
billiard, when imposing mixed boundary conditions [36], or
when introducing a singular perturbation [39] or roughness
along the boundary [51]. Note that there is no classical
counterpart to quantum billiards with mixed boundary con-
ditions, whereas the classical dynamics of singular billiards is
integrable, because the effect of the perturbator is of measure
zero, implying a singular statistics.

These observations are corroborated in the present article
for graphene billiards with the shape of circular sectors with
angles π/n with integer n. Classical billiards with this shape
are integrable because the domain becomes a disk through 2n

duplications of the sector. We demonstrated that the spectral
properties of such graphene billiards generally coincide with
GOE. Utilizing the conventional tight-binding Hamiltonian for
graphene, we calculated all the eigenenergies associated with
the tight-binding Hamiltonian matrix for graphene lattices of
finite but large size, enabling a detailed analysis of the level
spacing statistics in different energy ranges, characterized by
distinct dispersion relations.

Our main results can be summarized as follows. Near
the Dirac point E ∼ 0, the dispersion relation is linear and
the quasiparticle behaves like a massless Dirac fermion.
Near the band edge Eedge ∼ ±3t , the dispersion relation is
quadratic and the quasiparticle is essentially described by

the nonrelativistic Schrödinger for the quantum billiard of
corresponding shape. Accordingly, the classical dynamics is
integrable. In the vicinity of the band edges the spectral
properties exhibit Poisson statistics for all the billiard shapes
studied in this article. Deviations from Poisson occur in the
relativistic quantum regime close to the Dirac point E ∼ 0.
There, Poisson statistics is expected, if the boundary is formed
by zigzag edges of just one sublattice or armchair edges, so
the boundary conditions are uniform on both sublattices. We
found that, generically, the spectral statistics are robustly GOE.
In fact, there is a high degree of sensitivity of the nature
of the statistics to the symmetry of the lattice structure of
the graphene billiard, which can be finely controlled through
structural perturbation at the straight boundaries. Only when
both straight boundaries are perfectly zigzag, formed by just
one sublattice, or armchair, the statistics was found to follow
Poisson, as expected. When an arbitrarily small perturbation is
present, introduced, e.g., by removal of one row of atoms along
one straight boundary or of a few atoms at the tip of the sector,
the level statistics immediately turns into GOE. For graphene
billiards with nonperfect segments along the boundary like,
e.g., for the 30◦ sector or the 90◦ sector, in the absence of any
structural perturbation the statistics are a mixture of Poisson
and GOE but an arbitrarily small amount of perturbation leads
to GOE. If the graphene billiard has at least one nonperfect
straight boundary like, e.g., for the 15◦ or 45◦ sectors, the
statistics will be GOE even without a perturbation. The GOE
statistics in the energy range close to the Dirac point can thus
be attributed to the effect of the “nonperfect” boundaries. Our
systematic computations and detailed analysis thus reveal that
for graphene billiards with the shapes of circular sectors, the
levels statistics is generically GOE in the relativistic quantum
regime, that is, it is not only the shape of the billiard but also
the boundary conditions imposed on its wave functions that
determine its spectral properties.

Thus, we may conclude that, when the lattice structure of
a graphene billiard with the shape of an integrable billiard
implies uniform boundary conditions for each sublattice along
its perimeter, as is the case in graphene billiards with the shapes
of equilateral triangles [24] or rectangles [13], the spectral
properties coincide with those of the corresponding quantum
billiard over the whole energy range. However, introducing
a slight variation of the boundary conditions by removing
just one row of atoms or introducing a slight roughness by
removing just a few atoms, may lead to drastic changes in the
spectral properties. This extreme sensitivity on the structure is
generally expected to arise only for energies close to the Dirac
point. We note that choosing the hopping parameter associated
with boundary atoms different from that for interior atoms of
the graphene billiard or including second-nearest- and third-
nearest-neighbor hopping did not change our results. A further
interesting investigation concerning the effect of an additional
Hubbard U potential in the tight-binding Hamiltonian [73]
will be postponed to a forthcoming publication.

An important practical issue concerns the discretization
of the system when calculating the energy spectrum. Lattice
models have been used widely in approximating continuous
dynamics as it is computationally more feasible. However,
discretization may change the behavior of the dynamics in a
significant way. For example, consider the discretization of
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the Laplacian operator on a square lattice, where the originally
smooth boundaries become a high-order polygon consisting
of short horizontal or vertical line segments. Assume that
the classical dynamics of a billiard with perfectly smooth
boundaries is chaotic. Then, for the discretized system with
polygonal boundaries with either horizontal or vertical line
segments, the classical billiard dynamics will be at most
pseudointegrable, ruling out chaos. In order to generate GOE
statistics, the eigenstates need to satisfy the condition that
the corresponding wavelength be much larger than the size
of the line segments on the discretized boundary. For these
states, the quantum dynamics of scattering from the boundary
would behave as if the boundary were smooth. This requires,
equivalently, that the wave vector or the energy be small.
In this case, the level spacing statistics is GOE [2]. As the
energy is increased, the wavelength becomes progressively
smaller. At a certain point, the wavelength will be comparable
to the size of the line segments on the boundary. In fact,
even before this point is reached, the dispersion relation has
already been altered with a fourfold symmetry imprinted by
the square lattice symmetry and deviates from that of the
continuous system. In previous works, this energy range was
often ignored as it does not have a classical correspondence.
However, for systems such as crystals [74], graphene [16–22],
and its photonic crystal analog [31], the energy range is highly
relevant.

We remark that, on a larger scale, artificial photonic [40,75]
and phononic crystals [76] have also become a physical
reality for modulating electromagnetic waves or acoustic wave
propagation. Thus, not only is a small energy or frequency
range that mimics the continuous limit physically relevant,
but the full energy or frequency spectrum are accessible
experimentally [13,31], the study of which can be important for
uncovering new physical phenomena or exploiting potential
applications. As demonstrated in the present article, it is
necessary to investigate the fluctuations in the spectrum in the
whole energy range as the quasiparticles at different energies
can exhibit characteristically different behaviors.

For the graphene lattice, the dispersion relation has a
sixfold symmetry, which becomes dominant as the energy is
increased from the Dirac point. Since the group velocity of
the quasiparticle is proportional to the gradient of the energy
with respect to the quasimomentum, the sixfold symmetry
leads to restricted motion in the zigzag row directions [41]
equally dividing 2π . The restricted motions conform to the

mirror reflection at the discretized boundaries as the line
segments are perpendicular to the direction of the motion.
For the classically integrable dynamics such as that of sector
billiards, one may speculate that the level statistics should
follow Poisson. However, when lattice symmetries play a role
in the dispersion relation, the level statistics may follow GOE
or mixed Poisson-GOE statistics. We have corroborated this
result using a square lattice that has a fourfold symmetry
in a sector domain. This counterintuitive phenomenon can
be understood from the previous investigations of quantum
systems with classically pseudointegrable dynamics, such as
polygons, where the energy levels also exhibit GOE features
for high-order polygons [47–50]. According to Richens and
Berry [47], this is the consequence of sensitive reflections at
the corners of the polygons formed by the discrete boundaries.

Generally, the interplay between different types of classical
dynamics and relativistic quantum mechanics can lead to
surprising phenomena. For example, in open Hamiltonian
systems such as graphene quantum dots, previous works
revealed that chaos has relatively weaker effects on the quan-
tum scattering dynamics as compared with the nonrelativistic
quantum counterpart [77,78]. For example, when the classical
dynamics of a quantum dot is integrable or mixed, there are
sharp transmission resonances. For a Schrödinger particle,
the resonances are completely washed out (or significantly
broadened) as the classical dynamics becomes fully chaotic,
leading to smooth variations in the quantum transmission
with the energy. However, for graphene, even for fully
developed classical chaos, there are still sharp resonances.
A similar behavior is present associated with phenomena such
as chaos-regulated quantum tunneling [79–81], chaos-induced
modulation of quantum transport [82,83], and superpersistent
currents in Dirac fermion systems [84]. Our work represents
another example where the relativistic quantum signatures of
classical nonlinear dynamics can be counterintuitive.
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