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Master-stability functions �MSFs� are fundamental to the study of synchronization in complex dynamical
systems. For example, for a coupled oscillator network, a necessary condition for synchronization to occur is
that the MSF at the corresponding normalized coupling parameters be negative. To understand the typical
behaviors of the MSF for various chaotic oscillators is key to predicting the collective dynamics of a network
of these oscillators. We address this issue by examining, systematically, MSFs for known chaotic oscillators.
Our computations and analysis indicate that it is generic for MSFs being negative in a finite interval of a
normalized coupling parameter. A general scheme is proposed to classify the typical behaviors of MSFs into
four categories. These results are verified by direct simulations of synchronous dynamics on networks of actual
coupled oscillators.
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I. INTRODUCTION

Synchronization in complex dynamical systems has been
a topic of continuous interest �1–8�. A basic tool in the analy-
ses of various synchronization problems is the master-
stability function �MSF� �6�. Given a complex dynamical
system consisting of a number of identical coupled oscilla-
tors, a synchronous solution can arise whereas the dynamical
variables of all oscillators approach each other asymptoti-
cally. Due to the entrainment of dynamical variables from
different components, which in the absence of coupling
would behave independently, the dimension of the subspace
in which the synchronous solution lies is necessarily much
smaller than the dimension of the full phase space. Math-
ematically, the synchronous subspace is termed the synchro-
nization manifold. Whether the manifold is stable with re-
spect to perturbations in the complementary subspace or the
transverse subspace determines whether synchronization can
be observed in a physical environment. The MSF measures
the exponential rate at which an infinitesimal perturbation in
the transverse subspace grows. In the terminology of dy-
namical systems, MSF is the largest transverse Lyapunov
exponent of the synchronization manifold �6�. A necessary
condition for synchronization to occur is that the MSF be
negative and the corresponding normalized coupling param-
eters �determined by the coupled oscillator system� fall in the
negative region of the MSF.

In 2002, the MSF formalism was applied �9� to analyzing
the synchronizability of small-world networks �10�. This
marks the beginning of an explosively growing area of re-
search in nonlinear science and engineering: synchronization
in complex networks �11–18�. The MSF formalism is appeal-
ing because it allows the properties of the local oscillators to
be separated from the coupling matrix characterizing the to-
pology of the underlying network. In particular, let K be a
normalized coupling parameter so that the MSF can be cal-
culated as a function of K, based only on knowledge about
the dynamics of the individual oscillators and the coupling
function. That is, the MSF can be obtained independent of

the topology of the underlying network that supports a large
number of such oscillators. A tacit assumption in the
network-synchronization literature is that the MSF is nega-
tive in some interval, �Ka ,Kb�, where Ka�Kb. The network
is synchronizable if all nonzero quantities Ki���i�i
=2, . . . ,N� fall in the interval, where � is a coupling param-
eter characterizing the average interaction among oscillators,
�is are the eigenvalues of the coupling matrix, N is the num-
ber of oscillators in the network, and �1=0 is assumed.
Given the interval �Ka ,Kb�, a network of a specific topology
is more likely to be synchronized if the spread of the non-
trivial eigenvalue spectrum is smaller.

A question is whether the property of the existence of
intervals of negative MSF values holds for typical nonlinear
oscillators. In general, this question is difficult to address as
there are an infinite number of possibilities for oscillatory
dynamics. To be realistic, we ask the following question:
among typical low-dimensional dynamical oscillators known
to the nonlinear-dynamics community, does the aforemen-
tioned property of the MSF hold? In this paper, we shall then
examine, systematically, an array of known dynamical oscil-
lators ranging from the chaotic Rössler oscillator �19�, the
Lorenz oscillator �20�, and its generalization �21� to chaotic
Chua’s circuits �22� and Hindmarsh-Rose �HR� neuron �23�.
We have also examined two driven oscillators, the Duffing
oscillator �24� and the van der Pol oscillator �25�. Our exten-
sive computations and analyses lend strong credence to the
proposition that it is a generic property of the MSF to be
negative in a finite parameter interval. The implication is
that, for any of these oscillators, there always exists a cou-
pling scheme for which network synchronization of a large
number of such oscillators can be realized. We also provide a
general scheme to classify the behaviors of MSFs into four
categories.

In Sec. II, we briefly review the basics of MSF-based
analysis. In Sec. III, we present systematic numerical results
for MSFs for typical nonlinear dynamical oscillators with
different coupling schemes. A heuristic analysis is provided
in Sec. IV to shed light on the generic behavior of MSFs in
the large coupling limit. In Sec. V, we provide numerical
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simulations of actual coupled oscillator networks to validate
the MSF-based analysis. A brief conclusion is offered in
Sec. VI.

II. SYNCHRONIZATION ANALYSIS BASED ON MSFS

We consider a complex dynamical system consisting of
coupled continuous-time nonlinear oscillators. Because of
the intrinsic nonlinearity underlying each individual oscilla-
tor, chaotic behaviors are common. Each oscillator when iso-
lated is described by

dx

dt
= F�x� , �1�

where x is a d-dimensional vector and F�x� is the velocity
field. To be general, we address chaotic synchronization by
choosing the parameters of each oscillator such that it exhib-
its a chaotic attractor. The typical setting in the literature for
the dynamics of a network of N coupled oscillators is

dxi

dt
= F�xi� − ��

j=1

N

GijH�x j� , �2�

where H�x� is a coupling function, � is a global coupling
parameter, and G is a coupling matrix determined by the
connection topology. The matrix G satisfies the condition
� j=1

N Gij =0 for any i, where N is the network size. As a con-
sequence, the synchronous state x1=x2= ¯ =xN=s, where
ds /dt=F�s� is an exact solution of Eq. �2�. Furthermore, we
assume that the coupling matrix G can be diagonalized with
a set of real eigenvalues ��i , i=1, . . . ,N� and their respective
normalized eigenvectors e1 ,e2 , . . . ,eN �26�. The network is
connected so there is only one zero eigenvalue such that the
eigenvalues can be sorted as 0=�1��2� ¯ ��N �27�.

For the system described by Eq. �2�, the variational equa-
tions governing the time evolution of the set of infinitesimal
vectors about the synchronous solution �xi�t��xi�t�−s�t� are

d�xi

dt
= DF�s� · �xi − ��

j=1

N

GijDH�s� · �x j , �3�

where DF�s� and DH�s� are the d�d Jacobian matrices of
the corresponding vector functions evaluated at s�t�. The
transform �y=Q−1 ·�x, where Q is a matrix whose columns
are the set of eigenvectors of G, leads to the block-
diagonally decoupled form of Eq. �3�:

d�yi

dt
= �DF�s� − ��iDH�s�� · �yi.

Letting Ki=��i�i=2, . . . ,N� be a specific set of values of a
normalized coupling parameter K, each block of the above
decoupled equation is structurally the same with only the
factor of Ki being different. This leads to the generic form for
all the decoupled blocks:

d�y

dt
= �DF�s� − KDH�s�� · �y . �4�

The largest Lyapunov exponent determined from Eq. �4� is
the MSF ��K� �6�. If ��K� is negative, a small disturbance

from the synchronization state will diminish exponentially so
that the synchronous solution is stable, at least when the
oscillators are initialized in its vicinity. The synchronous so-
lution is unstable and cannot be realized physically if ��K�
is positive because small perturbations from the synchronous
state will lead to trajectories that diverge from the state. For
the coupled oscillator network �Eq. �2��, a necessary condi-
tion for synchronization is then that all normalized coupling
parameters Ki�i=2, . . . ,N� fall in an interval on the K axis
where ��K� is negative. A network is more synchronizable if
the spread in the set of Ki values �or equivalently, the spread
in the eigenvalue spectrum �i� is smaller.

For nonlinear oscillators, the Jacobian matrix DF typi-
cally depends on the trajectory s�t�. For linear coupling func-
tion H�x�, the corresponding Jacobian matrix DH is a con-
stant matrix. To be concrete, we consider the physically
meaningful coupling scheme where oscillators interact with
each other through only one component. To be as general as
possible, we shall study all possible one-component cou-
plings, e.g., the situation where the ith component of one
oscillator coupled to the jth component of another oscillator:
�H�x��k=� jkxi, where � jk is the Kronecker’s delta such that
� jk=1 if j=k and zero otherwise, and i and j are running
indices from 1 to d. The Jacobian matrix DH thus has one
nonzero element only: �DH� ji=1, while all other elements
are zero.

III. MSFs FOR TYPICAL NONLINEAR SYSTEMS

A. Numerical procedure

The Lyapunov exponents determined by the variational

Eq. �4� are calculated as follows. We define DF˜�s�=DF�s�
−KDH�s� and then consider the matrix equation

dO�t�
dt

= DF˜�s� · O�t� �5�

with initial condition O�0�=I, where I is the identical matrix
of order d �28�. This matrix equation is solved together with
Eq. �1� that yields the trajectory s�t�. Both equations are
integrated using the same routine, e.g., the fourth-order
Runge-Kutta �RK4� method �the calculated Lyapunov expo-
nents will have systematic deviations if, for instance, the
system state is integrated using RK4 while the matrix equa-
tion is integrated using a different routine�. Let 	i�t��i
=1, . . . ,d� be the eigenvalues of O�t�. The Lyapunov expo-
nents are given by


i = lim
t→�

1

t
ln 	i�t� . �6�

Numerically integrating Eq. �5� for relatively long time is not
practical as the solution will quickly diverge when the sys-
tem has a positive Lyapunov exponent or it will diminish to
the computer round-off if all Lyapunov exponents are nega-
tive. A necessary remedy is to “normalize” and reset O�t�
periodically so that the Lyapunov exponents can be obtained
from the normalization parameters. We use the QR decom-
position method to “normalize” O�t� �29�. In our computa-
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tion, 104 cycles of s�t� are first integrated to allow the sys-
tem to settle into an attractor. Then, 3�104 cycles are used
to calculate Lyapunov exponents. Time step is chosen to be
dt=0.001.

For special cases where DF˜�s� can be approximated by a
constant matrix C, which can be diagonalized, C=P−1�P,
where �=diag��1 , . . . ,�d� is the eigenvalue matrix. The
constant matrix P needs not to be orthogonal. Equation �5�
can be rewritten as

dO�t�
dt

= P−1�P · O�t�

or equivalently

dPO�t�
dt

= � · PO�t� .

The solution is given by PO�t�=e�tPO�0�=e�tP or O�t�
=P−1e�tP. Thus 	i�t�=e�it. From Eq. �6�, we have


i = lim
t→�

1

t
ln e�it = Re �i.

B. Numerical results from typical nonlinear oscillators

We calculate the MSFs for typical low-dimensional non-
linear oscillators under all possible one-component coupling
configurations. In particular, for a three-dimensional system
described by dynamical variables �x1 ,x2 ,x3�, there are nine
linear coupling configurations: 1→1, 1→2, 1→3, 2→1,
2→2, 2→3, 3→1, 3→2, and 3→3, and we calculate the
MSFs for all these configurations. �Here the notation i
→ j�i , j=1,2 ,3� stands for the coupling scheme from the ith
component of one oscillator to the jth component of another
oscillator.� We shall present results with the following seven
nonlinear oscillators: Rössler oscillator, Lorenz oscillator,
Chua’s circuit, Chen’s oscillator, HR neuron, the forced Duf-
fing’s oscillator, and the forced van der Pol oscillator. In all
cases, the parameters are adopted from literature �see refer-
ence for each case� where the resulting attractor is chaotic so
that it possesses one positive Lyapunov exponent, which is
��0�.

1. Rössler system

Here,

	ẋ = − y − z ,

ẏ = x + y ,

ż = � + �x − ��z ,

 �7�

where the parameters are =0.2, �=0.2, and �=9 �19�. The
Jacobian matrix is

DF = �0 − 1 − 1

1  0

z 0 x − �
� . �8�

The Lyapunov exponents for the this system are 
10.080,

20, and 
3−8.716. The MSFs under various coupling
schemes are shown in Fig. 1.

2. Lorenz system

Here,

	ẋ = ��y − x�
ẏ = x�� − z� − y

ż = xy − �z ,

 �9�

where �=10, �=28, and �=2 �20�. The Jacobian matrix is

DF = � − � � 0

� − z − 1 − x

y x − �
� . �10�

The Lyapunov exponents are 
10.819, 
20, and 
3
−13.819. Since the diagonals of the Jacobian matrix are in-
dependent of the dynamical variables, the sum of the
Lyapunov exponents is equal to the trace of the Jacobian
matrix DF. Indeed, we have 
1+
2+
3−13 and Tr�DF�
=−�−1−�=−13. The MSFs for different coupling schemes
are shown in Fig. 2 for �=2 and in Fig. 3 for �=8 /3. Note
that the MSF for 3→3 coupling is a generalization of the
Turing bifurcation �30�.

3. Chen’s system

Here,

	ẋ = a�y − x�
ẏ = �c − a − z�x + cy

ż = xy − �z ,

 �11�
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FIG. 1. �Color online� For the chaotic Rössler oscillator �Eq.
�7��, MSFs versus the normalized coupling parameter K under vari-
ous coupling schemes. In each panel, the notation i→ j indicates the
coupling as being from the ith component of one oscillator to the
jth component of another oscillator. The numerical values below the
i→ j notion indicate the K values at which ��K� changes sign. The
same notation is applied for subsequent Fig. 2 through Fig. 8. Pa-
rameter setting is specified in the text.
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where a=35, c=28, and �=8 /3 �21�. The Jacobian matrix is

DF = � − a a 0

c − a − z c − x

y x − �
� . �12�

The Lyapunov exponents are 
12.154, 
20, and 
3
−11.820. The sum of the Lyapunov exponents is equal to
Tr�DF�=−a+c−�−9.667. Note that for our calculation,
Eq. �5� is integrated together with Eq. �1� using the RK4
method. If Eq. �5� is integrated using the Euler method while
Eq. �1� is integrated using RK4 method, the calculated
Lyapunov exponents are 
12.17, 
20.25, and 
3
−11.96. This can lead to systematic errors. The MSFs of this
system as a function of the generalized parameter K are
shown in Fig. 4.

4. Chua’s circuit system

Here,

	ẋ = �y − x + f�x��
ẏ = x − y + z

ż = − �y − �z ,

 �13�

where =10, �=14.87, �=0, and

f�x� = 	− bx − a + b , x � 1

− ax , �x� � 1

− bx + a − b , x � − 1,

 �14�

where a=−1.27 and b=−0.68 �22�. The Jacobian matrix is

DF =�−  −  � �b, �x� � 1

a, �x� � 1
�  0

1 − 1 1

0 − � − �
� . �15�

The Lyapunov exponents for this system are 
10.409, 
2
0, and 
3−3.859. The behaviors of the MSFs under dif-
ferent coupling schemes are presented in Fig. 5.

5. HR neuron

Here,

	ẋ = y + 3x2 − x3 − z + I

ẏ = 1 − 5x2 − y

ż = − rz + rs�x + 1.6� ,

 �16�

where I=3.2 is the external current input, r=0.006, and s
=4 �23�. The Jacobian matrix is
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FIG. 2. �Color online� For the chaotic Lorenz system �Eq. �9��
for �=2, MSFs versus the normalized coupling parameter K under
different coupling schemes.
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FIG. 3. �Color online� For the chaotic Lorenz system �Eq. �9��
for �=8 /3, MSFs versus the normalized coupling parameter K un-
der different coupling schemes.
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FIG. 4. �Color online� For Chen’s system �Eq. �11��, MSFs ver-
sus the normalized coupling parameter K under different coupling
schemes.
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DF = �6x − 3x2 1 − 1

− 10x − 1 0

rs 0 − r
� . �17�

The Lyapunov exponents are 
10.013, 
20, and 
3
−8.610. The MSFs versus the normalized coupling parameter
K under different coupling schemes are shown in Fig. 6.

6. Forced Duffing oscillator

Here,

�ẋ = y

ẏ = − hy − x3 + q sin��t� ,
� �18�

where �=1, h=0.1, and q=5.6 �24�. The Jacobian matrix is

DF = � 0 1

− 3x2 − h
� . �19�

Considering the driven term as an extra dimension, i.e., ṫ
=1, the Lyapunov exponents are 
10.066, 
2=0, and 
3
−0.166. The sum of the exponents is equal to Tr�DF�=
−h=0.1. The behaviors of various MSFs are shown in Fig. 7.

7. Forced van der Pol system

Here,

�ẋ = y

ẏ = − x + d�1 − x2�y + F sin��t� ,
� �20�

where we use d=3, F=15, and �=4.065 �25�. The Jacobian
matrix is

DF = � 0 1

− 1 − 2dxy d�1 − x2�
� . �21�

Considering an extra equation ṫ=1, the Lyapunov exponents
for the this system are 
10.106, 
2=0, and 
3−2.774.
The MSFs versus the normalized coupling parameter under
various coupling schemes are presented in Fig. 8.

C. Classification of MSFs

Based on the numerical results in Sec. III B, we propose a
general scheme to classify the behaviors of the MSFs in typi-
cal low-dimensional nonlinear oscillators in terms of the be-
haviors of ��K� crossing the K axis �31�. In particular, let �n
be the class where ��K� has n cross points with the K axis.
For a chaotic oscillator, the value of the MSF for K=0 is the
largest Lyapunov exponent of the oscillator, which is positive
and assumes the same value under different coupling
schemes. Several important classes are in order:

�1� Class �0: ��K� has no finite cross points with K axis,
hence ��K� is always positive, and a coupled network of
such oscillators does not allow any synchronization state.
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FIG. 5. �Color online� For the Chua circuit system �Eq. �13��,
MSFs versus the normalized coupling parameter K under different
coupling schemes.
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FIG. 6. �Color online� For the HR neuron system �Eq. �16��,
MSFs versus the normalized coupling parameter K under different
coupling schemes.
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�2� Class �1: ��K� has only one finite cross point Ka.
After crossing the K axis at Ka, ��K� remains negative for
all K�Ka. For this class, the coupled network of oscillators
will synchronization once K2=��2�Ka, where �2 is the
smallest nontrivial eigenvalue of the coupling matrix G.

�3� Class �2: ��K� possesses two finite cross points, Ka
and Kb, with the K axis, where Ka�Kb. For this class, ��K�
becomes negative at Ka and as K is increased and ��K�
becomes positive again at Kb and remain positive thereafter.
In this case, ��K� is negative in a finite interval �Ka ,Kb�.
The synchronization condition for such coupled oscillator
system is Ka���2 and Kb���N, where �N is the largest
eigenvalue of the coupling matrix G.

�4� Class �3: ��K� has three finite cross points Ka1 ,Kb1,
Ka2. For this class, the coupled oscillator system is synchro-
nizable if the eigenvalues of the coupling matrix satisfy that
��i , i=2, . . . ,N all reside in the intervals �Ka1 ,Kb1� and
�Ka2 ,��, i.e., for general cases there exists certain j, where
j=3, . . . ,N−1, satisfying the following relations: Ka1���2
and Kb1��� j, and Ka2��� j+1; or in the extreme case, all
��is reside in one interval, i.e., Ka1���2 and Kb1���N, or
��2�Ka2. This is of particular interest for ragged synchro-
nization problems �24�. Similar arguments hold for class �n,
n=5,7 , . . .. A common feature for these odd classes is that
when the coupling is strong enough ���Kn /�N�, the system
can always be synchronized.

�5� Class �n, where n=4,6 , . . .: ��K� has n finite cross
points, which can be grouped into �Ka1 ,Kb1�, �Ka2 ,Kb2� , . . .,
�Kam ,Kbm=Kn�, where m=n /2. For these classes, synchroni-
zation of the coupled oscillators can be more intricate, i.e.,
only when ��i , i=2, . . . ,N all reside in the n /2 intervals.
They can be all in one interval, or they can spread in all these
n /2 intervals. For these even classes, strong coupling, e.g.,
��Kn /�N, will lead to desynchronization.

Varying system parameters may change the class of a par-
ticular MSF. However, since the limit behavior of MSF for
large K is locally robust �it cannot be globally robust as the
attractor can be totally destroyed if a parameter changes sig-
nificantly�, the cross points with K axis are usually generated
or annihilated in pairs, thus the MSF can jump from one
class to another with the same parity, i.e., from even to even
or from odd to odd. For example, for the forced Duffing
oscillator �Eq. �18�� with 1→2 coupling, increasing q to 11.3
will change the MSF from �3 to �5. That is, the parity of the
MSFs is preserved when the parameter of the system
changes. Note that some MSFs are generalizations of the
Turing bifurcation, i.e., the MSF of Lorenz oscillator for
3→3 coupling, and all Turing bifurcations preserve the parity
of class. It is unclear that whether the limit of MSF can
change sign abruptly through bifurcation or change gradually
via an asymptote to zero, but this is usually accompanied
with structural metamorphosis of the attractor itself. There-
fore, we conjecture that the classification is structurally
stable and that such zero asymptotes are isolated points in
parameter space.

For the seven types of oscillators that we have studied, the
classification is summarized in Table I. A general finding is
that, for most oscillators, there exists a coupling configura-
tion for which the MSF is negative in a finite parameter
interval �belong to even classes�.

IV. ASYMPTOTIC BEHAVIOR OF MSF

The behavior of the MSF ��K� in the large-K limit for
diagonal couplings has been discussed by Fink et al. �32�,
which is determined by the sub-block Lyapunov exponents.
Here we shall focus on the nondiagonal couplings and deter-
mine the asymptotic behavior of ��K� for large K values.
Without loss of generality, we assume the dimensionality of
the oscillator to be d=3. The Jacobian matrix of the oscilla-
tors with respect to the synchronization manifold is denoted
by
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FIG. 8. �Color online� For the forced van der Pol system �Eq.
�20�� under various coupling schemes, MSFs versus the normalized
coupling parameter K.

TABLE I. Classification based on master stability functions.

Class Rössler Lorenz Chen Chua HR Duffing Van der Pol

�0 1→2,1→3,2→1, 1→3,2→3,3→1, 1→1,1→3,2→1, 1→3,3→2 1→3,2→3,3→1,

2→3,3→2,3→3 3→2 2→3,3→1,3→2 3→2,3→3

�1 2→2,3→1 1→1,1→2,2→2 1→2,2→2 1→1,1→2,2→1,
2→2,2→3

1→1,1→2,
2→2

1→1,
2→2

1→1,1→2,
2→2

�2 1→1 2→1 3→3 �33� 3→1,3→3 2→1

�3,5,. . . 3→3 1→2

�4,6,. . . 2→1 2→1
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DF = �a11 a12 a13

a21 a22 a23

a31 a32 a33
� , �22�

where aij depends on the system variables. The matrix that
determines the MSF is

DF − KDH , �23�

where K is the normalized coupling parameter. For one-
component coupling, there is only one nonzero element in
DH. To gain insights, we assume that for large K, DF can be
approximated by a constant matrix, where each element aij is
assumed to be its time-averaged value associated with the
asymptotic trajectory. Thus the variational Eq. �4� can be
approximated by a linear system, and the MSF is the largest
real eigenvalue of the matrix DF−KDH, which is deter-
mined by

Det�
I − DF + KDH� = 0, �24�

where I is a 3�3 unit matrix. From numerical simulations,
we have observed that, for nondiagonal coupling, the MSFs
in many cases have the form of powers of K in the large K
limit. Assume the coupling is from the jth component of one
oscillator to the ith component of another oscillator, we have
�DH�kl=�ik� jl. For K�0, we assume that the solution of Eq.
�24� with largest real part, 
max, has the form


max � K. �25�

Thus expanding Eq. �24� and for large K, the terms without
K or 
max could be neglected. We obtain the following ap-
proximate equation for 
max:


max
3 − �

n=1

3

ann
max
2 + ajiK
max − �ajiahh − ajhahi�K � 0,

�26�

where h is the index that is not equal to i or j �note that i
� j since the coupling is nondiagonal�. We then have for
aji�0,

��K� = 
max � �− aji
�K , �27�

for aji=0 and ajhahi�0,

��K� = 
max � �3 − ajhahi
�3 K , �28�

and for aji=0 and ajhahi�0, the root that is similar to Eq.
�28� is now negative, thus it is the conjugate root with imagi-
nary part that has the largest positive part. We have

��K� = Re�
max� �
1

2
�3 ajhahi

�3 K . �29�

However, for aji�0, ��K� is not in the form of powers of K
for large K. Note that for coupling from the jth component of
one oscillator to the ith component of another oscillator, only
the ajiK
max and �−ajhahi�K terms contain K. For aji�0,
since the power of K in the term �−ajhahi�K is less than that
in the term ajiK
max, the former can be neglected. The
asymptotic behavior is affected by the term aji, as shown in
Eq. �27�. If aji=0 and ajhahi�0, 
max will be determined by

the term −ajhahiK, leading to the asymptotic behaviors as
given by Eqs. �28� and �29�. Moreover, if aji=0 and ajhahi
=0, 
max does not depend on K, leading to a constant value
for ��K�. However, none of the systems that we have tested
falls into this special category.

We now present several examples to validate the
asymptotic behavior of the MSF in the large coupling limit
as suggested by our heuristic analysis. First, we show the
case of aji�0�i� j� in Fig. 9 where circles, diamonds, up-
triangle, and down-triangle are the MSFs of different chaotic
oscillators under different coupling schemes. It can be seen
that the behaviors of MSFs agree with those predicted by our
analysis. Next, we investigate the case of aji=0, which is
relatively rare in the systems that we have investigated. In
particular, the Rössler system under 3→2 coupling, the
Chua circuit under 3→1 coupling, and the HR neuron sys-
tem under 2→3 and 3→2 couplings belong to this category.
The corresponding MSFs are shown in Fig. 10. We again
observe a reasonable agreement between theory and numer-
ics.

From our computations, we also find that there are cases
where ��K� approaches asymptotically a constant value. For
example, for the forced Duffing system under 1→2 cou-
pling, ��K� approaches −0.05. The reason for this behavior
is that in these cases, for large K, the governing matrix DF
−KDH is approximately a constant matrix. Thus from Eqs.
�5� and �6�, the Lyapunov exponents are given by the real
parts of the eigenvalues of the governing matrix. Since Ks
being large only affects the imaginary part of the eigenval-
ues, the largest Lyapunov exponent is a constant. For ex-
ample, in the forced Duffing system under 1→2 coupling,
the governing matrix is

DF − KDH = � 0 1

− 3x2 − K − h
� � � 0 1

− K − h
� �30�

for large K. Then, the eigenvalues are
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FIG. 9. �Color online� Behaviors of MSFs for aji�0. Circles:
Rössler system under 1→2 coupling; diamonds: Lorenz system
under 2→3 coupling; up-triangles: Chua circuit under 3→2 cou-
pling; down-triangles: forced Duffing system under 2→1 coupling.
Solid straight lines are from Eq. �27�.
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− h + i�4K − h2

2
, �31�

and the largest real part is h /2. As a result, we have ��K�
�−h /2=−0.05 for large K.

Using the eigenvalue analysis, certain critical K values
leading to ��K�=0 can be obtained in the forced Duffing
and the forced van der Pol oscillators. For example, for the
forced Duffing oscillator under 2→1 coupling, the govern-
ing matrix is

� 0 1 − K

− 3x2 − h
� . �32�

For K=1, the governing matrix degenerates and the largest
eigenvalue becomes zero, indicating that there exists a syn-
chronizable region in K about this value. Numerical evidence
of the existence of such a point is shown in Fig. 7. In the
forced van der Pol oscillator under the 2→1 coupling
scheme, a similar behavior has been observed.

V. SIMULATION OF ACTUAL SYNCHRONIZATION
DYNAMICS

The MSF formalism provides a general criterion for de-
termining the synchronizability of a system of coupled non-
linear oscillators. It is insightful to perform direct numerical
simulations of synchronization dynamics and compare re-
sults with those indicated by the MSFs. Since the role of the
coupling matrix in affecting the stability of the synchroniza-
tion state is reflected only by the eigenvalues, it suffices to
consider a system of two coupled oscillators, for which the
coupling matrix is simply

G = � 1 − 1

− 1 1
� . �33�

The eigenvalues are 0 and 2. We thus have K=2�, and the
synchronization condition is given by ��2���0. Generally,
one can use the difference in the state variables between the
oscillators to characterize synchronization. For example, we
can examine the fluctuation width defined by W= ���xi
− �xj���T�e, where both time and ensemble averages are used.
If the oscillator system is synchronized, then x1=x2 and W
=0. Otherwise, W can assume large values.

Figure 11�b� shows W versus the coupling parameter � for
the Lorenz system under 2→1 coupling. Figure 12�b� is the
same plot for the Lorenz system under 3→3 coupling. Re-
sults of the HR neuron system under 2→1 coupling is
shown in Fig. 13�b�. The respective behaviors of the corre-
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FIG. 10. �Color online� Behaviors of MSFs for aji=0. Circles:
Rössler system under 3→2 coupling; diamonds: Chua circuit under
3→1 coupling; up-triangle: HR neuron under 2→3 coupling;
down-triangle: HR neuron under 3→2 coupling. The solid line is
from Eq. �28� for Chua circuit under 3→1 coupling.
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FIG. 11. �Color online� For a system of two coupled Lorenz
oscillators under 2→1 coupling, �a� MSF and �b� synchronization
indicator W as a function of the normalized coupling parameter K
=2�.
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FIG. 12. �Color online� For a system of two coupled Lorenz
oscillators under 3→3 coupling, �a� MSF and �b� synchronization
indicator W as a function of the normalized coupling parameter K
=2�.
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sponding MSFs are also shown in these figures for compari-
son. In our simulations, we first run 104 time units to rid the
system of any transient behavior and then use the following
103 time units to calculate W. An ensemble of 100 random
initial conditions is used, which yields the average value W
and the standard deviation. For values of � for which the
MSF is negative ���2���0�, W is generally of the order of
10−8, indicating complete synchronization in the coupled sys-
tem. Since the MSF analysis is meaningful for initial condi-
tions chosen in the neighborhood of the synchronization state
in the phase space, as 2� approaches the value for ��2��
=0 from the negative side, the volume of this attractive re-
gion approaches zero. Thus, about this critical value of �,
even if ��2���0, a finite initial disturbance can push the
system out of the small attractive region, leading to destruc-
tion of synchronization. Such an example can be seen from
Fig. 11�b� for values of � close to 2�=22.5. Retrospectively,
this sensitive dependence to the disturbance could be caused
by riddled basins of the synchronization manifold near the
desynchronization point, as has been demonstrated for
x-coupled Rössler oscillators �34�. In general, however, we
observe that the transition point indicated by W agrees well
with that determined by the MSF.

For a system of coupled Chen’s oscillators, an intermittent
behavior between synchronization and desynchronization is
observed. In this case, the quantity W is not proper to char-
acterize the extent of synchronization. We use an alternative
quantity, the fraction of synchronized time �, to quantify
synchronization, which is defined as the fraction of time that
the difference in the state variables between oscillators, ��xi
− �xj���, is smaller than a small threshold value, say 10−3,
during a long time interval. In the simulation, we first calcu-
late 104 time units to allow the system to settle into the
chaotic attractor and then calculate � using 105 time units.
An ensemble average of 100 realizations is also used. The
results are shown in Fig. 14. Again, we observe a good
agreement between the direct simulation result and that pre-
dicted by the MSF.

For the Chua’s circuit model, divergence of trajectories is
common. Thus neither W nor � is useful for quantifying the

degree of synchronization. To devise a suitable characteriz-
ing quantity, we note that, when a trajectory does not diverge
and ��2���0, the coupled system can be synchronized and
W is on the order of 10−8. Thus we define Psyn as the prob-
ability that the coupled system does not diverge and synchro-
nize. Numerically, this can be determined when the condition
��xi− �xj��T��10−3 is satisfied for a certain time period after
entering the steady state. In our simulation, after disregard-
ing a transient phase of 104 time units, we examine 103 time
units to see if ��xi− �xj���T is smaller than 10−3 in this time
interval. If yes, we deem this case as synchronizable. For
each value of the coupling parameter �, we use an ensemble
of 1000 realizations to calculate Psyn, estimated as the frac-
tion of the synchronized cases. Results are shown in Fig. 15.
We observe that the direct-simulation results are consistent
with the MSF predictions.

From both MSF calculations and numerical simulations of
actual oscillator systems, we find that nondiagonal couplings
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FIG. 13. �Color online� For a system of two coupled HR neu-
rons under 2→1 coupling, �a� MSF and �b� synchronization indi-
cator W as a function of the normalized coupling parameter K=2�.
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FIG. 14. �Color online� For the system of two coupled Chen’s
oscillators under 3→3 coupling scheme, �a� MSF and �b� actual
simulation result of the fraction of synchronized time � versus the
normalized coupling parameter K=2�.
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can also lead to complete synchronization �see also �24,35�.
This is surprising since the driven signal can be quite differ-
ent from the target signal. For example, for coupled Rössler
oscillators under 3→1 coupling �coupling from z component
to x component, see Eq. �7��, synchronization can arise if the
coupling parameter is large. The time series of the z compo-
nent is pulselike, while the evolution of the x component
resembles that of a regular sinusoidal wave. The nondiagonal
coupling induced synchronization prevails in most of the
coupled oscillator systems studied in Sec. III B �Table I�.

MSFs are structurally stable, i.e., their properties are in-
variant under small parameter variations. They, however,
cannot be globally stable as oscillators with distinct param-
eters can have totally different attractor structures. Since
MSFs represent local stability criterions, even if ��0, the
coupled system can exhibit behaviors other than synchroni-
zation, depending on the properties of the chaotic attractor.
In our direct simulations, we observe that, while there are
cases where the difference of the dynamical variables de-
creases to zero as soon as � becomes negative, there are also
other cases where a gradual transition in the characterizing
quantity of synchronization occurs. In any case, our direct-
simulation results suggest that the system generally synchro-
nizes better if the MSF is more negative, and the transition to
synchronization can usually be predicted well by the behav-
ior of the MSF. While here we have used the largest

Lyapunov exponent as the measure of MSF, we suspect that
using other stronger measures, such as the stability of one or
more of the lower unstable periodic orbits could yield better
indicators of actual synchronization. These issues will be ex-
plored in future works.

VI. CONCLUSION

We have systematically examined known low-
dimensional chaotic oscillators and analyzed the correspond-
ing MSFs under all one-component coupling schemes. We
find that, for most of these oscillators, there exist some cou-
pling schemes that lead to MSFs being negative in a finite
interval of the normalized coupling parameter, a property
that has been assumed tacitly in the literature of network
synchronization. In fact, MSFs can exhibit a variety of dif-
ferent behaviors, which can be conveniently categorized into
four classes. Results from direct calculations of appropriate
synchronization measures for different systems indicate that
the MSF framework is effective for probing the transition to
synchronization in systems of coupled nonlinear oscillators.
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