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Previous work has revealed that the synchronizability of a scale-free network tends to be suppressed when
its clustering coefficient is increased. We present a theory to explain this phenomenon. Our proposition is that,
as the network becomes more strongly clustered, topological loop structure can emerge, generating a set of
eigenvalues that are close to zero. As a result, the dynamics of synchronization tends to be dominated by the
loop structure. As the clustering coefficient is increased, the size of the dominant loop increases, leading to
continuous degradation of the network synchronizability. We provide analysis and numerical evidence to
support the proposition and we speculate that the loop structure can provide a platform for controlling dynami-
cal processes on scale-free networks with high clustering coefficients.
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I. INTRODUCTION

The effect of the topology of a complex network on vari-
ous dynamical processes taking place on it is a fundamental
issue in statistical and nonlinear physics. Two types of net-
work topologies, namely, small-world �1� and scale-free �2�,
are topics of tremendous recent interest. Briefly, a small-
world network is characterized by a high clustering coeffi-
cient, the probability that two nodes are connected provided
that they are both linked to a common third node, and a small
network diameter, which is the average number of links con-
necting two arbitrary nodes in the network. The defining trait
of a scale-free network is a power-law distribution in the
number of links that a node possesses, or the node degree.
For dynamics on networks, representative processes of recent
interest include synchronization �3–6�, information or virus
spreading �7�, and transport �8�. In terms of the interplay
between network topology and dynamics, scale-free net-
works have been studied extensively due to their relevance to
a large variety of real-world networked systems �9�.

Most existing works on dynamics on scale-free networks
concern about the effect of the power-law degree distribution
�3–8�, which naturally implies a small network diameter. In
particular, a distinct feature of a scale-free network is the
existence of a small set of hub nodes, nodes of unusually
large degrees. The hub nodes are responsible for the long tail
of the power-law degree distribution, and they typically lead
to a small network diameter. Indeed, works addressing the
effect of network diameter on dynamical processes were
among the first in the area of complex-network dynamics
�3–5�. More recently, the effect of clustering on dynamics in
scale-free networks has been studied �10�, with the result that
networks with high clustering coefficients tend to have low
synchronizability.

In this paper, we present a physical theory to explain the
finding �10� that synchronization is generally suppressed in
strongly clustered scale-free networks. Our central idea is to
search for some dominant loop structure embedded in a large
scale-free network. Here, a loop structure is defined as a
subset of nodes that are connected with each other as if they

were located on a part of a ring, where any node is connected
with two nodes, one on each side. Among all possible loops
on the network, the dominant loop has the largest number of
nodes. Our purpose is to consider the shortest loop passing
through a node, which is different from those of existing
works �11� on loops in complex networks that focus on the
scaling behavior of number of loops with the network size.
We find that when the clustering coefficient c increases, ob-
vious loop structure emerges �which may contain several
large size loops� and we hypothesize that, if the network is
sparse, the loop structure will play a determining role in
shaping the network dynamics. Among these loops, we de-
fine the largest one as the dominant loop and let n be the size
of the largest loop. Intuitively, as the clustering coefficient c
is increased, n is increased too. Deeming the largest loop as
an isolated loop then the key eigenvalues of it can be calcu-
lated, which determine the dynamics on the loops. It is pos-
sible to obtain analytic insight into how the dynamics change
as c is varied. Because of the dominant role played by the
loop in network dynamics, the effect of varying c on the
global network dynamics can then be inferred. We will show
that for sparse scale-free networks with high clustering coef-
ficients, key eigenvalues calculated from the dominant loop
agree reasonably well with the respective eigenvalues of the
whole network, indicating that for such networks, the domi-
nant loop structure can be used to serve as a predictive tool
for the network synchronizability.

In Sec. II, we characterize the network synchronizability
as a function of the clustering coefficient c and demonstrate
the emergence of the loop structure for scale-free networks
with high values of c. In Sec. III, we obtain formulas for the
eigenvalues of the loop structure and present evidence that
the formulas can be used to explain the suppression of the
network synchronizability by strong clustering. Brief conclu-
sion and discussion are presented in Sec. IV.

II. EMERGENCE OF LOOP STRUCTURE
IN SCALE-FREE NETWORKS

In this paper, we mainly focus on the sparse scale-free
networks. To have scale-free networks with systematically
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varying value of the clustering coefficient c, we use a sto-
chastic rewiring algorithm. Specifically, we first generate a
scale-free network using, for example, the standard
preferential-attachment rule �2�. We then rewire the links
randomly �12� to vary the clustering coefficient but without
changing the degrees of the nodes. In particular, we first
randomly pick up two edges, say �A,B� and �C,D�. We then
compare the numbers of local triangular structures associated
with all three configurations ��A,B�,�C,D��, ��A,C�,�B,D��
and ��A,D�,�B,C��, and select the one with most triangles and
connect the nodes accordingly, where duplicated links are
avoided. Note that, in this process, if a link from a given
node is detached, a different link is immediately attached to
this node. The process continues until a desirable value of c
is attained. In this way the degree distribution and the degree
sequence of the network are fixed, and the only topological
property changed is c.

Synchronization of the network is determined by the spec-
tral property of the coupling �Laplacian� matrix. Given a
network of N nodes, its Laplacian matrix Lª �Li,j�N�N is
defined as Li,i=ki, where ki is the degree �number of edges�
of node i; Li,j =−1 if i and j are connected; and Li,j =0 oth-
erwise. The matrix L satisfies � j=1

N Li,j =0 for i=1, . . . ,N,
which ensures the existence of synchronization states. In par-
ticular, previous works have established that the synchroniz-
ability of a network can be characterized by the largest
eigenvalue �N and the smallest nontrivial eigenvalue �2 of
the Laplacian matrix �3–6�. The eigenratio defined by
R��N /�2 determines the ability of the network to have syn-
chronous dynamics: the smaller the value of R, the more
probable that the network can be synchronized. To have rea-
sonably robust power-law degree distribution whose degree
variation extends over several orders of magnitude, the un-
derlying network must be relatively large and sparse. In this
case, the largest eigenvalue �N is approximately given by
�13�

�N � kmax + 1, �1�

where kmax is the maximum degree of the network. Since for
our model network, the degree sequence is fixed when c is
varied, kmax is independent of c, so is �N. Thus, to assess the
effect of varying c on the network synchronizability, it suf-
fices to focus on the dependence of �2 on c. Numerically, we
find that, indeed, �N remains constant as c is increased from
near-zero value. A typical result is shown in Fig. 1�a�. The
variation of �2 with c is shown in Fig. 1�b�. We observe that
�2 tends to decrease as c is increased, which is consistent
with the previous finding that scale-free networks with rela-
tively larger values of c have weaker synchronizability �10�.

Based on the behavior of the eigenvalues of the Laplacian
matrix, we can now argue that, as c is increased from a
near-zero value, it is possible for some dominant loop struc-
ture to emerge in the network. As shown in Fig. 1�b�, as c is
increased, �2 decreases toward zero. In fact, a number of
eigenvalues that are slightly larger than �2 exhibit the same
tendency. Since zero is the natural minimum eigenvalue of
the Laplacian matrix, the set of decreasing eigenvalues tend
to cluster near but larger than zero as c is increased. What is
the consequence of having a small set of near-zero eigenval-

ues? To gain insight, we imagine a set of isolated subnet-
works, say q of them. Viewing the set of subnetworks as
comprising a single network, we see that it must have q
eigenvalues that are exactly zero. The intuition is then that, if
a connected network possesses a number of near-zero eigen-
values, it must be quite fragile in the sense that the probabil-
ity for a small perturbation to its connecting topology, such
as removing a single node or a few rewirings, to disconnect
the network is high. The natural and perhaps the simplest
topological structure that satisfies this requirement is loops,
where a set of nodes are uniformly connected by approxi-
mately the same number of links. It should be noted that the
loop structure is a topological concept. For example, one can
replace each node in a loop by a subnetwork, and the result-
ing network still satisfies the requirement that a small struc-
tural perturbation is likely to disconnect the network. Such a
network actually possesses a clustered or a community struc-
ture. In this case, the presence of a set of eigenvalues close to
zero indicates that the network may have a strong commu-
nity structure �10�. Actually, algorithm based on spectral
methods is an effective way to detect communities in large
networks �14�.

An example of the emergence of some distinct loop struc-
ture is shown in Fig. 2 where, to facilitate visualization, we
have used a relatively small scale-free network of N=100
nodes and average degree �k	=4. We see that, for the small
value of c in Fig. 2�a�, there is no apparent, large-scale loop
structure. However, for the relatively large value of c in Fig.
2�b�, loop structures on a global scale exist.

The above argument and the numerical observation in Fig.
2 lead us to hypothesize that it is the emergence of the loop
structure which causes �2 to decrease. To provide support,
our strategy is then to calculate the smallest nontrivial eigen-
value from a topological loop, which can be done analyti-
cally, and to compare the result with the actual value of �2
from the network.
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FIG. 1. �Color online� For a scale-free network of N=2000
nodes and average degree �k	=4, the largest and the smallest non-
trivial eigenvalues of the Laplacian matrix, �N �a� and �2 �b�, re-
spectively, versus the clustering coefficient c. Each data is obtained
from 50 random realizations from a given initial scale-free network
and both the average values and standard deviations are given.
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III. EIGENVALUES OF LOOP STRUCTURE

The purpose is to provide quantitative support for our
proposition that the set of near-zero eigenvalues is dominated
by the loop structure in the network. For an idealized “ring”
network where each node is connected with 2m neighboring
nodes, the eigenvalue spectrum 
� f� of the Laplacian matrix
is given by

� f = 2m + 1 −
sin��2m + 1�f�/n�

sin�f�/n�
, �2�

where f =0,1 , . . . ,n−1. The eigenvalues can be ordered in an
ascending sequence, and we write 0=�1

L��2
L� . . .�N

L . We
have �2

L=�1 or �n−1. For the simple dominant loop structure
as in Fig. 2�b�, we have m=1 and, hence,

�2
L = 3 −

sin�3�/n�
sin��/n�

. �3�

To calculate �2
L for any given value of c, it is necessary to

compute n, the number of nodes involved in the dominant
loop structure, which can be done numerically. Figure 3
shows one such example, where the sparse scale-free net-
work has N=2000 nodes and average degree �k	=4. To nu-
merically find the largest loop, we use the following proce-
dure. For each pair of connected nodes �i , j�, we first remove
the link between them and then calculate their shortest path
lij. The process is repeated for all links in the network, yield-

ing max lij, the maximum of such shortest paths. The size n
of the dominant loop is given by max lij +1. If there are more
than one largest loops, we pick one randomly. From Fig.
3�a�, we observe that, as c is increased, n also increases.
Then we deem this loop as an isolated one and calculate the
eigenvalues of the resulting coupling matrix. The loop eigen-
value �2

L and the counterpart �2 for the whole network versus
c are shown in Fig. 3�b�. The two eigenvalues are reasonably
close to each other, suggesting that the network dynamic is
dominated by the loop structure.

Equation �3� and Fig. 3 provide a plausible explanation to
the decrease in �2 as c is increased. From Eq. �3�, we see that
��2

L /�n�0 for n�2, indicating that for any nontrivial loop
structure �say n�2�, �2

L is a decreasing function of n. This
fact, in combination with the result in Figs. 3�a� and 3�b�,
suggests that �2 be a decreasing function of c. For the spe-
cific case of synchronous dynamics, this means that, as nodes
in the network become more strongly clustered, its synchro-
nizability deteriorates. This provides a physical explanation
to the recent finding in �10�. A few remarks are in order.

A. Relative smallness of the dominant loop structure

The scale-free network used in Fig. 3 has N=2000 nodes.
However, the number of nodes contained in the dominant
loop is 2 orders of magnitude smaller. It thus appears surpris-
ing that such a small substructure embedded in the network
can have a significant effect on the network dynamics. In-
deed, the key eigenvalue �2 calculated from the entire net-
work and �2

L calculated from the loop are approximately
equal, insofar as the number of nodes constituting the loop
exceeds a few, as we have observed numerically. The domi-
nant role played by the loop structure in synchronization can
be understood, heuristically, as follows. When there is a
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FIG. 2. �Color online� Visualizing a scale-free network
�N=100 and �k	=4�: �a� absence of distinct loop structure for
c=0.02 and �b� emergence of apparent loop structure for c=0.32.
The graph is generated by the PAJEK software �15� using an iterative
method that avoids link intersection and keeps neighboring nodes in
the network as neighbors in the visualization plane.
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FIG. 3. �Color online� For a sparse scale-free network of
N=2000 nodes and average degree �k	=4. �a� The size of the larg-
est loop in the network versus the clustering coefficient c and �b�
the smallest nontrivial eigenvalues �2

L and �2 of the closed loop and
of the whole network versus c. Each data is obtained from 50 ran-
dom realizations and both the average values and standard devia-
tions are given. The closeness of the two eigenvalues indicates the
dominant role of the loop structure in network dynamics.
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dominant loop, the whole network can be regarded as the
combination of the loop and its complementary network. The
smallest nontrivial eigenvalue of the Laplacian matrix of the
rest of the network can be much larger than that of the loop.
If the coupling parameter is not so large, the loop is not
synchronized, while the complementary network can be syn-
chronized by itself if it is isolated from the loop. While the
dynamical effect of the loop on the complementary network
can be regarded as perturbations, the dynamics on the loop
and on the complementary network are not synchronized,
leading to a lack of global synchronization for the whole
network.

B. Eigenvector associated with the dominant loop structure

To provide further evidence for the existence of a domi-
nant loop structure, we examine the components of the
eigenvectors. The idea is that, if such a structure is embedded
in the network, the components of the eigenvector associated
with �2 �not �2

L� from the whole network will exhibit an
approximately sinusoidal structure on the subset of nodes
constituting the dominant loop, due to the ringlike topology
on the loop. In particular, for a ring network of n nodes, the
ith component of the jth normalized eigenvector e j is

ej
L�i� =�2

n
sin2�fi

n
+ 	 j� , �4�

for i , j=1, . . . ,n, where f is the corresponding spatial fre-
quency, and 	 j is the phase shift associated with the jth
eigenvector. While Eq. �4� indicates a perfect sinusoidal de-
pendence of the loop eigenvector on i, the surprising phe-
nomenon is that the eigenvectors for the full network exhib-
its a nearly sinusoidal structure on the dominant loop. An
example is shown in Fig. 4, where the components of the
eigenvector e2 on the nodes in the dominant loop are plotted
against the node index.

C. Sparsity of the network

The example in Fig. 3 is for a quite sparse scale-free
network �N=2000 and �k	=4� where we observe that �2

L and
�2 are approximately equal. What if the network becomes

less sparse? To address this question, we have analyzed a
scale-free network whose average degree doubled �N=2000
and �k	=8�. The resulting eigenvalues �2

L and �2 versus c are
shown in Fig. 5�b�. We observe relatively large discrepancies
between the two eigenvalues for small values of c, but as c
becomes larger, the difference decreases and nearly dimin-
ishes for c�0.32. This indicates that, insofar as the network
is reasonably sparse, the loop structure becomes more influ-
ential on dynamics for locally more clustered networks. Heu-
ristically, the difference between the two eigenvalues in the
small c regime can be understood, as follows. For a fixed
value of c, as the average degree is increased, the size of the
dominant loop does not tend to increase �as we have ob-
served numerically�, thereby weakening the influence of the
loop structure on the network dynamics. In Ref. �16�, Sam-
ukhin et al. found that the Laplacian spectra of complex
networks are mainly determined by the minimum degree,
and the position of the lower edge of the Laplacian spectrum
and the limiting behavior of the density of eigenvalues as
approaching this lower edge are quite different for the case
where the minimum degree is greater than 2 and the case
where the minimum degree is less than or equal to 2. This
result seems to be correlated with our results that the domi-
nant loop approach agrees with the real situation better when
the average degree is small. However, Ref. �16� assumes
the thermodynamic limit, i.e., almost all finite subgraphs
are trees, while in this paper, our concern is the effect of loop
structures in finite networks. Intuitively, the large loops occur
more easily in sparse networks. As for dense networks, con-
nection probability is higher between any pair of nodes, thus
the large loops, even if they exist, are more probable to be
destructed by some shortcuts, lowering the order of the
loops.
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FIG. 4. �Color online� For a scale-free network of N=1000
nodes and average degree �k	=4, the components of the eigenvector
e2 of the network with respect to the dominant loop.
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FIG. 5. �Color online� For a sparse scale-free network of
N=2000 nodes and average degree �k	=8. �a� The size of the larg-
est loop in the network during the realizations and �b� the smallest
nontrivial eigenvalues �2

L and �2 of the closed loop and of the whole
network versus c. An ensemble statistic of 50 random realizations
has been carried out. The two eigenvalues agree well for relatively
large values of c.
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D. Minimum degree of the network

The average degree of nodes in a loop structure embedded
in the network is typically 2. Thus the minimum degree of
the network becomes a relevant issue. In our discussion, the
scale-free network, by construction, has the minimum degree
of m�1. In realistic situations a scale-free network may con-
tain a number of “leaf” nodes with degree 1. The existence of
these leaves affects many aspects of the network properties
such eigenvalue spectrum �16� and random walk processes
�17�. Thus a concern is that are the leaf nodes influential on
synchronization dynamics when clustering coefficient c in-
creases? To address this question, we have modified the con-
struction of the scale-free network by including a small num-
ber of leaf nodes. In particular, at each time step in the
construction, we generate a leaf node with a small probabil-
ity p. We find that, insofar as p is small �say p�0.1, which
means that less than 10% of the nodes in the network are leaf
nodes�, our proposition that �2

L��2 is still valid. However,
large values of p can cause significant difference between the
two eigenvalues. Our assessment is that the large p cases are
not as important, for the following two reasons: �1� realistic
scale-free networks usually have small p values, and �2� net-
works with large p values usually cannot be strongly clus-
tered �we find in numerical experiments that it becomes more
and more difficult to achieve high values of c as p is in-
creased�. Thus, for scale-free networks with significant num-
ber of leaf nodes, the issue of the effect of high clustering
coefficient on network dynamics is less relevant.

E. Random networks

Our result �2
L��2 holds for scale-free networks. For a

random network, the degree distribution is homogeneous,
preventing the formation of relatively large loops �18�. While
small loops can still emerge and their associated eigenvalues
can be computed, usually they do not dominate the synchro-
nization dynamics of the whole network. In general the
emergence of a dominant loop structure with significant in-
fluence on network dynamics is more probable in networks
with heterogeneous degree distributions. Despite of synchro-

nization, the presence or lack of loop structure also has in-
fluence on other dynamical processes taking place on net-
works. For example, for random walks, it has been found
that looped networks induce a faster dynamics, compared to
complex trees, for both the coverage and the mean topologi-
cal displacement problems �17�.

IV. CONCLUSION

In conclusion, to account for the recent finding that strong
local clustering in scale-free networks tend to suppress the
network synchronizability, we have theorized the formation
of loop structures that arise as the clustering coefficient of
the network is increased. We have provided heuristic analysis
and evidence, lending credence to our proposition that, as
soon as an obvious loop structure emerges, it exerts a signifi-
cant influence on the network dynamics. For sparse networks
with high clustering coefficients, the largest loop can practi-
cally dominate the network dynamics. As a practical utility,
we conceive that the dominant loop structure can be used as
a platform for controlling the network dynamics. For ex-
ample, one can add or remove nodes and links in those large
loops to alter the synchronizability of the whole network.
Since the size of the dominant loop is typically orders of
magnitude smaller than that of the network, any modifica-
tions to the loop structure are effectively perturbations of
negligible influence on the network structure, yet such small
perturbations can have drastic impact on the network dynam-
ics. Our work can be useful to real-world networks that are
sparse and locally clustered.
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