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When noise is present in a scattering system, particles tend to escape faster from the scattering region as
compared with the noiseless case. For chaotic scattering, noise can render particle-decay exponential, and the
decay rate typically increases with the noise intensity. We uncover a scaling law between the exponential decay
rate and the noise intensity. The finding is substantiated by a heuristic argument and numerical results from
both discrete-time and continuous-time models.
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Chaotic scattering in open Hamiltonian systems has been
an area of study in nonlinear dynamics, with applications in
a number of fields in physics �1�. Most previous works have
been on purely conservative systems �1–4�. More recently,
the effects of weak dissipation on chaotic scattering have
been addressed �5–7�. Despite a large body of existing litera-
ture on chaotic scattering, there have been few works on the
effect of noise on characteristics of the scattering dynamics
�8–10�. For instance, in Ref. �8�, the escapes from a driven
potential-well system and the estimation of the average es-
cape time in a noisy environment were addressed. The fact
that noise is inevitable in any physical system has motivated
us to investigate more thoroughly the interplay between ran-
dom and deterministic scattering dynamics in a quantitative
manner. In this Brief Report we shall report a scaling law
relating the particle-decay rate to the noise intensity.

To describe the scaling law, we use the standard setting of
classical particle motion in a potential field �3,4�. In such a
system, there exists a scattering region where interactions
between scattering particles and the potential occur, whereas
outside the region, the potential is negligible so that the par-
ticle motions are essentially free. For many potential func-
tions of physical interest, evolution equations are nonlinear,
rendering dynamics chaotic in the scattering region. Since
the system is open, this region possesses channels through
which particles can enter and/or escape. Due to chaos, par-
ticles with slightly different initial conditions can exhibit
completely different trajectories in the scattering region be-
fore exiting, resulting in dramatically different dwelling
times in the region. This situation can be characterized by
examining the decay of particles from the scattering region.
In particular, imagine that we distribute a large number N0 of
initial particles in the region and examine the number N�t� of
particles still present in the region at time t. For hyperbolic
chaotic scattering or for nonhyperbolic chaotic scattering un-
der weak dissipation �5–7� or noise �11�, the probability for a
particle to be in the scattering region R�t�=limN0→�N�t� /N0

decays exponentially with time as follows:

R�t� � e−�t, �1�

where � is the exponential decay rate. What we have found
is that for typical chaotic scattering systems, the rate obeys
the following scaling law with the noise intensity �:

� � ��, �2�

where the value of � depends on the mathematical relation-
ship between the noise intensity � and the variable of our
specific system. We shall provide numerical results from
both map and flow models and present a heuristic argument
to establish the scaling law.

We consider two numerical models: one a discrete-time
map and the other a continuous-time flow. Our map model is
given by

xn+1 = ��xn − �xn + yn�2/4 − ��xn + yn�� + un,

yn+1 = �−1�yn + �xn + yn�2/4� + vn, �3�

where ��1 is a system parameter that plays the role of the
energy in a realistic case, ��0 is a dissipation parameter,
and un and vn are discrete-time uniform random processes
simulating the action of noise. At each time n, the values of
un and vn are chosen independently and randomly from uni-
form probability distribution functions U�u� and V�v� given
by

U�u� = � 1

2u0
if�u� 	 u0,

0 if�u� � u0,
� �4�

and

V�v� = � 1

2v0
if�v� 	 v0,

0 if�v� � v0.
� �5�

For convenience we choose u=v=
. When noise is absent,
for �=0 the Hamiltonian-map system was originally intro-
duced in Ref. �12� to study the fractal dimension of nonhy-
perbolic chaotic scattering. The system was later used in
Refs. �5,7� for ��0 to investigate the effect of weak dissi-
pation on chaotic scattering and the characterization of its
fractal dimension. In our computation, the scattering region*jesus.seoane@urjc.es
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is defined to be 	x2+y2	10. In the noiseless Hamiltonian
limit, there is a large Kolmogorov-Arnold-Moser �KAM� is-
land in the phase space. There are a stable fixed point at the
center of the island and an unstable fixed point at �0,0�. The
stable fixed point becomes a fixed-point attractor when weak
dissipation is introduced. There is a coexisting attractor at
infinity that scattering trajectories approach asymptotically.
A typical basin structure of the system in the absence of
noise is shown in Fig. 1�a�. When noise is present, the fixed-
point attractor is destroyed and almost all trajectories escape
to infinity. Figure 1�b� shows, for �=0.2, initial conditions
�black dots� for the trajectories that stay in the scattering
region for at least 100 iterations. A typical exponential decay
law of the number of particles from the scattering region as
induced by noise is shown in Fig. 2�a� for �=4, �=0.03, and
�=0.2. As the noise intensity is increased, we observe an
increase in �. Figure 2�b� shows � versus �, where the ap-
proximately linear behavior indicates scaling law �2� with
�=1. This value of �=1 is due to the linear relationship
between the noise intensity 
 and the variables, as shown in
Eq. �3�.

We next consider a flow model, the Hénon-Heiles system
�13� as defined by the following Hamiltonian: H= �ẋ2

+ ẏ2� /2+ �x2+y2� /2+x2y−y3 /3. In the absence of dissipation
and noise, two types of motion can occur: bounded and un-
bounded, depending on the particle energy. Escapes and,
consequently, chaotic scattering are possible when the par-
ticle energy is above the critical value Ee=1 /6. In this case,

the system presents a 2� /3 symmetry with three different
escaping channels �6,7,13,14�. In the presence of weak dis-
sipation and noise, the equations of motion become

ẍ + x + 2xy + �ẋ = 	2��t� ,

ÿ + y + x2 − y2 + �ẏ = 	2���t� , �6�

where � is a parameter characterizing the amount of dissipa-
tion and �t� and ��t� are unit Gaussian random processes.
We integrate the system by using the standard routine for
stochastic differential equations �15�. Typical plots of the exit
basin structure of the system in the absence and presence of
noise are shown in Figs. 3�a� and 3�b�. Note that in the ab-
sence of noise �Fig. 3�a��, the three exit basins possess the
Wada property �6,14,16�. A typical exponential decay behav-
ior as induced by noise is shown in Fig. 4�a�, and the depen-
dence of the decay rate � on noise intensity is shown in Fig.
4�b�. We observe an approximately linear behavior between
� and 	�.

To provide additional numerical support for scaling law
�2�, we have carried out computations with the Helmholtz
oscillator, a dynamical system with escapes �17�. An ex-
ample of the equation of motion under white Gaussian noise
is

ẍ + 0.1ẋ − x − x2 = 	2��t� . �7�

Following the numerical procedures as for the Hénon-Heiles
system, we find that scaling law �2� also holds for the
Helmholtz-oscillator system.
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FIG. 1. �Color online� For map model �3� for �=4 and �
=0.03, �a� in the absence of noise, basins of attraction of the fixed-
point attractor �black� located at the center of the original KAM
island and of the scattering trajectories that escape to infinity
�blank�, and �b� when noise of intensity �=0.2 is present, initial
conditions �black dots� for trajectories that have not exited the scat-
tering region in 100 iterations.

5 10 15 20
n

-7

-6

-5

-4

-3

-2

-1

0

L
og

R

0 0.2 0.4 0.6 0.8ε
0

0.2

0.4

0.6

0.8

γ

(b)(a)

FIG. 2. �Color online� For map model �3� for �=4 and �=0, �a�
for �=0.5, natural logarithm of R versus n, indicating an exponen-
tial decay of the probability of particles staying in the scattering
region. Initial conditions are chosen from the horizontal line y0=
−2 for x� �0.5,0.6�. �b� Exponential decay rate � versus �, where
we observe the relation ���.
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FIG. 3. �Color online� For the Hénon-Heiles system for E
=0.195, �a� three coexisting exit basins in the conservative limit in
the absence of noise, where the colors denote the sets of initial
conditions generating trajectory that exit through three different
channels, and �b� corresponding plot when noise of intensity �=2
�10−3 is present.
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FIG. 4. �Color online� For the Hénon-Heiles system for E
=0.195 and ��0, �a� for �=0.02, natural logarithm of R versus T,
indicating a typical exponential decay of particles from the scatter-
ing region, and �b� dependence of the decay rate � on the noise
intensity �. We have ���1/2.
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We now provide a heuristic theory to explain scaling law
�2�. In general, an exponential decay law is the result of a
nonattracting Cantor-type fractal set in the phase space. Say
we randomly and uniformly distribute a large number N of
particles in the scattering region. In the absence of noise,
after a unit time interval T0, � fraction of particles will have
escaped. If noise is added at this time, and if the noise is
intense enough to effectively redistribute the remaining par-
ticles randomly in the initial region, the particle distribution
becomes the same as the initial random distribution, with a
total number of particles N�1−��. After another time T0, the
fraction of particles that escaped will be the same as the
previous one, which is �. This illustrates that the effect of
noise is to redistribute particles as randomly �uniformly� as
possible at different time steps. As a result, the fraction � of
escaped particles during identical time intervals is approxi-
mately constant. This enables us to write down the evolution
equation of the fraction of remaining particles R as dR /dt
=−�R. With initial condition that R�0�=1, the solution is
R=e−�T, which is an exponential decay.

Consider the case in which there is no dissipation. In the
absence of noise, the decay law is algebraic �18�. If the noise
intensity is sufficiently small, we expect most KAM tori to
persist. In this case, the decay law is still algebraic. When the
noise intensity exceeds a critical value so that KAM tori are
smeared out, the decay law will become exponential. De-
pending on the structures of KAM tori of the specific dy-
namical system, the transition from algebraic to exponential
decay may or may not be abrupt. For example, if KAM tori
have a fine structure of typical scale l, then there exists a
critical noise intensity �c� l, where if �	�c, KAM tori are
preserved, making algebraic the scaling law. If ���c, KAM
tori are destroyed so that the particles are redistributed and
the scaling law becomes exponential. However, for most
cases, KAM tori may not have a typical scale �self-similar
structure�. Thus for a given noise intensity, some particles
are redistributed effectively and escape in an exponential
manner, while others can still be confined for a long time.
For this case, since the extremely long time confinement is
mainly caused by the fine structures of KAM tori, a small
amount of noise will first destroy this confinement. There-
fore, the transition from algebraic decay to exponential decay
is expected to be smooth in this case.

Consider Eq. �6�. Letting v= ẋ be the velocity, the first
equation can be rewritten as

v̇ + �v − F = 	2� ,

where F=−x−2xy is the corresponding force from the
Hénon-Heiles potential. Now assume F=0. The above equa-
tion then becomes a linear stochastic equation describing
damped Brownian motion. Regarding v as output and 	2�
as the input, the transfer function is H�s�=1 / �s+�� and
the power spectral density �PSD� satisfies Sv�f�
= �H�2�if��2S	2�. Since  is the unit white Gaussian noise,
S	2�=2�. Therefore, the variance of the output v is


v2�T = �
−�

�

Svdf = �
−�

�

�H�2�if��2�S	2��df =
�

�
� � . �8�

Thus the energy fluctuation is proportional to �. However,
for nonzero force F, as in our case, the velocity v and the
energy E have nonzero mean values, and E�v2. Thus �E
�v�v. Since the force due to the noise is proportional to 	�,
for a small time interval �t the velocity fluctuation is on the
order of 	��t. Since the velocity variation due to the force is
much smaller, in a short time interval the velocity can be
deemed as a constant; thus, �E�v	��t�	� �19�. In gen-
eral, we can write �= f�E� �20�. Under energy fluctuation �E,
we have � f�E�+ f��E��E. Since particles escape more
quickly if they have higher energies, we see that f��E� is
positive. Due to the energy scaling �E�	�, we see that for
fixed E, � depends linearly on 	� and thereby scaling law
�2�. A similar argument can be made for maps. For example,
in Eq. �3�, the noise terms un and vn are proportional to xn+1
and yn+1, leading to a linear relation between � and �.

In conclusion, by using prototype map and flow models
for chaotic scattering, we have demonstrated that particle
decay is typically exponential in the presence of noise. We
have uncovered a scaling law relating the exponential decay
rate to the noise intensity. Our result may help provide in-
sights into realistic problems such as the advection of inertial
particles in open chaotic flows or the transport and trapping
of chemically or biologically active particles in large-scale
flows, where noise is inevitable.
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