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We consider complex clustered networks with a gradient structure, where the sizes of the clusters are
distributed unevenly. Such networks describe actual networks in biophysical systems and in technological
applications more closely than the previous models. Theoretical analysis predicts that the network synchroni-
zability can be optimized by the strength of the gradient field, but only when the gradient field points from
large to small clusters. A remarkable finding is that, if the gradient field is sufficiently strong, synchronizability
of the network is mainly determined by the properties of the subnetworks in the two largest clusters. These
results are verified by numerical eigenvalue analysis and by direct simulation of synchronization dynamics on
coupled-oscillator networks.
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It is recognized in biological physics that, at the cellular
level, information vital to the functioning of the cell is often
processed on various networks with complex topologies �1�.
At a systems level, organizing information using the network
idea has also become fundamental to understanding various
biological functions. A key organizational feature in many
biological systems is the clustered structure, where biophysi-
cal and biochemical interactions occur at a hierarchy of lev-
els. Examples include various protein-protein interaction net-
works �2,3� and metabolic networks �4�. In biology and
network science, a fundamental issue is synchronization
�5,6�. The aim of this paper is to study synchronization in
clustered complex networks with uneven cluster-size distri-
bution and asymmetrical coupling. Since this type of net-
work structure is also important to physical and technologi-
cal systems such as electronic-circuit networks and computer
networks �7–9�, understanding synchronization in such net-
works will be of broad interest.

There has been recent effort to study synchronization in
complex clustered networks �10,11�. A general assumption in
these works is that all clusters in a network are on an equal
footing in the sense that their sizes are identical and the
interactions between any pair of clusters are symmetrical. In
realistic applications the distribution of the cluster size can
be highly uneven. For example, in a clustered network with a
hierarchical structure, the size of a cluster can in general
depend on the particular hierarchy to which it belongs. More
importantly, the interactions between clusters in different hi-
erarchies can be highly asymmetrical. For instance, the cou-
pling from a cluster in a top hierarchy to a cluster in a lower
hierarchy can be much stronger than the other way around.
An asymmetrically interacting network can in general be re-
garded as the superposition of a symmetrically coupled net-
work and a directed network, both being weighted. A
weighted, directed network is a gradient network �12,13�, a
class of networks for which the interactions or couplings
among nodes are governed by a gradient field. Our interest is
then the synchronizability and the actual synchronous dy-

namics on complex clustered networks with a gradient struc-
ture.

For a complex gradient clustered network, a key param-
eter is the strength of the gradient field between the clusters,
denoted by g. A central issue is how the network synchroni-
zability depends on g. As g is increased, the interactions
among various clusters in the network become more di-
rected. From a dynamical-system point of view, unidirection-
ally coupled systems often possess strong synchronizability
�14,15�. Thus, intuitively, we expect to observe enhancement
of the network synchronizability with an increase of g. The
question is whether there exists an optimal value of g for
which the network synchronizability can be maximized. This
is in fact the problem of optimizing synchronization in clus-
tered gradient networks, and our findings suggest an affirma-
tive answer to the question. In particular, we are able to
obtain solid analytic insights into a key quantity that deter-
mines the network synchronizability. The theoretical formu-
las are verified by both numerical eigenvalue analysis and
direct simulation of oscillatory dynamics on the network.
The existence of an optimal state for gradient clustered net-
works to achieve synchronization may have broad implica-
tions for evolution of biological networks and for practical
applications such as the design of efficient computer net-
works.

Our general setting is network with N nodes and M clus-
ters, where nm is the size of cluster m and Vm denotes the set
of nodes it contains �m=1, . . . ,M�. Each pair of nodes is
connected with probability ps in the same cluster and with
probability pl in different clusters, where ps� pl �10�. For a
coupled-oscillator network with arbitrary connecting topol-
ogy, its synchronizability is determined �16� by the interplay
between the transverse stability of the local-node dynamics
F�x� and the eigenvalue spectrum of the coupling matrix C,
which can be sorted conveniently as �1=0��2� ¯ ��N,
where �1=0 underlies the synchronization solution. A typical
nonlinear oscillator in the synchronization manifold is trans-
versely stable only when some generalized coupling param-
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eter � falls in a finite range �� ��1 ,�2�, which is determined
by the single-oscillator dynamics. The network is synchroni-
zable if all the normalized eigenvalues except �1 can be con-
tained within this range: �1���2� ¯ ���N��2, where �
is a specific coupling parameter. For convenience, we con-
sider the following class of coupled-map networks: xt+1

i

= f�xt
i�−�� jCijH�f�xt

j��, where xt+1
i = f�xt

i� is a d-dimensional
map representing the local dynamics of node i, � is a global
coupling parameter, and H is a coupling function. The rows
of the coupling matrix C have zero sum to guarantee an exact
synchronized solution: xt

1=xt
2= ¯ =xt

N=st. For certain types
of oscillator dynamics and coupling functions, say, for ex-
ample, the linearly coupled logistic oscillators we are going
to study in the following, �N is sufficiently large �17�. In
such cases the condition ��N��2 is naturally satisfied and
the synchronizability of network is determined only by �2.
For simplicity, we will restrict our study to such types of
oscillator dynamics and coupling functions.

We first develop a theory for networks consisting of two
clusters �the theory can be generalized to multiple-cluster
networks�. Without a gradient field, the adjacent matrix A is
such that Aij =1 if there is a link between node i and node
j, and Aij =0 otherwise. To introduce a coupling gradient
field from cluster 1 to cluster 2, for each intercluster link
�i , j�, i�V1 and j�V2, we deduce an amount g from Aij

�corresponding to the coupling from node j to node i� and
add it to Aji so that the total coupling strength is conserved.
In this sense the gradient field can be said to point from
cluster 1 to cluster 2. The coupling matrix C is defined as
Cij =−Aij /ki, where ki=� j=1

N Aij is the weighted degree of
node i, and Cii=1.

The eigenvalue spectra of C and of its transpose CT are
identical. Let ê2= �e1 ,e2 , . . . ,en1

,en1+1 , . . . ,eN�T be the nor-
malized eigenvector associated with �2 of CT. Since
� j=1

N Cj,i
T =� j=1

N Cij =0, the eigenvectors associated with non-
zero eigenvalues of CT have zero sum: � j=1

N ê2,j =0 �18�. From
CTê2=�2ê2 we have �2= ê2

TCTê2=�i,j=1
N eiCijej. For a clus-

tered network, the elements in ê2 have a special distribution:
ei�E1 for i�V1 and ej �E2 for j�V2 �10�, where the two
constant values E1 and E2 can be obtained from the normal-
ization condition ê2

Tê2=1 and the zero-sum property. We ob-
tain E1=−�n2 / �n1n2+n1

2� and E2=�n1 / �n1n2+n2
2� �the signs

of E1 and E2 are interchangeable since E1E2�0�. This can
greatly simplify the calculation of �2, which now can be
written as �2��i=1

N ei��Ci1+Ci2+ ¯ +Cin1
�E1+ �Cin1+1

+Cin1+2+ ¯ +CiN�E2	. The nonzero elements in C can be
calculated as follows. For i�V1, ki�n1ps+n2pl�1−g�, if
j�V1, Cij =−1/ki
g11, and there are approximately n1ps
nonzero elements for each i. If j�V2, we have Cij =−�1
−g� /ki
g12. For i�V2, ki�n2ps+n1pl�1+g�, if j�V1, Cij

=−�1+g� /ki
g21, and, if j�V2, Cij =−1/ki
g22. Since Cii

=1, the calculation can be further simplified as

�2 � �
i=1

n1

ei�E1 + g11E1n1ps + g12E2n2pl	

+ �
i=n1+1

N

ei�g21E1n1pl + E2 + g22E2n2ps	 .

Using �i=1
n1 ei�n1E1, �i=n1+1

N ei�n2E2, and n1E1
2+n2E2

2=1 �the
normalization condition�, we obtain

�2 = 1 + �E1
2n1

2g11 + E2
2n2

2g22�ps + E1E2n1n2pl�g12 + g21� .

�1�

In Eq. �1�, the unity comes from the diagonal elements in C;
it defines the upper limit for �2 �this special case is associ-
ated with one-way coupled tree-structure networks �14,15��.
The second term is contributed by the intraconnection of
cluster 1 and cluster 2. The last term corresponds to the
interconnection between the clusters. The parameter g is con-
tained in these terms via gij. For a given two-cluster network,
the optimal gradient strength g0 that maximizes �2 can be
determined by setting ��2 /�g=0, which gives

go =
2n1 − N

Npl
�ps − pl� . �2�

(Please note that in deriving g0 we actually get two such
values: g0 and g0�=N�ps+ pl� / ��N−2n1�pl��−1. Since in our
network model �g� is defined within the range �0,1�, the value
go� is therefore discarded.)

Equation �1� reveals some interesting features about the
dependence of �2 on key parameters of the clustered net-
work. To give an example, we show in Fig. 1 a contour plot
of �2, calculated using the theoretical formula Eq. �1�, in the
parameter plane spanned by n1 and g, where n1+n2=300. It
gives, for a fixed value of n1, the dependence of �2 on gra-
dient strength. Since, by our construction, the gradient field
points from cluster 1 to cluster 2, the upper half region �n1

�150� in Fig. 1 represents gradient clustered networks for
which the gradient field points from the large to the small
cluster. For any network defined in this region, for any fixed
value of g, �2 increases monotonically with n1, indicating
enhanced network synchronizability with the size of the large
cluster. However, for a fixed value of n1, �2 first increases,

FIG. 1. �Color online� Theoretical contour plot of �2 in the
�g ,n1� plane, for a two-cluster network of n1+n2=300 nodes. Other
parameters are pl=0.2 and ps=0.7. The dashed line is given by Eq.
�2�, which determines, for fixed value of n1, the optimal gradient
strength g0.
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reaches maximum for some optimal value of g
g0, and then
decreases with g. The dependence of g0 on n1 is revealed by
the dashed line in the figure �Eq. �2��. We see that, when the
gradient field is set to point from the large to the smaller
cluster, in order to optimize the network synchronizability,
larger gradient strength is needed for larger difference in the
cluster sizes. In contrast, in the lower half of Fig. 1 where
n1�n2, �2 tends to decrease as g is increased �for fixed n1�
or when the difference between the sizes of the two clusters
enlarges. This indicates that, when the gradient points from
the smaller to the larger cluster, the network synchronizabil-
ity continuously weakens as the the gradient field is strength-
ened.

To provide support for our theoretical formula Eq. �1�, we
consider the same network in Fig. 2 and directly calculate the
eigenvalue spectrum for a systematically varying set of val-
ues of g. Figure 2�a� shows �2 versus g �open circles� for the
case where the gradient field points from the large to the
small cluster �n1=190�N /2� and Fig. 2�b� is for an opposite
case �n1=110�N /2�. The solid curves are theoretical pre-
dictions. We observe a good agreement. To gain insight into
the actual dynamics of synchronization on the network, we
use the logistic map f�x�=4x�1−x� as the local dynamics,
�=1, and choose H�x�=x as the coupling function. For the
logistic map, we have �1=0.5, �2=1.5 �19�. We find numeri-
cally �N�1.1��2. Thus the synchronization condition be-
comes �2��1=0.5. We have calculated the average synchro-
nization time T as a function of g, where T is the time needed
to reach �i=1

N ��xi− �x�� /N��=10−5 and �x
�i=1
N xi /N �the

system is considered as unsynchronizable when T�104�. As
g approaches the optimal value g0, we observe a sharp de-
crease in T, as shown in Fig. 2�c�, indicating a significant
enhancement of the network synchronizability. After reach-
ing the minimum at g0, the time increases as g is increased
further, as predicted by theory.

The theory we have developed for two-cluster networks
can be extended to multiple-cluster networks. Consider a

M-cluster network, where each cluster contains a random
subnetwork. Assume the size of the clusters satisfy n1�n2
�n3� ¯ �nM, a coupling gradient field can be defined as
for the two-cluster case. For a random clustered network,
the weighted degree can be written as ki�� j=1

N Aij =nmps
+ �N−nm�pl+ plg��l,nm�nl

nl−�l�,nm�nl�
nl��
Km. Define gml

as the average value of the nondiagonal, nonzero elements
Cij. For i�Vm and j�Vl, we have gmm=−1/Km, gml
=−�1−g� /Km for nm�nl, gml=−�1+g� /Km for nm�nl, and
gml=−1/Km for nm=nl. For the second eigenvector of CT,
e.g., CTê2=�2ê2, its components have a clustered structure,
i.e., for all i�Vm, ê2,i�Em, while they may vary signi-
ficantly for different clusters. The eigenvalue �2 can
then be expressed as �2= ê2

TCTê2=�i,j=1
N eiCijej =�i=1

N ei�Em

+Emnmpsgmm+�l�mElnlplgml	=�m=1
M nmEm

2 +�m=1
M Em

2 nm
2 psgmm

+�l�mEmElnmnlplgml. Taking into consideration the normal-
ization condition ê2

Tê2=1, we get

�2 = 1 + �m=1

M
Em

2 nm
2 psgmm + �m,l=1;l�m

N
EmElnmnlplgml.

For a general multiple-clustered network, it is mathemati-
cally difficult to obtain an analytic formula for the quantity
Em. However, Em can be determined numerically. Once this
is done, the general dependence of �2 on g and subsequen-
tially the optimal gradient strength g0 can be obtained. In
some particular cases, explicit formulas for Em and �2 can be
obtained. Focusing on the role of the gradient in determining
the synchronizability, we consider the extreme gradient case:
g=1. Numerically, we find that for this case, with respect to
the second eigenvector ê2, only E1 and E2 �corresponding to
the largest and the second largest clusters� have nonzero val-
ues, while for all m�2, Em=0. From the normalization
condition ê2

Tê2=1 and the zero-sum property � j=1
N ê2,j =0

�since � j=1
N Cij =0�, we can solve for E1 and E2 as E1

=−�n2 / �n1n2+n1
2� and E2=�n1 / �n1n2+n2

2�. Noticing g12=0,
we finally obtain

FIG. 2. �Color online� For a gradient network of two clusters with N=300 nodes, numerically obtained �circles� dependence of �2 on the
strength g of the gradient field for the two cases where �a� the gradient field points from the larger to the small cluster �n1=190�N /2� and
�b� the opposite �n1=110�N /2�. The solid curves are from theory. �c� For n1=190, actual synchronization time vs g for a clustered network
of chaotic logistic maps. We observe a sharp reduction in the time as g approaches its optimal value, indicating a stronger synchronizability.
Other parameters are pl=0.2, ps=0.7. Each point is the average of 100 random realizations.
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�2 = 1 + �
m=1

2

Em
2 nm

2 psgmm + �
m,l,l�m

2

EmElnmnlplgml

= 1 + �E1
2n1

2g11 + E2
2n2

2g22�ps + E1E2n1n2plg21. �3�

A numerical verification of Eq. �3� is provided in Fig. 3�a�.
An observation is that, except for the difference in gij, Eq.
�3� has the same form as Eq. �1�, indicating that �2 is mainly
determined by the first two largest clusters and it has little
dependence on the details of the size distributions of the
remaining clusters. The remarkable implication is that, for
different gradient clustered networks, regardless of the de-
tailed form of the cluster-size distribution, insofar as the two
dominant clusters have similar properties, all networks pos-
sess nearly identical synchronizability.

The model of gradient clustered network we have inves-
tigated here is different from the asymmetrical network mod-
els in literature. In Refs. �6,14,15�, asymmetrical couplings
have been employed to improve network synchronization
and it is found that, for nonclustered networks, synchroniza-
tion is optimized when all nodes are one-way coupled and
the network has a tree structure �14�. In contrast to this, in
our model asymmetrical couplings are introduced only to
intercluster links, while couplings on intracluster links are
still symmetrical. This special coupling scheme induces
some new properties in the functions of the gradient. First,
the increase of the gradient will not monotonically enhance
synchronization. That is, directed coupling between clusters,
i.e., g=1, is not always the best choice for synchronization.
In many cases, the optimal gradient strength g0 is some value
between 0 and 1, while the exact value is determined by the

other network parameters �Eqs. �1� and �3��. Second, the di-
rection of the gradient cannot be arranged randomly; it
should always be pointing from large to small clusters. Fi-
nally, in the case of g=1, network synchronizability is still
related to the network topology, i.e., by the topology of the
first two largest clusters; while for a nonclustered network,
the synchronizability is determined only by the local dynam-
ics �14�.

Can synchronization optimization be expected in realistic
networks? To address this question, we have tested the syn-
chronizability of a cortico-cortical network of cat brain,
which comprises 53 cortex areas and about 830 fiber connec-
tions of different axon densities �20�. The random and small-
world properties of this network, as well as its hierarchical
structure, have been established in several previous papers
�21�. According to their functions, the cortex areas are
grouped into four divisions of variant size: 16 areas in the
visual division, seven areas in the auditory division, 16 areas
in the somatomotor division, and 14 areas in the frontolimbic
division. Also, by the order of size, these divisions are hier-
archically organized �20�. With the same gradient strategy as
for the theoretical model, we plot in Fig. 3�b� the variation of
�2 as a function of the gradient strength. Synchronization is
optimized at gradient strength about go�0.55. An interesting
finding is that the actual average gradient of the real network,
gav�0.37 �22�, deviates from the optimal gradient go, indi-
cating a strong but nonoptimized synchronization in healthy
cat brain.

While our theory predicts the existence of a gradient field
for optimizing the synchronizability of a complex clustered
network, we emphasize that the actual value of the optimal
gradient field may or may not be achieved for realistic net-
worked systems. Due to the sophisticated procedure involved
in determining the optimal gradient strength and the actual
value for a given network, their numerical values can contain
substantial uncertainties. A reasonable test should involve a
large-scale comparison across many networks of relatively
similar type �say, many different animals�, hopefully demon-
strating some kind of correlation between the optimum gra-
dient and the observed values. Furthermore, such a test
would include a sense of how large is the difference between
the optimum and observed values. Due to the current un-
availability of any reasonable number of realistic complex,
gradient, and clustered networks, it is not feasible to conduct
a systematic test of our theory. �As a matter of fact, we are
able to find only one real-world example of gradient clus-
tered network, the cat-brain network that we have utilized
here.� It is our hope that, as network science develops and
more realistic network examples are available, our theory
and its actual relevance can be tested on more solid grounds.

In summary, we have uncovered a phenomenon in the
synchronization of gradient clustered networks with uneven
distribution of cluster sizes: the network synchronizability
can be enhanced by strengthening the gradient field, but the
enhancement can be achieved only when the gradient field
points from large to small clusters. We have obtained a full
analytic theory for gradient networks with two clusters, and
have extended the theory to networks with an arbitrary num-
ber of clusters in some special but meaningful cases. For a
multiple-cluster network, a remarkable phenomenon is that,

FIG. 3. �Color online� �a� For a five-cluster network �circles�
and a ten-cluster network �squares�, �2 vs n1, the size of the largest
cluster. The solid curve is from theory �Eq. �3��. For the five-cluster
network, the sizes of the remaining clusters are n2=200, n3=50,
n4=30, n5=20. For the ten-cluster network, we have n2=200;
n3–n10 are 90, 80, 70, 60, 50, 40, 30, 20, respectively. Other pa-
rameters are pl=0.15 and ps=0.7. For n1�n2, the gradient is actu-
ally from cluster 2 to cluster 1. Each point is the average result of
100 network realizations. �b� For a “cortico-cortical network” of the
cat brain, numerical results of the dependence of �2 on gradient
strength g. Synchronization is optimized for g0�0.55
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if the gradient field is sufficiently strong, the network syn-
chronizability is determined by the largest two clusters, re-
gardless of details such as the actual number of clusters in
the network. These results can provide insights into biologi-
cal systems in terms of their organization and dynamics,
where complex clustered networks arise at both the cellular
and systems levels. Our findings can also be useful for
optimizing the performance of technological networks

such as large-scale computer networks for parallel process-
ing.
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