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Bayesian inference has been used widely in physics, biology, and engineering for a variety of experiment- or
observation-based estimation problems. Sequential Monte Carlo simulations are effective for realizing Baye-
sian estimations when the system and observational processes are nonlinear. In realistic applications, large
disturbances in the observation, or outliers, may be present. We develop a theory and practical strategy to
suppress the effect of outliers in the experimental observation and provide numerical support.
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I. INTRODUCTION

The problem of estimating the time-varying state of a sys-
tem based on experimental measurements or observations
finds many applications in physics, biology, and engineering.
Examples include quantum-state reconstruction and purity
estimation �1,2�, noise reduction and state reconstruction in
chaotic dynamical systems �3,4�, estimation of bounds on
isocurvature perturbations in the Universe and on cosmic
strings from cosmic microwave background and large-scale
structure data �5,6�, gravitational-wave signal analysis �7,8�,
macromolecular structure determination �9,10�, prediction of
protein-protein interactions from genomic data �11�, tracking
and positioning problems �12�, etc. In general, a system
model that evolves the state vector �x� in time is needed, so
is an observational model that relates an observation vector
�y� to the state vector. In any realistic application both noise
and model uncertainties exist, rendering necessary a proba-
bilistic treatment of the estimation problem. That is, one can
evolve x according to the system model and make correc-
tions to or update x based on the available y. The quantity of
interest is the posterior probability density function �PDF�
p�x �y�, given all available observations y. The standard ap-
proach to addressing this problem is Bayesian inference �13�,
which leads to the classical Kalman filter when both the sys-
tem and the observational models are linear. For nonlinear
problems, a viable approach is sequential Monte Carlo simu-
lation �or particle filter� �14–16�, which uses a set of random
samples to approximate the posterior PDF p�x �y�. The ap-
proximated PDF evolves and is corrected by the observation
based on the Bayes rule. If the number of samples is suffi-
ciently large, the approximation approaches the optimal
Bayesian estimate. Due to the constant improvement of mod-
ern computing technology, the sequential Monte Carlo ap-
proach has begun to find significant applications in science
and engineering �15–17�.

A fundamental question in sequential Monte Carlo simu-
lations is how the precision of the estimated state vector
depends on noise in the system and in the observation. An-
other issue of significant practical interest is how to deal with
occasional but large disturbances, or outliers, in the observa-
tion. The aim of this paper is to address these two related
problems. In particular, we shall derive and verify a self-
consistent equation that relates the covariance matrix of the

samples, which determines the precision of the state esti-
mate, to the covariance matrices of the system noise and of
the observational noise. We then propose a robust sequential
Monte Carlo scheme to overcome the effect of outliers. In
this regard, a previous approach includes using a heavy-
tailed error distribution to improve the state-space models so
that they react quite flexibly to changes in points or edges,
but still provide smooth fits in other regions �18�. Leave-
k-out diagnostics is used to detect a series of consecutive
outliers for a linear state-space model �19�. It uses all re-
sidual observations in the time span to check whether a se-
ries of consecutive observations are jointly outlying, and thus
it is actually “off line.” Our idea is to detect the outliers from
the previous knowledge about the system and then to elimi-
nate them in the sequential Monte Carlo implementation.
Simulations using a precise positioning problem demonstrate
the power of our scheme. We expect our results to have
significant impact on problems where the underlying system
and/or experimental observations are subject to outliers. For
example, the observation of a star or a galaxy may be cor-
rupted by the drastic activity of another celestial body in a
short period. In biological physics, macromolecular structure
is inferred indirectly from various measurements—e.g.,
nuclear magnetic resonance spectra, x-ray reflections, or
homology-derived restraints—which can easily contain out-
liers �9�. In global positioning system- �GPS-� based precise
positioning problems, GPS signals may be disturbed by sud-
den and large jamming. In Sec. II, we outline the basic steps
of the sequential Monte Carlo method. A self-consistent
equation governing the dependence of the estimation error
on noise is derived in Sec. III. Our robust sequential Monte
Carlo scheme for mitigating the effect of measurement or
observational outliers is presented in Sec. IV. Numerical sup-
port for the self-consistent equation and for our robust
scheme is provided in Sec. V. Concluding remarks are pre-
sented in Sec. VI.

II. SEQUENTIAL MONTE CARLO METHOD

Let y�0: t�= �y�t�� , t�= t0�=0� , t1 , t2 , . . . , tk�=t�� be the ob-
servations from time 0 to time t, which are not necessarily
equidistant in time. We seek to obtain the posterior PDF
p�x�t� �y�0: t��. The state and observational equations are

x�t� = f�x�tk−1�,v�tk−1�� , �1�
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y�t� = g�x�t�,e�t�� . �2�

Equation �1� describes the evolution of the state, and Eq. �2�
maps the state to the observational vector; f and g can be
nonlinear functions. The processes v�t� and e�t� represent
random fluctuations �e.g., noise, uncertainties, outliers, etc.�
in the system and in the observation, respectively. Often, in
an application the distribution of the initial state can be ob-
tained by considering the specific physics involved. It is thus
reasonable to assume that this distribution be available. The
PDF p�x�t� �y�0: t�� can then be obtained recursively by pre-
diction through the dynamical equation �1� and likelihood
correction through the observational equation �2�. In particu-
lar, given the PDF p�x�tk−1� �y�0: tk−1�� at time tk−1, the pre-
diction step uses the dynamic equation �1� to obtain the prior
PDF of the state at time t via the Chapman-Kolmogorov
equation

p�x�t��y�0:tk−1��

=� dx�tk−1�p�x�t��x�tk−1��p�x�tk−1��y�0:tk−1�� , �3�

where p�x�t� �x�tk−1� ,y�0: tk−1��= p�x�t� �x�tk−1�� is used. At
time t, a new measurement y�t� becomes available, which
can be used to correct the prior PDF via the Bayes rule

p�x�t��y�0:t�� =
p�y�t��x�t��p�x�t��y�0:tk−1��

p�y�t��y�0:tk−1��
, �4�

where

p�y�t��y�0:tk−1�� =� p�y�t��x�t��p�x�t��y�0:tk−1��dx

depends on the likelihood function p�y�t� �x�t��. The recur-
rence relations �3� and �4� form the basis for the optimal
Bayesian solution. For Gaussian noise, when f and g are
linear functions, the recurrence relation can be solved ana-
lytically, which is the classical Kalman filter. For nonlinear
functions f and g, a linearization technique is viable which
leads to the so-called extended Kalman filter �20�. An un-
scented Kalman filter deliberately selects a set of points and
propagates them through nonlinearity to estimate the Gauss-
ian approximation �21�, while for more general cases, the
approach of sequential Monte Carlo simulations are desirable
�14–17�.

Let �xi�t� ,wi�t��i=1
N denote a random measure that charac-

terizes the posterior PDF p�x�t� �y�0: t��, where �xi�t� , i
=1, . . . ,N� is a set of support points with associated weights
�wi�t� , i=1, . . . ,N�. The weights are normalized that 	iwi�t�
=1. The posterior PDF can be approximated as

p�x�t��y�0:t�� 
 	
i=1

N

wi�t��„x�t� − xi�t�… ,

where ��x� is the Dirac delta function such that ��x�=0 if
x�0 and �x1

x2��x�dx=1 if �x1 ,x2� contains 0. The average of
an arbitrary function f�x� can be simplified as

�f�x�t�� =� f�x�p�x�y�0:t��dx = 	
i

wi�t�f�xi�t�� .

The weights are chosen using the principle of importance
sampling �22�. In particular, given an arbitrary PDF p�x�, it
may be difficult to draw samples. Suppose for an alternative
PDF q�x� samples can be drawn relatively easily. Letting xi

�q�x� �i=1, . . . ,N� be samples drawn from some q�·�, the
importance density, we obtain the following weighted ap-
proximation:

p�x� 
 	
i=1

N

wi��x − xi� ,

where wi� p�xi� /q�xi� is the normalized weight of the ith
sample.

Now consider the joint probability p�x�0: t� �y�0: t��. In
the case of independent noise samples, we can write

p�x�0:t��y�0:t�� � p�x�0��y�0���
j=1

k

p�y�tj��x�tj��p�x�tj��x�tj−1�� .

Thus

p�x�0:t��y�0:t�� = p�x�t�,x�0:tk−1��y�t�,y�0:tk−1��

=
p�y�t��x�t��p�x�t��x�tk−1��

p�y�t��y�0:tk−1��

�p�x�0:tk−1��y�0:tk−1�� .

Assume that the posterior distribution p�x�0: tk−1� �y�0: tk−1��
is approximated by �xi�0: tk−1� ,wi�tk−1��i=1

N ; given a new ob-
servation y�t�, the objective is to obtain an approximation
�xi�0: t� ,wi�t��i=1

N for p�x�0: t� �y�0: t��, such that the estima-
tion of quantities of interest at time t can be calculated. The
sequential Monte Carlo scheme is to generate a sample xi�t�
and append it to xi�0: tk−1� to form xi�0: t�, and update the
weight wi�tk−1� to wi�t�.

If the importance function q�x�0: t� �y�0: t�� can be factor-
ized as

q�x�0:t��y�0:t�� = q�x�t��x�0:tk−1�,y�0:t��q�x�0:tk−1��y�0:tk−1�� ,

and xi�t� is sampled from q�x�t� �xi�0: tk−1� ,y�0: t��, the
weight of the trajectory xi�0: t� is

wi�t� �
p�xi�0:t��y�0:t��
q�xi�0:t��y�0:t��

=
p�y�t��xi�t��p�xi�t��xi�tk−1��

q�xi�t��xi�0:tk−1�,y�0:t��p�y�t��y�0:tk−1��

�
p�xi�0:tk−1��y�0:tk−1��
q�xi�0:tk−1��y�0:tk−1��

�
p�y�t��xi�t��p�xi�t��xi�tk−1��

q�xi�t��xi�0:tk−1�,y�0:t��
wi�tk−1� ,

where p�y�t� �y�0: tk−1�� is omitted since it is common to all
samples. A convenient choice for the importance density is
the following prior importance density �16,17�:
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q�x�t� �xi�0: tk−1� ,y�0: t��= p�x�t� �xi�tk−1��, with which the
weight updating equation becomes

wi�t� � wi�tk−1�p�y�t��xi�t�� , �5�

and the posterior filtered density p�x�t� �y�0: t�� can be ap-
proximated as

p�x�t��y�0:t�� 
 	
i=1

N

wi�t���x�t� − xi�t�� . �6�

From a numerical point of view, the above analysis can be
implemented as follows. First generate N samples �xi�0� � i
=1, . . . ,N� from the distribution of y�0� as given in Eq. �2�.
Each sample has a weight of 1 /N. Each sample xi�0� then
evolves according to the dynamical equation �1� by consid-
ering the noise v to get the value at time t1—e.g., xi�t1�—and
the weights are updated via Eq. �5�. The estimation of the
state at time t1 is �x�t1�=	i=1

N wi�t1�xi�t1�. During the evolu-
tion, it may occur that there are disproportionally fewer
samples about xi than determined by the weight wi. To avoid
this, a sample importance resampling procedure �16� can be
applied. That is, we can generate a new set of samples
�xi

* ,wi
*�i=1

N from the samples �xi ,wi�i=1
N with probability being

their weights; i.e., each time, the probability to draw sample
xi is its weight wi �note that the weights are normalized so
that 	iwi=1�. The weights wi

* for the new samples are then
set as 1 /N. As a result of this resampling procedure, the
weight wi of a sample is represented by the number of du-
plications of the sample, and thus the statistics of the
samples—e.g., mean value, covariance, etc.—are unchanged
in the large-N limit. The resampling step automatically con-
centrates the samples in the regions of interest and effec-
tively discards samples with low weight. However, this may
result in overlaps for some samples. For example, if one
sample has a very large weight, after resampling, it may have
many duplications, which leads to a degeneration problem.
To overcome this difficulty, a regularization process can be
applied: A small random vector is added to each sample as a
perturbation: xi←xi

*+hD�i, where �i follows the standard
normal distribution and D is such that DDT=S �DT is the
transpose of D�. The matrix S is the empirical covariance
matrix of the samples before resampling, and the quantity h
is a regularization parameter �16,23�. The samples again
propagate via the dynamical equation �1� to yield the values
at the next time step. The process continues until a desired
time span for estimation is reached.

III. NOISE DEPENDENCE OF THE ESTIMATION ERROR

When noise of the system is stationary—i.e., the covari-
ance matrices �v and �e for the process noises v and e in
Eqs. �1� and �2� are constant in time—the samples can
evolve into a “steady” state and their covariance matrix can
be obtained, which is proportional to the estimation error.
Suppose that at time tk−1 the covariance matrix of the
samples is �x�tk−1�, which is unknown. Since the dynamical
equation f is known, after propagating through Eq. �1�, the
covariance matrix � f of the samples at time tk can be ex-

pressed in terms of �x�tk−1� and �v, which reads
� f(�x�tk−1� ,�v). To make use of the correction step �Eq. �4��,
we solve x from Eq. �2�: x=g−1�y ,e�. Therefore, for a given
observation y�t�, the covariance matrix for x�t�, from the
observational point of view, can be obtained as �s�y�t� ,�e�.
Usually, �s depends mainly on �e and has little dependence
on y�t�; thus, �s is merely constant in time and can be cal-
culated using the initial observation y�0�. The correction pro-
cedure is equivalent to a modulation posted by a distribution
with covariance matrix �s on a distribution with covariance
matrix � f. Suppose both distributions are Gaussian; the re-
sulting distribution is also Gaussian, but with covariance ma-
trix �� f

−1+�s
−1�−1. The resampling step does not change the

covariance matrix, and the regularization step simply adds a
factor of 1+h2. Thus we have �x�t�= ��� f

−1+�s
−1��−1�1+h2�.

In the steady state, we have �x�t�
�x�tk−1�, which leads to
the following self-consistent equation:

� f
−1 + �s

−1 = �1 + h2��x
−1, �7�

which determines the covariance matrix of the samples, or
the posterior PDF p�x�t� �y�0: t��, for given dynamical and
observational noise levels. Note that � f is a function of �x
and �v. For certain cases, � f can be expressed explicitly in
terms of �x and �v, which can be used to further simplify the
above equation. For example, for linear dynamical systems
f =�ax+�bv and � f =a�x+b�v, Eq. �7� becomes

�a�x + b�v�−1 + �s
−1 = �1 + h2��x

−1. �8�

From Eq. �7�, the dependence of �x on �v and �e can be
obtained, which can be used to find out the “leading term” of
the noise source—i.e., which noise term has the most influ-
ence on �x and therefore on the estimation precision. This
information can be useful for improving the estimation pre-
cision by suppressing the leading noise source. In practice,
due to the nonlinearity of the function g, an explicit expres-
sion of �s is not always possible and a Monte Carlo scheme
is viable: i.e., draw a set of samples �ei� from the distribution
of e �Eq. �2��; for each sample ei, calculate xi as xi
=g−1(y�0� ,ei), then �s can be approximated by the covari-
ance matrix of the samples �xi�.

IV. ROBUST SEQUENTIAL MONTE CARLO SCHEME
FOR MITIGATING OUTLIERS

The above scheme of sequential Monte Carlo simulations
works well for stationary noise. In the presence of nonsta-
tionary disturbances—e.g., outliers—the weight-updating
scheme needs to be improved. To be concrete, we treat out-
liers in the observation, which can lead to a larger covariance
matrix �s. This will cause a larger estimation error �Eq. �7��.
Thus, if the outliers can be detected and then discarded, the
elements of the covariance matrix of the observations can be
reduced. Our idea is to first calculate the empirical distribu-
tion of the Monte Carlo samples and then compare the ob-
servation with this distribution. If the prediction of the ob-
servation is close to the center of the samples, the
observation is likely to be true and it should be accounted for
in the estimation of the state. However, if the prediction de-
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viates from the center of the samples, it is less reliable and
should therefore be counted less �24�. Quantitatively, it is
convenient to introduce a contribution factor � to character-
ize this effect. Let w̃i�t�=wi�tk−1�p�y�t� �xi�t��. We modify Eq.
�5� as

wi�t� = �1 − ��wi�tk−1� + �w̃i�t��	
j

w̃j�t� . �9�

Generally, the optimal value of � depends on the distribution
of the samples and on the prediction of the observation in a
sophisticated way. Our strategy for choosing � is the follow-
ing. After propagating the samples through the dynamical
equation, we calculate �x. The covariance matrix �v of the
dynamical noise and �e of the observational noise are as-
sumed to be known. Define ���Tr��v� /Tr��e� and �x
��xLS− �x� /�Tr��x�, where �x is the average of the
samples and xLS is the least-squares estimation of the state,
which minimizes the square error of the observations �this is
the case when the number of observations is more than the
number of unknowns� �25�. We propose the following crite-
rion for choosing �:

� =�
1, ��x� 	 c0,

�1 − ��
c0

��x�� c1 − ��x�
c1 − c0

�2

+ � , c0 
 ��x� 	 c1,

�
c1

��x�� c2 − ��x�
c2 − c1

�2

, c1 
 ��x� 	 c2,

0, c2 
 ��x� ,

�
where c0�1, c1�3.5, and c2�7, and the optimal values can
vary for different situations. Note that ��x� is the distance
between the estimation xLS obtained from the observations
and the mean value of the samples �x, normalized by the
“standard deviation.” If ��x � 
1, the estimation is within the
range of the standard deviation and is reliable. If ��x� is in
the range of one standard deviation to three standard devia-
tions, the observation is less reliable. Since there is noise in
the dynamics, the samples may themselves contain some er-
ror. The quantity � is introduced to account for such uncer-
tainties. If ��x� is even larger, the weight for the observation
decreases, and at a certain point—say, beyond seven standard
deviations—the observation is deemed as outliers and the
weight � is set to zero.

V. NUMERICAL SUPPORT

To substantiate our ideas, we consider a synthetic two-
dimensional positioning problem of moving object—say, a
car—by using GPS observations �see Fig. 1�. The origin is
the center of the Earth, and the car is originally located at the
surface of the Earth—�0,Re� in an Earth centered coordinate,
where Re=6357 km is the radius of the Earth—which is as-
sumed to be unknown. The velocity can be read from the
velocimeter and has a constant true value of 70 mph, or
31.3 m/s. The velocity is assumed to have a Gaussian mea-
surement error with covariance matrix �v=�v

2 diag�1 1�,
where �v is regarded as an adjustable parameter. The direc-
tion of the velocity changes in time. The car is equipped with

a GPS receiver. Four visible satellites �ns=4� are located at
the altitude of 20 200 km above the Earth’s surface with ini-
tial angles � /5, 7� /24, 4� /7, and 2� /3 �in Earth-centered
coordinates�. The satellites orbit the Earth at a period of
12 h. The receiver on the car can receive GPS signals from
each satellite at the frequency of 1 Hz ��t= tk− tk−1=1 s�,
from which the distances from the satellites to the car, Pk

�pseudoranges�, can be measured. Assuming that the receiver
has no clock offset and the satellites are not correlated, we
can write the covariance matrix of the pseudoranges as �p
=�p

2Ins
, where Ins

is the identity matrix of order ns. A motion
model which is linear in the state dynamics and nonlinear in
the measurements is �12�

x�t� = x�tk−1� + v�tk−1��t ,

y�t� = g�x�t�� + ep�t� ,

where y is the pseudorange measurements y= �P1P2
¯Pns�T.

The measurement function is g�x�= �R1R2
¯Rns�T, where Rj

= �Xj −x� is the Euclidean distance from the car’s position x
to the jth satellite Xj and ep is the pseudorange observational
noise. The covariance matrices for v and ep are �v and �p,
respectively.

Figure 2 shows the dependence of �x on �v when �s is
given, which can be obtained numerically from the distribu-
tion of the pseudoranges ��p�. The symbols are obtained
from direct simulations; the curves are from our theory Eq.
�8�. They agree quite well.

To test the robustness of our Monte Carlo strategy, we add
15 random outliers of 30 m to the measured pseudoranges of
the second satellite in a time span of 500 s with measure-
ment frequency 1Hz. The result of the position estimation is
shown in Fig. 3. Three cases are presented for comparison.
Figure 3�a� shows the prediction error of x1 if we only know
the initial position and the measured velocity, with a standard
deviation �v=0.5. There is a systematic drift of errors. Fig-
ure 3�b� shows the prediction error of the least-squares
method �25� if only the measured GPS pseudoranges are
available �standard deviation �p=2.5 for each satellite�. Fig-
ure 3�c� is the estimation error from our proposed Monte
Carlo strategy, which apparently contains no systematic error
and exhibits much smaller statistical errors.
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FIG. 1. �Color online� Setup of the numerical problem. �a� The
tracks of the satellites and the car for the simulation time �500 s�.
The satellites move counterclockwise. �b� The track of the car,
where the origin is shifted to the original position of the car.
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Next, we study the cases with non-Gaussian noise in the
GPS pseudorange observations. This might be the case when
the car is moving in a city or in the forests, where the GPS
signal may be blocked by buildings or trees, causing diffi-
culty in distinguishing multipath signals from the original
signal, which may introduce systematic biases �26�. Further-
more, because of the complexity of the environment, at cer-
tain moments the original signal may be unavailable. We
assume that the distribution of noise in the pseudoranges
consists of two Gaussians with different mean values. The
probability density function is

f�x� = b
1

�2��1

e−x2/2�1
2

+ �1 − b�
1

�2��2

e−�x − x0�2/2�2
2
,

�10�

where b is a weight factor and we take b=0.6 in our simu-
lation. Other parameters are �1=�p=2.5, �2=1, and x0=8.

Again, to test the robustness of our algorithm, we add
outliers to the GPS pseudorange observations: 20 outliers of
40 m are added to satellite 2 randomly. Figure 4 compares
the errors in position estimation by three methods: the least-
squares estimation from the GPS pseudoranges with outliers
�a�, the estimation by the regularized sequential Monte Carlo
scheme �b�, and the estimation by our robust sequential
Monte Carlo scheme �c�. The least-squares estimation from
the pseudoranges has large errors and can have systematic
deviations �the average of the error is not zero�, as shown in
Fig. 4�a�. The regularized sequential Monte Carlo scheme
can remove these systematic deviations caused by the non-
Gaussian distribution but is affected by the outliers, which
can be seen from the spikes in Fig. 4�b�. Our robust sequen-
tial Monte Carlo scheme can recover from both the system-
atic deviations and the outliers �Fig. 4�c��. In fact, the aver-
age absolute value of the errors can be 30% smaller.

The current robust scheme deals with observational outli-
ers. If there are dynamical outliers—e.g., the outliers appear-
ing in v—the current scheme needs to be modified to cope
with the problem. Observations after such an event will be
needed to identify an outlier.

0 0.5 1 1.5 2 2.5 3
0.4

0.6

0.8

1

1.2

1.4

1.6

σ
v

σ x

σ
x

of x
1

σ
x

of x
2

(elevation)

FIG. 2. �Color online� For the two-dimensional positioning
problem, dependence of the standard deviations of the samples �x

for the two coordinates on the standard deviation of the velocity �v.
The standard deviation of the pseudoranges is �p=2.5, the number
of samples is N=1000, and h=0.3. Symbols are obtained from nu-
meric simulations, where each data point is the average of 10 runs,
and 100 different time steps for each run are used. The curves are
from our theoretical prediction, Eq. �8�.
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FIG. 3. �Color online� A comparison of the errors of the first
coordinate x1 of the position prediction by velocity information
only �a�, by least squares estimation of GPS distances with outliers
only �b�, and by our strategy �c�. The parameter values used in the
simulation are �v=0.5, �p=2.5, c0=0.7, c1=4.2, c2=7, N=1000,
and h=0.3.
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FIG. 4. �Color online� A comparison of the errors of the second
coordinate x2 of the position prediction only by least squares esti-
mation of GPS distances with outliers �a�, by regularized sequential
Monte Carlo simulation without the robust strategy �b�, and by our
strategy �c�. The parameter values used in the simulation are �v
=1, �p=2.5, c0=1.5, c1=4.2, c2=8, N=1000, and h=0.3.
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VI. CONCLUSIONS

In conclusion, we have obtained a self-consistent equation
for the estimation precision of the Bayesian inference in
terms of the dynamical noise and the observational noise
levels. The equation may provide insights into designing im-
proved sequential Monte Carlo simulations with higher pre-
cision. We have also proposed a strategy to deal with sudden,
large disturbances that are inevitable in physical observa-
tions. The effectiveness of our method has been tested nu-

merically. Sequential Monte Carlo simulations have begun to
be used widely in various estimation problems in science and
engineering. Our contribution provides a robust strategy for
improving the estimation precision when experimental obser-
vations are nonstationary or even temporally interrupted.
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