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We find that different geographical structures of networks lead to varied percolation thresholds, although
these networks may have similar abstract topological structures. Thus, strategies for enhancing robustness and
immunization of a geographical network are proposed. Using the generating function formalism, we obtain an
explicit form of the percolation threshold qc for networks containing arbitrary order cycles. For three-cycles,
the dependence of qc on the clustering coefficients is ascertained. The analysis substantiates the validity of the
strategies with analytical evidence.
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Complex networks �see reviews �1�� provide powerful
tools to investigate complex systems in nature and society.
The properties of complex systems are affected by the geo-
graphical distribution of the components. For example, rout-
ers of the Internet �2� and transport networks �3� lay on the
two-dimensional surface of the globe, worldwide airport net-
works are confined by the geography �4�, and neuronal net-
works in brains �5� occupy three-dimensional space. Thus it
is helpful to study geographical complex networks �6–11�.

From the abstract geometrical point of view, an abstract
set can describe a general system. When it is equipped with
some geometrical structures, the set can further describe a
specified system. So an abstract topological network is an
abstract set that consists of nodes and links. A metric can be
added to the abstract topological network and the metric can
be arbitrary, not necessarily the Euclidean metric �6�. Em-
bedding a particular abstract topological network into a suit-
able metric space provides a method to add a metric.

In this paper, the problem of percolation thresholds in
geographical networks is studied. Three types of geographi-
cal networks are investigated: the normal model �7,8�, the
hollow model, and the concentrated model. By extensive nu-
merical simulations, we found that the percolation threshold
qc �the point that a spanning connected cluster emerges�
for these models satisfies qc�concentrated��qc�normal�
�qc�hollow�. Based on these results, we suggest a strategy
�hollowing� for enhancing robustness and a strategy �concen-
trating� for the immunization of geographical networks. The
different geographical networks have different distributions
of cycles. The geographical dependence of the percolation
threshold is investigated by the generating function process
in abstract networks containing cycles.

Based on the lattice embedded model �7�, the networks
are generated as follows: each node in an L�L lattice with
periodic boundary conditions is assigned a degree quota k,

drawn from the prescribed degree distribution. Here, scale-
free �P�k��k−�, m�k� and exponential �P�k��e−k/k0, m
�k� degree distributions are considered, where m is the
minimum degree a node can have. �a� The normal case �lat-
tice embedded scale-free �LESF� or lattice embedded expo-
nential �LEE��: A node i connects to its closest neighbors
until its degree ki is realized, or up to a cutoff distance A�ki,
where A is large enough to ensure that almost all the degree
quotas can be fulfilled. �b� The hollow case �hollow LESF
�HLESF� or hollow LEE �HLEE��: similar to the normal
case, except that a node i has probability p to be forbidden to
connect its first n nearest neighbors. �c� The concentrated
case: A is set smaller than that in the normal case. The pro-
cess is repeated throughout all the nodes in the lattice. For
the hollow case, when the network degenerates into a lattice
and n is small, it becomes similar to the tunneling effect in
Euclidean lattices �12�. In the following simulations, we
choose A=7, n=8, and p=1; network size N=106, minimum
degree m is 4 for scale-free networks and 1 for exponential
networks, and all the data are averaged over 1000 ensembles,
unless otherwise specified.

The algorithms of Newman and Ziff �13� are performed to
calculate the threshold qc, which is defined as the point
where the differential of the size of the largest cluster as a
function of occupying probability q maximizes. The defini-
tion is equivalent to the usual definition by the emergence of
a spanning cluster for the large-network-size limit �14�. Fig-
ure 1 shows a clear drop of the percolation threshold qc in
the hollow networks than in the normal networks. So the
robustness can be enhanced by the model. The size effect
�scale-free degree distribution� is demonstrated in Fig. 2. The
LESF and even the HLESF networks also have nonzero per-
colation thresholds for �� �2,3�; the results are consistent
with Ref. �14�. Again, the drop in qc for hollow networks is
apparent.

The amendment in hollow networks is small in the physi-
cal space. As Fig. 3 shows, the average spatial length �l� of
the edges for the hollow networks dose not increase much
compared with the normal networks, for small � or large k0.
As the average degree �k� becomes larger; the difference
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between �l� decreases. In the limit case, the difference goes
to 0. While the cost of constructing hollow networks still
remains low, they are more robust than normal models. Un-
der the same conditions, hollow networks have significant
lower percolation thresholds.

Based on the above observations, we propose a hollowing
strategy to enhance the robustness of geographical networks.
For each node in a geographical networks, we introduce a
probability p to cut down the edges that linked to its first n
nearest neighbors, then to reconnect further nodes in the geo-
graphical distance. In this case, the degree distribution P�k�
deviates a little for small k—i.e., around about 10. This only
causes a variation in percolation thresholds of a much
smaller magnitude. Figure 4 demonstrates the efficiency of
the hollowing strategy for LESF networks. The percolation
threshold drops about 0.1 with n=8; namely, it needs 10%
less nodes of the network to maintain a spanning cluster.
This can have significant effect to prevent the network from

breakdown when the network undergoes a serious crisis and
is losing its global function.

For concentrated cases, we study the concentrated scale-
free networks since the problem is mainly concerned with
immunization strategies �15�. The long-range links �for large
A� in the LESF model are different from those in the small-
world model �16�. In the LESF model, a node i first tries to
connect to its nearest neighbors; if they have already fulfilled
their degree quotas, this node has to try further nodes until
up to the cutoff distance A�ki. The long-range links in the
LESF model are still somewhat local. As far as A is large
enough to ensure that almost all the nodes’ degree quotas are
fulfilled, the network properties depend little on A, as shown
in Fig. 5�a�. However, as A decreases, more and more long-
range links are prohibited �7�. The network becomes more
localized; thus, the clustering coefficient increases while the
average degree decreases a little. As A is approximately
larger than 0.5, most of the nodes’ degree quotas are still
fulfilled except the nodes with large degree quotas. Thus the
network structure remains mainly unchanged, and the perco-
lation threshold remains almost the same. As A decreases
further �A�0.5�, a large portion of the degree quotas of
nodes cannot be fulfilled. Figure 5�b� shows a serious degree
cutoff �A=0.3�, where the steps in the degree distribution
come from the symmetry of the two-dimensional �2D� lat-
tice. Thus the network structure becomes seriously deterio-
rated: the average degree decreases sharply, and the cluster-
ing coefficient drops; the percolation threshold increases
rapidly. These effects indicate that the concentrated networks
are much easier to be immunized. It is indeed the case that,

FIG. 1. �Color online� Percolation thresholds of the networks for
both random failures �left panels� and intentional attacks �right pan-
els�. In each subgraph squares represent for normal lattice embed-
ded networks, triangles for hollow lattice embedded networks with
p=0.5 and circles for p=1.

FIG. 2. �Color online� Random percolation threshold qc vs net-
work side length L for the LESF model �solid symbols� and the
HLESF model �open symbols� for different �: squares for �=2.8,
circles for �=2.5, and triangles for �=2.3. Each datum is the result
of averaging 104 network realizations.

FIG. 3. �Color online� The average spatial length of connections
of the normal networks �squares� and hollow networks �circles� for
scale-free degree distribution �left panel� and exponential degree
distribution �right panel�.

FIG. 4. �Color online� Random percolation thresholds vs the
rearrange probability for LESF networks, n=8.
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during an epidemic, most people stay home to be secluded
from infection.

To better understand the numerical results, we employ the
generating function method to determine the percolation
threshold for networks with different clustering properties.
Here the clustering properties can be simply depicted by the
clustering coefficient, which counts for the triangles �three-
cycles� in the network, and it can also be represented by the
number of rectangles �four-cycles�, and generally by the
number of L-cycles. In the following, a general relation of
the percolation threshold qc and the number of L-cycles for a
random network with arbitrary degree distribution is deter-
mined. As an example, the dependence of qc on the cluster-
ing coefficient is obtained.

For uniform occupations �or random failures�, the perco-
lation threshold of random tree-like networks is qc
= �k� / �k�k−1�� �17,18�. It could be obtained by the condition
that the average cluster size diverge or, equivalently, the av-
erage size of clusters that reached by following an edge di-
verges. A real network is usually clustered and contains a
certain amount of cycles. If the number of cycles is small
�e.g., each node belongs to at most one cycle�, the generating
function process can be extended to cope with the random
percolation problem.

For a uniform occupation probability q, the generating
function for the probability of the number of outgoing edges
of a target node reached by following a randomly chosen
edge on a clustered network remains the same as that of the
random treelike networks �18,19�: F1�x�= q

�k� 	kP�k�xk−1.

However, if an outgoing edge is not independent—i.e., it is

terminated to a node that has already been visited �having no
contribution for reaching new nodes�—the node with degree
k will only have k−2 independent outgoing edges. Thus it is
convenient to define

F1
�1��x� =

q

�k� 	 kP�k�xk−2 = x−1F1�x�

as the generating function of the number of outgoing edges
reaching new nodes for such a target node.

Let H1�x� be the generating function of the size distribu-
tion of the cluster that is reached by following an edge; by
following two independent edges, the cluster size distribu-
tion is generated by H1�x�2. But if the two edges originate
from a common node and belong to an L-cycle, the generat-
ing function should be H1

�l1��x�H1
�l2��x�, where l1= ��L−1� /2�

and l2=L−1− l1. �g� is Gauss’ function which returns the
integer part of g. H1

�l��x� is the generating function for the
size distribution of the clusters that is reached by an edge and
has one edge terminated after l steps, and satisfies an itera-
tive relation

H1
�l��x� = 1 − F1�1� + xF1

�1�
„H1�x�…H1

�l−1��x� ,

where the terminal condition H1
�1��x� is

H1
�1��x� = 1 − F1�1� + xF1

�1�
„H1�x�… .

Thus

H1
�l��x� = �1 − F1�1��

1 − �xF1
�1�
„H1�x�…�l

1 − xF1
�1�
„H1�x�…

+ �xF1
�1�
„H1�x�…�l.

In general, we may assume that a node i with degree ki on
average belongs to nL�k� L-cycles, where nL�k��1 or �1. So
H1�x� satisfies the self-consistent equation

H1�x� = 1 − F1�1� +
qx

�k� 	 kP�k�

��H1
�l1��x�H1

�l2��x��nLH1�x�k−1−2nL.

The average cluster size reached by an edge is

�s̃ � = H1��1� = q +
q

�k� 	 kP�k�
nL�k��H1
�l1���1� + H1

�l2���1��

+ �k − 1 − 2nL�k��H1��1�� ,

where

H1
�m���1� =

1 − qm

1 − q
�xF1

�1��H1����1� =
1 − qm

1 − q
H1

�1���1�

and

H1
�1���1� = q + q

�k�k − 2��
�k�

H1��1� .

FIG. 5. �Color online� Properties of concentrated networks. �a�
Squares are the average degrees, circles are the random percolation
thresholds, and triangles are the clustering coefficients. �b� The ac-
tual degree distribution for three typical A values. The data are
log-binned. The assigned degree distribution is scale-free, with �
=3.0.

ENHANCING ROBUSTNESS AND IMMUNIZATION IN… PHYSICAL REVIEW E 75, 036101 �2007�

036101-3



A simple substitution yields

�s̃ � =

q +
2 − ql1 − ql2

1 − q

q2

�k�
�knL�

1 −
q

�k���k�k − 1�� − 2�knL�1 −
2 − ql1 − ql2

2�1 − q�
q�k�k − 2��

�k� �� .

Thus the percolation threshold qc, given by the divergence of
�s̃ �, is

qc =
�k�

�k�k − 1�� − 2�knL�k��1 −
2 − qc

l1 − qc
l2

2�1 − qc�
qc�k�k − 2��

�k�
� .

�1�

When nL=0, this result degenerates to the known result of
the treelike networks: qc= �k� / �k�k−1��. In general, qc�1, as
L→�, qc

l1 and qc
l2 are limit to 0, and Eq. �1� reduces to a

second-order equation for qc. The root with physical mean-
ing is qc= �k� / �k�k−1��, which is just the percolation thresh-
old of the treelike networks. This means that cycles of infi-
nite length do not affect the percolation thresholds. The
numerical tests for several typical data values show that, for
the same number of cycles, qc is an increasing function of
qc

l1 +qc
l2. The higher the cycle order L is, the less influence it

will be. Thus the most influential cycles are three-cycles,
which could be expressed by the clustering coefficients.

For L=3, l1= l2=1. If the clustering coefficient C
= �C�k�� �20� is small enough, we may assume that two tri-
angles could only have at most one common node. A node
with degree k reached by an edge will belong to on average

n3�k�= �C�k��k−1��k−2�+C�k��k−1�� /2=C�k��k−1�2 /2 tri-
angles. Equation �1� will reduce to

qc =
�k�

�k�k − 1�� − 1 − qc
�k�k − 2��

�k�
��C�k�k�k − 1�2�

. �2�

The percolation threshold qc increases monotonically with
�C�k�k�k−1�2�. It is straightforward that when C�k� is limited
to 0, n3→0, and qc returns to �k� / �k�k−1��. On the other
hand, if �C�k�k�k−1�2� diverges, qc maximizes to �k� / �k�k
−2��. Figure 6 shows the dependence of the percolation
threshold qc on the clustering coefficient C. The curves are
from Eq. �2� and the symbols are from numerical simula-
tions. For simulations, first a random network with pre-
scribed degree distributions is generated; then, a rewiring
process �21� is applied to achieve the required value of clus-
tering coefficient, while keeping the degree distribution un-
changed. Percolation is performed using Newman and Ziff’s
algorithm �13�.

Although Eq. �2� holds only for the case of small cluster-
ing coefficient C, the analysis above indicates that for large
C, or if the network has higher-order cycles, the fraction of
edges that interconnect existing nodes in a local cluster will
further increase. Thus the number of efficient edges connect-
ing to “new” nodes �in comparison to the nodes within the
local cluster� may be even smaller, which results in a higher
percolation threshold. Thus when a network is more clus-
tered, or has more cycles—not only of order 3—it will be
less robust.

Equation �1� shows that the most influential cycles on
percolation threshold are triangles; furthermore, for the same
number of edges forming cycles, there will be more triangles
than higher-order cycles. Thus the decrease of the number of
triangles �clustering coefficients� in the same kind of net-
works will be always accompanied by the drop of percola-

FIG. 6. �Color online� Percolation thresholds of slightly clus-
tered networks with truncated degree distribution p�k��k−�e−k/k0,
k�m. Squares: �=3, m=2, k0=10. Circles: �=6, m=3, k0=�. The
network size is 106, and each datum is averaged over 1000 realiza-
tions. Solid and dashed lines: theoretical result of Eq. �2� for �=3
and �=6, respectively.

FIG. 7. �Color online� Clustering coefficients of the normal
�squares� and hollow �circles� networks with scale-free �left panel�
and exponential �right panel� degree distributions.
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tion thresholds. Figure 7 displays the clustering coefficient C
for both normal and hollow networks. It can be seen that the
hollow networks have much smaller clustering coefficients.
Since the percolation threshold also depends on the spectrum
of the clustering coefficient �Eq. �2��, we examined the clus-
tering coefficient spectrum for the normal, hollow, and con-
centrated scale-free networks, and the results are shown in
Fig. 8. For normal networks, the spectra for A�2 are almost
the same as that for A=2. The spectra for concentrated net-
works follow the same scaling law as those for normal net-
works, and the small fluctuations explain the behavior of
clustering coefficient in Fig. 5�a�. For hollow networks, the

local clustering coefficient is much smaller for nodes with
small degrees, while it follows the same scaling relation as
that for normal networks when the degree is large. Thus the
influence of the spectrum of clustering coefficients is not
crucial. Therefore the decrease in C for hollow networks is
consistent with the drop of the percolation thresholds �Figs. 1
and 2�.

In short, we have studied how the geographical structure
affects the percolation behavior of complex networks and
provided analytical understandings by generating function
formalism on networks with cycles. Our study gives a gen-
eral suggestion on constructing more robust real functional
networks, such as the Internet, power grid networks, etc.,
which arrange the edges to connect neighboring nodes as far
as possible. Although it may cost a little more, it will stand a
much reduced risk in the case of node failures. Also, the
hollowing strategy could be useful to maintain the global
functions of real-world networks during some emergencies,
such as epidemic occurrences, eruptions of electronical virus,
cascade failures of power stations, etc.
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