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Cascading breakdowns of real networks have resulted in severe accidents in recent years. In this paper, we
study the effects of geographical structure on the cascading phenomena of load-carrying scale-free networks.
Our essential finding is that when networks are more geographically constrained, i.e., more locally intercon-
nected, they tend to have larger cascading breakdowns. Explanations are provided in terms of the effects of
cycles and the distributions of betweenness over degrees.
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Recently, dynamical processes on networks have been
highly concerned and widely investigated �1–3�. Among
many of the dynamical features of networks, robustness has
attracted much attention �4–7�, with a major focus on scale-
free �SF� networks, i.e., the degrees of nodes satisfy a power
law distribution: P�k��k−�, for their ubiquity in real systems
�8�. The heterogeneity of the degrees often makes the scale-
free networks sensitive to intentional attacks �6–9�, while it
is resilient to random breakdowns �5,6� and is resilient under
cascading breakdowns by the reservoir effect of the hubs,
which can sustain large amounts of grains �10�. However, for
cascading failures, a SF network is fragile even if one attacks
only one or a few nodes with the largest degrees or highest
loads �11�.

Since many real networks exist in two- or three-
dimensional �3D� physical spaces, it is natural to study the
geographical complex networks, and it has attracted much
attention recently �12–16�. Recent studies have shown that
geographical structures have significant influence on perco-
lation thresholds �15�. Because many real systems—e.g.,
power grid networks, traffic lines, Internet—are sensitive to
cascading failures and are located on the two-dimensional
global surface, the influence of geographical structures on
cascading breakdowns is of high importance, but up to now,
it is rarely studied.

For different kinds of networks, the influence of the un-
derlying geography varies. For example, a city’s traffic line
network relies much on the geography, because the load be-
ing carried, namely, the traffic, can be distributed only lo-
cally in view of geography. However, some other networks,
such as the power network and the Internet rely less on the
geography since these loads, specifically, the power or the
data packets, can be distributed somewhat nonlocally. To ac-
count for this difference of influence, we study the cascading
phenomena on a weighted lattice embedded SF �WLESF�
network �16�, in which a parameter A controls the influence
of the geography on the network structures, ultimately, on
the cascading phenomena. Each node in the network is sup-

posed to carry a certain type of load, such as power or traffic;
and if the node is broken down, its load will be redistributed
to its network “neighbors.” We investigate the Bak-Tang-
Wiesenfeld �BTW� sandpile model �10,17� as a prototypical
model of cascading breakdowns on the WLESF network, and
we further study the betweenness distribution. Both of our
studies validate that when the network is more loosely con-
nected in the geographical view, i.e., when its connections
are less local, it will be more robust under cascading failures
as the networks will encounter fewer huge avalanche events.

The network is generated as follows �16�. It begins with
an L�L lattice, with periodical boundary conditions, and for
each node assigned a degree k drawn from the prescribed SF
degree distribution P�k��k−�, k�m. Then a node i is picked
out randomly; according to a Gaussian weight function
f i�r�=De−�r/A�ki�

2
, it selects other nodes and establishes con-

nections until its degree quota ki is filled or until it has tried
many enough times. Duplicate connections are avoided. The
process is carried out for all the nodes in the lattice. The
clustering parameter A controls the spatial density of the con-
nections. For the large A limit, e.g., A�m�L, the weight
function will be trivial, and the network becomes a SF ran-
dom �SFR� network, i.e., random in network connections
�18�. To compare, we also investigate lattice embedded SF
�LESF� networks with nearest neighbor connections �12�.
Here, we assume that the time scales governing the dynamics
are much smaller than those characterizing the network
evolvement. Thus, the static geographical network models
are suitable for discussing the problem under investigation.

The rules we adopted for sandpile dynamics are as fol-
lows: �i� At each time step, a grain is added at a randomly
chosen node i �such as fluctuations of the real loads, e.g.,
power of a station�. �ii� If the height at node i reaches or
exceeds a prescribed threshold zi �e.g., the rated load�, here
we choose that zi equals i’s degree ki; then it becomes un-
stable and the grains at the node topple to its adjacent nodes:
hi=hi−ki; and for each i’s neighbor j: hj =hj +1 �e.g., the
breakdowns of a certain power station and the redistribution
of the powers�; during the transfer, there is a small fraction f
of grains being lost, which plays the role of sinks without
which the system becomes overloaded in the end �e.g., some
power-consuming units may break down and will not need
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power supply any longer�. �iii� If this toppling causes any of
the adjacent nodes to become unstable, subsequent topplings
follow on those nodes in parallel until there is no unstable
node left, forming an avalanche event �the cascadings�. �iv�
Repeat �i�–�iii�.

There are many other models of cascading breakdowns on
complex networks in the literature. For example, the fiber
bundle model considers that the load is continuous and the
driving is uniform, and the threshold or capacity of the each
node is random with a given distribution �19�. There are also
models that assume the threshold is proportional to the be-
tweenness centrality of the node �11,20�. These models are
similar to the model we discussed above since for most cases
there is a relation between betweenness centrality b and the
degree k: b�k−� and � falls between 1 and 2 �9,21�.

The main feature of the BTW sandpile model on the Eu-
clidean space is the emergence of a power law with an ex-
ponential cutoff in the avalanche size distribution, p�s�

�s−��
e−s/sc, where s is the avalanche size, i.e., the number of

toppling nodes in an avalanche event, and if a node toppled
twice, it contributes 2 to the avalanche size; sc is its charac-
teristic size. In our studies, nodes toppled more than once in
an avalanche event are seldom �10�, except for the very large
avalanches, which have already exceeded the exponential
cutoffs. Thus we study the avalanche area a—the number of
distinct nodes that toppled in an avalanche event—instead of
avalanche size. The avalanche area distribution follows the
same form as that of avalanche sizes:

p�a� � a−�e−a/ac, �1�

where ac is the characteristic area. A typical example is
shown in Fig. 1.

For the BTW sandpile model on SFR networks, Goh et al.
�10� have shown that the avalanche area exponent � increases
as � decreases, caused by the increasing number of hubs
playing the role of reservoirs, i.e., in the event of avalanches,
the hubs may absorb many grains without topplings. Here,
we will demonstrate that for the densely connected scale-free
geographical networks, the reservoir effect is weakened, and
the network has a smaller �.

Figure 2 represents the avalanche area distribution for
different � of LESF networks and WLESF networks with
A=1. It shows that as � decreases, the curve of the avalanche
area distribution is steeper, corresponding to larger �. The
trend is the same as the results in Ref. �10�, indicating that
the effect of hubs as reservoirs still exists. The avalanche
area exponent � for these data are fitted by formula 1 and
presented in Fig. 3, together with that of SFR networks for
comparison. The data for SFR networks we obtained is con-
sistent with that of Ref. �10�. For large � and large N limits,
the SFR network tends to random graphs, for which ��1.5
�10,22�, while the LESF network tends to a superlattice, with
each node having m neighbors. Since in our studies m=4,
the network limits to a normal 2D lattice, our result is
�=1.01�2�, which is consistent with the previous results
�17,23�.

The avalanche area exponent for different A of WLESF
network is shown in Fig. 4. As A becomes larger, the ava-
lanche area exponent � increases, and the curves of the ava-
lanche area distribution become sharper in the double-log
plot �see inset of Fig. 4�, which corresponds to fewer large
avalanche events. This transition in � illuminates that when
the network is geographically more loosely connected, it will
be harder for large cascading events to occur.

The range of an edge is the length of the shortest paths

FIG. 1. �Color online� The probability distribution of avalanches
for LESF networks out of 106 avalanche events on one network
configuration. Left panel, probability distribution of avalanche size
s; right panel, probability distribution of avalanche area a. The los-
ing probability is f =0.001, and m=4, N=105. The data are
log-binned.

FIG. 2. �Color online� Avalanche area distribution for LESF �left
panel� and WLESF A=1 �right panel� networks. For both panels,
from up to down �=10.0, 5.0, 4.0, 3.5, 3.0, 2.8, 2.6, and 2.4. The
losing probability is f =0.001, and m=4,N=105. Ten network real-
izations are carried out and for each 106 avalanche events are re-
corded for statistics. The data are log-binned.

FIG. 3. �Color online� Avalanche area exponent � vs the SF
degree exponent �, note that the errorbars in most cases are smaller
than the symbol size. The data are fitted by formula 1, from the
data presented in Fig. 2 and that of SFR networks. The network
parameters and the statistics for SFR network are the same as that in
Fig. 2.
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between the nodes it connected in the absence of itself
�2,24�. If an edge’s range is l, the shortest cycle it lies on is
of length l+1. Thus the distribution of range in a network
sketches the distribution of shortest cycles. The inset of Fig.
5 shows that when the spatial constraint is slighter, as A goes
larger, the range distribution drifts to larger ranges. It means
that networks with loose spatial connections have fewer
small order cycles but more higher order cycles. If there are
many small order cycles, the toppling grains are more likely
to meet, and the nodes with fewer grains, i.e., fewer than z
−1, especially those with z−2 or z−3 grains, could also
reach the toppling threshold z and topple. For example, let
ABCD be a quadrangle, and A, B, and D are all in their
critical height zA−1, zB−1, and zD−1, respectively; if A
topples, then B and D will also topple cascadingly, thus C
will receive 2 grains. So even if C has less grains than its
critical height zC−1, it could also topple. Larger order cycles
contribute less to this effect. The main frame of Fig. 5 shows

the fraction of nodes toppled in avalanches that have pre-
cisely z−1 grains. As the network is less geographically con-
strained and has fewer small order cycles, the fraction of
toppling nodes with z−1 grains increases, substantiating our
reasoning. This effect contributes to the large avalanche
events of the densely connected networks and explains the
decrease of the avalanche area exponent � as the network is
more geographically constrained.

In the following section, we studied the betweenness dis-
tribution of these geographical networks. The betweenness,
or betweenness centrality, of node i is defined as the total
number of shortest paths between pairs of nodes that pass
through i; if a pair of nodes has two shortest paths, the nodes
along those paths are given a betweenness of 1

2 each �9,25�.
The betweenness distribution for SF networks is reported to
follow a power law PB�b−�, and for 2	�
3, the exponent
is ��2.2�1� �26�. We find that the betweenness distribution
of the LESF network decays much slower than that of SFR
networks, as Fig. 6 demonstrates for a particular case. The
distributions for WLESF networks lay between them but do
not appear in the graph for the purpose of clarity. The same
holds for other � and m values. Thus, there are more large
betweenness nodes in LESF networks than in SFR networks.
To help comprehending this, we present the density plot of
the betweenness vs node’s degree in Fig. 7 �9,21�. For LES-
Fnetworks the betweenness of the same degree is distributed
much more diffusively and, on average, is larger. It can be
seen that even nodes with small degree k can have unusually
large betweenness.

FIG. 4. �Color online� Avalanche area exponent � vs the clus-
terness parameter A, for �=3.0 �squares�, 5.0 �circles�, and 10.0
�triangles�; note that the errorbars in most cases are smaller than the
symbol size. The data are fitted by formula 1. Inset: avalanche area
distribution for �=3.0, from top to bottom are LESF, WLESF
A=1, A=2, and SFR networks. Dynamical and network parameters
are the same as that in Fig. 2.

FIG. 5. �Color online� Fraction of nodes that toppled after re-
ceiving only one grain in an avalanche event vs avalanche area.
From bottom to top is LESF �squares�, WLESF A=1 �circles�,
A=2 �up triangles�, A=3 �down triangles�, A=5 �diamonds�, and
SFR network �left triangles�. Each has 106 avalanche records on one
network for statistics. �=3, m=4, N=105. The losing probability is
f =0.001. Inset: range distribution of the same networks; same sym-
bols represent same networks as that in the main frame.

FIG. 6. �Color online� Log-binned cumulative distribution of
betweenness b of the networks. �=4.0, m=2, and network size
N=104, each has been averaged over 100 configurations.

FIG. 7. �Color online� Log-binned probability density plots for
the betweenness b and degree k of nodes. Data are the same as that
in Fig. 6.
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When an avalanche occurs, the fronts of the toppling
nodes spread along geodesics, i.e., the shortest paths between
nodes. Since the betweenness of a node is the number of the
shortest paths passing through it, larger betweenness means
that it will have a higher possibility to receive grains in ava-
lanching processes. In the above sandpile model, the top-
pling threshold is the node’s degree; thus, the node that has
large betweenness but small degree will be easier to topple.
As Fig. 7 shows, LESF networks have more such nodes than
SFR networks, and the situation changes continuously for
WLESF networks with increasing A. This could also account
for the increase in larger avalanche events and the decrease
of the avalanche area exponent � as the network is more
geographically constrained.

The cases with exponential degree distributions have also
been studied, and the same geographical effect on avalanches
has been observed. Thus, the geographical connections are
seen to have a great influence on cascade events both for
networks with a broad degree distribution, e.g., large scale-
free networks, and for those with a narrower range of de-
grees, e.g., the networks with exponential degree distribu-
tions.

In conclusion, by the study of avalanching processes on
geographical SF networks, we find that besides the reservoir
effects of the hubs in SF networks, geography has great in-

fluences on the critical exponents of these systems. The same
geographical effect also exists in networks with an exponen-
tial degree distribution. When the network is more geo-
graphically constrained, i.e., with heavier local connections,
the avalanche area exponent � will be smaller, which means
more huge avalanche events. This implies a high risk for
networks with heavier local connections to break down
through cascading failures because they have a much higher
vulnerability to huge avalanche events, due to the presence
of denser connections, the larger number of smaller order
cycles, and the larger betweenness of nodes with small de-
grees. Since many real networks that carry some kinds of
loads—e.g., power, traffic, data packets—are imbedded in
the 2D global surface and highly clustered, our results indi-
cate that they will be at a higher risk to suffer breakdowns
when there are node failures.

The work was supported by the China National Natural
Sciences Foundation with Grant No. 49894190 of a major
project and the Chinese Academy of Science with Grant No.
KZCX1-sw-18 of a major project of knowledge innovation
engineering. L.Y. thanks the Hong Kong Research Grants
Council �RGC� and the Hong Kong Baptist University Fac-
ulty Research Grant �FRG� for their support. K.Y. thanks the
Institute of Geology and Geophysics, CAS for their support.

�1� D. J. Watts and S. H. Strogatz, Nature �London� 393, 440
�1998�.

�2� D. J. Watts, Small Worlds �Princeton University, Princeton, NJ,
1999�.

�3� S. H. Strogatz, Nature �London� 410, 268 �2001�.
�4� R. Albert, H. Jeong, and A.-L. Barabasi, Nature �London� 406,

378 �2000�.
�5� R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.

Lett. 85, 4626 �2000�.
�6� D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J.

Watts, Phys. Rev. Lett. 85, 5468 �2000�.
�7� R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.

Lett. 86, 3682 �2001�.
�8� R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 �2002�;

M. E. J. Newman, SIAM Rev. 45, 167 �2003�; S. N. Dor-
ogovtsev and J. F. F. Mendes, Evolution of Networks �Oxford
University Press, Oxford, 2003�; R. Pastor-Satorras and A.
Vespignani, Evolution and Structure of the Internet �Cam-
bridge University Press, Cambridge, 2004�.

�9� P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, Phys. Rev. E
65, 056109 �2002�.

�10� K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim, Phys. Rev. Lett.
91, 148701 �2003�.

�11� A. E. Motter and Y.-C. Lai, Phys. Rev. E 66, 065102 �2002�;
L. Zhao, K. Park, and Y.-C. Lai, ibid. 70, 035101�R� �2004�;
72, 025104�R� �2005�.

�12� A. F. Rozenfeld, R. Cohen, D. ben-Avraham, and S. Havlin,
Phys. Rev. Lett. 89, 218701 �2002�; D. ben-Avraham, A. F.
Rozenfeld, R. Cohen, and S. Havlin, Physica A 330, 107
�2003�.

�13� C. P. Warren, L. M. Sander, and I. M. Sokolov, Phys. Rev. E
66, 056105 �2002�.

�14� P. Sen and S. S. Manna, Phys. Rev. E 68, 026104 �2003�; R.
Xulvi-Brunet and I. M. Sokolov, ibid. 66, 026118 �2002�; J.
Dall and M. Christensen, ibid. 66, 016121 �2002�; G. Nemeth
and G. Vattay, ibid. 67, 036110 �2003�; C. Herrmann, M. Bar-
thélemy, and P. Provero, Phys. Rev. E 68, 026128 �2003�.

�15� L. Huang, L. Yang, and K. Yang, Europhys. Lett. 72, 144
�2005�.

�16� K. Yang, L. Huang, and L. Yang, Phys. Rev. E 70, 015102�R�
�2004�.

�17� P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381
�1987�; Phys. Rev. A 38, 364 �1988�.

�18� M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev.
E 64, 026118 �2001�.

�19� H. E. Daniels, Proc. R. Soc. London, Ser. A 183, 405 �1945�;
Y. Moreno, J. B. Gomez, and A. F. Pacheco, Europhys. Lett.
58, 630 �2002�; B. J. Kim, ibid. 66, 819 �2004�.

�20� P. Holme and B. J. Kim, Phys. Rev. E 65, 066109 �2002�; P.
Holme, ibid. 66, 036119 �2002�; A. E. Motter, Phys. Rev. Lett.
93, 098701 �2004�.

�21� K. Park, Y.-C. Lai, and N. Ye, Phys. Rev. E 70, 026109
�2004�.

�22� E. Bonabeau, J. Phys. Soc. Jpn. 64, 327 �1995�.
�23� Z. Olami, Hans Jacobs Feder, and K. Christensen, Phys. Rev.

Lett. 68, 1244 �1992�; K. Christensen and Z. Olami, Phys.
Rev. A 46, 1829 �1992�.

�24� S. A. Pandit and R. E. Amritkar, Phys. Rev. E 60, R1119
�1999�; A. E. Motter, T. Nishikawa, and Y.-C. Lai, ibid. 66,
065103�R� �2002�.

�25� L. C. Freeman, Sociometry 40, 35 �1977�; M. E. J. Newman,
Phys. Rev. E 64, 016131 �2001�; 64, 016132 �2001�.

�26� K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701
�2001�.

HUANG, YANG, AND YANG PHYSICAL REVIEW E 73, 036102 �2006�

036102-4


