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Networks with a community �or modular� structure underlie many social and biological phenomena. In such
a network individuals tend to form sparsely linked local communities, each having dense internal connections.
We investigate the dynamics of information propagation on modular networks by using a three-state epidemic
model with a unit spreading rate �i.e., the probability for a susceptible individual to be “infected” with the
information is one�. We find a surprising, resonancelike phenomenon: the information lifetime on the network
can be maximized by the number of modules. The result can be useful for optimizing or controlling informa-
tion spread on social or biological networks.
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Networks with a community structure, or modular net-
works, are relevant to many social and biological phenomena
�1–6�. A modular network consists of a number of groups,
where nodes within each group are densely connected, but
the linkage among the groups is sparse. Such is indeed the
case in many social networks, where individuals in a society
tend to form groups according to their social characteristics.
Within a group, each member is directly connected to most
other members, but connections among different groups are
relatively rare. Among the many outstanding problems con-
cerning modular networks, the propagation of information,
such as rumor, news, or facts, is of great interest.

Research on epidemic in networks started with the work
of Sudbury �7� on completely random networks and has re-
ceived increasing attention �8–22� after the discoveries of
complex networks such as the small-world �23� and the
scale-free �24� networks. The problem of epidemic deals
with whether an initially localized seed infection can spread
to a substantial part of the network �25,26�. The pioneering
work by Pastor-Satorras and Vespignani �8� considered a
two-state model, where nodes can be either susceptible �S� or
infected �I�. A susceptible node can become infected and an
infected node can recover and return to the susceptible
state—hence the SIS model. They found that for scale-free
networks, there is no intrinsic epidemic threshold in the ther-
modynamic limit. The result was extended by Lloyd and
May �9� to the SIR model, a three-state model where a node
in the network can be in one of the three states: susceptible,
infected, and refractory �R�, and an infected node can be-
come refractory and is no longer susceptible to the infection.
For a comprehensive review on the epidemic in complex
networks, see Refs. �18,22�.

In this Rapid Communication we investigate the SIR dy-
namics on modular networks. Our interest is in information
propagation, which may be particularly important for social
networks. The information can be, for instance, rumor, news,
or facts. In general, once an “ignorant” is contacted with a
piece of information, there is a high probability that the in-
dividual will spread the information. In the SIR framework, a
convenient way to model this situation is to set the spreading
rate to be one, which is the probability that a susceptible
node is infected when contacted. This situation also applies

to a very virulent epidemic where a contacted individual is
almost certainly infected. In the SIR framework, the work of
Zanette �10� and Newman et al. �15� suggested the existence
of a propagation threshold for small-world networks but
modular networks typically possess the small-world feature
�1–3�. Our focus here is on for how long a piece of informa-
tion on a modular network may last. A key parameter char-
acterizing a modular network is the number of modules, M.
Intuitively, one would expect the information lifetime to in-
crease with M. However, we find, surprisingly, that the life-
time can be maximized for a specific value of M. In particu-
lar, as M is increased initially, the time increases but reaches
a maximum for some value of M, and then decreases as M is
increased further, which is basically a resonant phenomenon.
The implication can be quite striking: the information life-
time is relatively short for modular networks having either a
small or a large number of modules. In the case of the spread
of an extremely virulent disease in a human society, assum-
ing the size of a city is proportional to the number of mod-
ules in the underlying social network, the epidemic may last
long not for cities of small or large size, but for those of
medium size. In the remainder of this Rapid Communication,
we shall present analysis and numerical evidence to substan-
tiate our finding.

We consider a modular network with N�1 nodes and M
modules, where M �N. Each module is thus a subnetwork of
n=N /M �1 nodes, which can be either scale-free, small-
world, or random. For convenience, each module is assigned
an integer, say, from 1 to M, and all modules are placed on a
topological ring with the periodic boundary condition. For
each pair of adjacent modules, one node is chosen randomly
from each module and a link is added between the two
nodes. At this stage all modules are connected through a
next-neighbor type of links. Links of shortcut type are gen-
erated by randomly selecting pairs of modules of distance l
apart along the ring according to the probability P�l��e−�l

and linking them, where � is a control parameter. For �
�0, random long-range links are highly probable, making
the whole modular network small-world-like. Because the
linkage among the modules is sparse comparing with the
linkage within each module, and because for � not close to
zero the links among modules are mostly local or diametri-
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cal, large-scale propagation is more unlikely in these cases. It
thus makes sense to focus attention on networks with ��0.

The SIR dynamics for information propagation is imple-
mented on the network, as follows. Initially all nodes are
susceptible. At t=0, a piece of information is generated at a
randomly chosen node �seed�. At the next time step, one of
its neighbors is randomly picked up, and becomes “infected”
with the information if it is susceptible; otherwise, the origi-
nal infected node itself becomes refractory. This process con-
tinues until there is no longer any infected node in the net-
work, and the time the whole process takes is the information
lifetime T. The number of refractory nodes for t�T thus
represents the number of nodes in the network that have been
infected.

For a piece of information to spread on a modular net-
work, the number of links among the modules needs to be
large. The minimally required average number of modular
links can be estimated, as follows. First, recall that each
module is effectively a subnetwork that can be random,
small-world, or scale-free. For a random network, the math-
ematical theory of SIR dynamics with unit spread rate �7�
indicates that the fraction of nodes that can be infected ap-
proaches a universal constant of about 0.8 as the number of
nodes goes to infinity. For scale-free networks and more gen-
eral networks that contain both random and scale-free com-
ponents, there is numerical evidence that the fraction is
slightly below 0.8 �Ref. �19��. In any case, given a network
of reasonably large size, the fraction of nodes that can be
infected under the SIR dynamics is approximately a constant
r0�0.8. Next, let kM be the average number of shortcut type
of links. Taking into account the next-neighbor type of con-
nections between the modules and the fact that n�kM, the
average number of nodes in a module with links going out-
side is ke=2kM +2. Thus, within an infected module, the av-
erage number of such nodes that carry the information is
r0ke. Finally, let �k� be the average number of internal links
per node in the subnetwork. If a node with an outgoing link
is infected, the probability that the link is chosen to spread
the information is 1 / ��k�+1�. Thus, on average, the number
of nodes that carry the information and spread it to a differ-
ent module is r0ke / ��k�+1�. For information to spread over
the entire network, we must have r0ke / ��k�+1��1, yielding
kM

min= ��k�+1� / �2r0�−1. For instance, if �k�=10, using r0

=0.8 we obtain kM
min=6. This agrees quite well with numer-

ics, as shown in Fig. 1, where the fraction of infected nodes
on the whole modular network is calculated as a function of
kM, for six different values of N. Apparently, the fraction
becomes substantial for kM �6, indicating a large-scale in-
formation spread on the modular network.

We now examine the dependence of the lifetime T on the
number of modules. Figures 2�a� and 2�b� show, for a net-
work of N=4�104 nodes, the fraction r of infected nodes
and T vs M, respectively. The subnetwork in each module is
random. We see that as M varies over 2 orders of magnitude
�from 10 to 1000�, r remains approximately constant �about
0.54�. Since r is substantially above zero, a large-scale infor-
mation spread on the network occurs. The surprising phe-
nomenon is that the lifetime T, as shown in Fig. 2�b�, is
apparently nonmonotonic and in fact exhibits a bell-shape

behavior. There exists a value of M for which the time
reaches maximum, indicating a resonance-type of phenom-
enon. The phenomenon persists when each subnetwork is
scale-free as shown in Figs. 2�c� and 2�d�.

In Fig. 2, squares are the data for fixed �k� and kM. As the
number of module M is increased, the average degree of the

network k̄= �k�+2�kM +1�M /N also increases. One may won-
der whether the resonance is caused by this increase. To ad-

dress this issue, we fix the value of k̄ by reducing �kM

+1�M inner edges, i.e., edges that connect nodes in the same
module, while keeping the network fully connected. The re-

sults for fixed k̄ and kM are also shown in Fig. 2 �circles�. We

see that the results for fixed �k� and for fixed k̄ are essentially
the same, indicating that the observed resonant phenomenon
is not a numerical artifact, but more likely an intrinsic prop-
erty of modular networks.

FIG. 1. �Color online� For a modular network with a ring topol-
ogy, the fraction of infected nodes vs kM. Parameters are �=0,
�k�=10, and n=200. The six curves correspond to a network size of
N=5�103 �squares�, 104 �circles�, 2�104 �up triangles�, 4�104

�down triangles�, 8�104 �diamonds�, and 16�104 �left triangles�,
respectively. Each data point is the result of averaging over 104

random realizations of the network. The inset shows dr /dkM vs kM,
which is indicative of a continuous phase transition.

FIG. 2. �Color online� For modular network with a ring topol-
ogy, �a� the fraction of infected nodes and �b� the information life-
time T vs the number of modules, for random subnetworks.
Squares: �k�=10, the average degree k̄ varies as M increases;
circles: k̄=10. Other parameters are �=0, N=4�104, and kM =10.
Each data point is the average over 104 random network realiza-
tions. �c� and �d� are the corresponding plots when the subnetwork
within each module is scale-free.
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To establish the credence and the generality of the ob-
served resonant phenomenon, we seek a theoretical explana-
tion. To gain insight, we consider the spread of information
from a seed node on a two-dimensional square lattice. By the
assumptions of the SIR dynamics, once a node is infected, it
will become refractory or stay infected, and cannot be in-
fected again. Assume that a node at the point r= �x ,y� is
infected at time t−� from the node at �x ,y−a�, where � and
a are the time step and lattice constant, respectively. At time
t this newly infected node infects one of its nearest-neighbor
nodes, if it is susceptible. If all nearest-neighbor nodes of the
newly infected nodes are susceptible except for the node at
�x ,y−a�, the probability for any of these susceptible nodes to
be infected at time t+� is 1 /3. Let P�r , t� be the probability
that a node at the point r is infected at time t. We have

P�r,t� = �1/3��P�x + a,y,t + �� + P�x − a,y,t + ��

+ P�x,y + a,t + ��� .

Subtracting P�r , t+�� from both sides and dividing by �, we
get, in the continuum limit a→0 and �→0, �P�r , t� /�t
=D�2P�r , t� /�x2+��P�r , t� /�y, where D=−a2 /3� and �
=−a /3�. Since �D�� ���, the diffusion term can be neglected,
yielding �P�r , t� /�t	��P�r , t� /�y. In this equation, the term
on the right-hand side is derived by taking into account only
the unidirectional spreading of the information along the y
axis. Since unidirectional spreading can also occur in the x
direction, the equation governing the propagation of infec-
tion in the two-dimensional lattice is

�P�r,t�
�t

= 	
 �P�r,t�
�x

+
�P�r,t�

�y
� , �1�

where 	 is a constant. Equation �1� is invariant under the
scaling transformation r= �x ,y�→ lr= �lx , ly� , t→ lzt, and
P�r , t�→ l�P�r , t�, where l is a dilatation factor. Comparing
all terms in Eq. �1� under the transformation, we have z=1.
This means that, if the seed node is at r=0 and t=0, there is
a nonzero probability that a node at distance L will be in-
fected at time T, where T�L. For a complex network, al-
though we were not able to derive a similar equation, the
basic dynamical process for infection spreading is the same.
Since the relevant distance is the network diameter d, we
expect the information lifetime to be proportional to d: T
�d, which has been confirmed numerically for both random
and scale-free networks, as shown in Fig. 3�a�.

Now consider a modular network of M modules, where
the subnetwork of n nodes within each module is either ran-
dom or scale-free. The average network diameter of each
subnetwork is of the order of ln n �27,28�. Assume that the
links among the modules are randomly distributed. If each
module is regarded as a node in a network, the network
diameter is of the order of ln M. For two randomly selected
nodes in the modular network, on average their distance is of
the order of DM�a1+a2 ln n�, where DM is the average num-
ber of modules that the shortest path between the two nodes
passes, which is of the order of ln M, and a1 and a2 are

constants. The diameter of the modular network can thus be
written as d= �a3+a4 ln M��a1+a2 ln n�, where a3 and a4 are
constants. Since n=N /M, we have

d = a + b ln M + c�ln M�2, �2�

where a, b, and c are constants. A numerical verification of
Eq. �2� is shown in Fig. 3�b�. The quadratic dependence of

FIG. 4. �Color online� For Zachary networks of N=52 000
nodes, the resonant behavior between the information lifetime and
the number of modules for three cases: �a� scale-free subnetworks
and preferential modular links, �b� random subnetworks and prefer-
ential modular links, and �c� random subnetworks and random
modular links. In each subgraph, squares: �k�=10, the average de-

gree k̄ varies as M increases; circles: k̄=10. Other parameters are

=0 and kM =10. Each data point is obtained by averaging the
lifetime over 104 random network realizations.

FIG. 3. �Color online� �a� Relation between information lifetime
T and network diameter d for both random �lower trace� and scale-
free �upper trace� networks. For both networks, the average degree
is 10 and the network size varies from 100 to 2�104. Each value of
d is obtained from 10 network realizations and each value of T is
the average over 105 realizations. �b� For a ring modular network of
N=4�104 nodes, the relation between the network diameter and
the number of modules. Parameters are �=0, �k�=10, and kM =10.
Each data point is the average over 10 random network realizations.
The solid curve is the theoretical fit.
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the network diameter d on M, together with the linear rela-
tion between the information lifetime and the diameter, sug-
gests a quadratic relation �resonant behavior� between the
lifetime and the number of modules, as observed numeri-
cally.

Can the resonant behavior occur in more realistic modular
networks? To address this question we have also studied an-
other class of modular networks, the Zachary networks �29�,
which were originally proposed as a model of social net-
works. To construct a Zachary network of N nodes, we first
divide all nodes into M modules, each having n�1 nodes.
Next, the modules are organized into levels, where each
group in level 1 consists of two modules, and each level-2
group consists of two level-1 groups, and so on. Finally,
random links among modules are added according to the
probability P�l��e−
l, where l�0 is the level distance be-
tween two random nodes in the network and 
�0 is a con-
trol parameter. In particular, a node �say, node i� is chosen
randomly and a link is added between this node and another
node from a different module �target module� according to
P�l�. Once the target module is determined, the node �say,
node j� in the module to which node i will connect is deter-
mined either randomly or by a preferential attachment rule
within the target module. For the latter, the probability that
node j is picked up is proportional to kj, the number of links

this node already has within the module. The process is re-
peated until the number of links among modules reaches the
prescribed number kMM. Implementing the SIR dynamics on
the Zachary network, we have again observed the resonant
phenomenon, as shown in Fig. 4, where squares are for fixed

�k� and circles are for fixed k̄. Note that there is essentially
no difference between the two cases, suggesting that the
resonant phenomenon is generic for modular networks.

In summary, our investigation of the SIR dynamics on
complex, modular networks leads to the finding of an inter-
esting resonance like phenomenon: the information lifetime
typically exhibits a quadratic dependence on the number of
modules. Thus, a piece of information will last shorter for
networks having either a small number or a large number of
modules. The same result holds for extremely virulent epi-
demics. In particular, our result may be useful for a social
network where such an epidemic has just emerged. Knowing
for how long the epidemic can potentially last can help in
key decision making such as resources distribution in order
to suppress the epidemic.
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