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“Can one hear the shape of a drum?” Kac raised this famous question in 1966, referring to the possibility of
the existence of nonisometric planar domains with identical Dirichlet eigenvalue spectra of the Laplacian. Pairs
of nonisometric isospectral billiards were eventually found by employing the transplantation method which was
deduced from Sunada’s theorem. Our main focus is the question to what extent isospectrality of nonrelativistic
quantum billiards is present in the corresponding relativistic case, i.e., for massless spin-1/2 particles governed
by the Dirac equation and confined to a domain of corresponding shape by imposing boundary conditions on
the wave function components. We consider those for neutrino billiards [Berry and Mondragon, Proc. R. Soc.
London A 412, 53 (1987)] and demonstrate that the transplantation method fails and thus isospectrality is lost
when changing from the nonrelativistic to the relativistic case. To confirm this we compute the eigenvalues
of pairs of neutrino billiards with the shapes of various billiards which are known to be isospectral in the
nonrelativistic limit. Furthermore, we investigate their spectral properties, in particular, to find out whether not
only their eigenvalues but also the fluctuations in their spectra and their length spectra differ.
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I. INTRODUCTION

The question of Kac [1] can be reformulated as follows:
“Can the resonance frequency spectra of two or even more
nonisometric drums be identical, that is, isospectral?”; see
[2] for a detailed overview. The normal modes U of a drum
consisting of a rigid frame and a membrane fixed to it
are obtained by solving the two-dimensional wave equation
( 1

2� + ω2)U (�ρ ∈ �) = 0 for the membrane with the Dirich-
let boundary condition U (�ρ ∈ ∂�) = 0, where � denotes
the membrane domain and ∂� the boundary, i.e., the frame
of the drum. Kac’s question is of particular relevance in
the context of the inverse problem, i.e., the unambiguous
characterization of a system based on the exclusive knowl-
edge of its eigenvalue spectrum. Accordingly it triggered
numerous intensive investigations in systems described by a
wave equation which is mathematically identical to the one
given above like, for example, the two-dimensional Helmholtz
equation or the Schrödinger equation [3,4] for nonrelativis-
tic quantum billiards (QBs). Furthermore, the studies were
extended to bounded systems governed by such a wave
equation with Neumann boundary conditions requiring the
vanishing of the normal derivative ∂nU (�ρ ∈ ∂�), and with
mixed Dirichlet and Neumann boundary conditions [5,6]. In
Refs. [7,8] necessary conditions were provided to be fulfilled
by nonisometric billiards in order to be isospectral. After
Kac posed his question numerous examples of isospectral
higher-dimensional Riemannian manifolds were constructed
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[2]. However, Kac’s original question refers to isospectrality
of planar domains. Based on Sunada’s procedure for finding
isospectral manifolds [9], Gordon, Webb, and Wolpert [10]
succeeded only in 1992 in constructing nonisometric two-
dimensional billiards with identical eigenvalue spectra and
thus to give a negative answer to Kac’s question. Using the
method of transplantation of wave functions [11] they proved
both Dirichlet and Neumann isospectrality of the renowned
pair of billiards [12] shown in Fig. 1. One year later isospec-
trality was demonstrated for these billiards experimentally in
flat microwave resonators of corresponding shape [13] for
the first 54 eigenvalues. Generally, the nonisometric pairs of
Dirichlet and Neumann isospectral domains constructed in
the Euclidian plane are all nonconvex. Convex ones were
designed in the hyperbolic plane, again by employing the
transplantation method [14]. The essential ideas of the trans-
plantation method are to compose the billiards by gluing
together several copies of a base structure at straight parts
of its boundary and to generate the wave functions of one
billiard in terms of superpositions of translations of the wave
functions in the interior of these building blocks. Here, the
only requirement on the building block is that its boundary
possesses three noncollinear straight-edge parts thus allowing
the design of more involved geometries [15] than those shown
in Fig. 1. Chapman [15] proposed a simple procedure for
the construction of pairs of Neumann or Dirichlet isospectral
billiards, namely the paper-folding method.

Buser [16] constructed nonisometric and isospectral bil-
liards by using equilateral, right-angle, or acute-angle tri-
angles as building blocks. In Ref. [17] isospectral billiards
with a chaotic classical dynamics were realized by gluing
together copies of a right-angle triangular building block
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FIG. 1. Well-known pair of plane nonisometric, isospectral bil-
liards [10], where Dirichlet conditions are assumed along the bound-
ary. Domain 1 shown in (a) is constructed by successive reflec-
tions of the triangular building block A at respectively one of its
three edges plotted as dashed, dotted, and solid lines. The numbers
mark the corners. Domain 2 shown in (b) is obtained from (a) by
applying the transplantation method as indicated in the building
blocks T = a, b, . . . , g, which yields its wave functions through a
superposition of translations of those in the interior of the building
blocks T = A, B, . . . , G of domain 1. In some cases the latter need
to be translated and reflected at one of their edges so that they are on
top of the respective new building block and are accordingly denoted
by T̄ [2,15].

with a circular hole and Dirichlet boundary conditions at the
walls, and were investigated numerically and experimentally
with flat microwave resonators. Similarly, isospectral billiards
with a piecewise fractal boundary were achieved with a
suitable choice of the building block [18]. In Refs. [19,20]
the exterior Neumann scattering problem was analyzed in
addition to the interior Dirichlet eigenvalue problem, and
it was demonstrated that nonisometric isospectral billiards
may be distinguished by measuring cross sections resulting
from wave scattering off the boundary of the domains from
the exterior. Yet, isoscattering quantum graphs can be re-
alized based on the isospectral construction method devel-
oped in [21,22] by appropriately attaching leads either to
isospectral graphs [23] or to certain open graphs [24,25].
This has been verified experimentally with microwave
networks [26].

In the present article we consider nonisometric pairs of
two-dimensional domains corresponding to isospectral QBs
and address the following question: will the eigenvalue spectra
still be identical if we replace the nonrelativistic Schrödinger
equation with Dirichtlet boundary conditions by the Dirac
equation of a massless spin-1/2 particle confined to either of
these domains? This question is of relevance in the field of
relativistic quantum chaos which emerged recently [27–38]
with the pioneering fabrication of graphene [39–41]; see also
Refs. [42–44] for recent reviews. To obtain an answer, we
analyzed neutrino billiards (NBs) of corresponding shapes
which were introduced in the seminal work of Ref. [45] and
given that name, even though they refer to massless spin-1/2
particles confined to a bounded planar domain. We came to the
result that the eigenvalues of pairs of NBs with shapes shown
in Fig. 1 and, in general, of pairs of nonisometric isospectral
QBs do not coincide. We attribute this to the failure of the
transplantation method, which has been used to construct all
isospectral QBs, for NBs.

In order to get insight into the similarities and differ-
ences of the properties of NBs with such shapes in the ray-
dynamical or semiclassical limit we investigated the fluctu-
ations in the eigenvalue spectra and length spectra, which
exhibit peaks at the lengths of the periodic orbits emerging
in that limit. Since the eigenvalues of isospectral QBs coin-
cide, also their spectral properties are identical. Furthermore,
it could be shown that their length spectra are the same
[46]. This implies that the properties—such as the degree
of chaoticity—of their classical dynamics are identical. The
spectral properties of generic quantum systems with fully
chaotic classical counterparts are well described by those of
random matrices [47] from the Gaussian orthogonal ensemble
(GOE) when time-reversal symmetry is preserved, and from
the Gaussian unitary ensemble (GUE) when it is violated
[48–50], whereas those of quantum systems with an integrable
classical counterpart behave like Poissonian random numbers
[51]. It was shown in [45] that NBs which do not possess any
geometric symmetries are not time-reversal invariant, imply-
ing that their spectral properties coincide with those of random
matrices from the GUE if the NB has the shape of a billiard
with chaotic classical dynamics. Polygonal QBs like the ones
analyzed in the present article may exhibit Poissonian, GOE,
or nonuniversal intermediate statistics. The latter case occurs,
e.g., for pseudointegrable billiards [52] of which the boundary
comprises corners with angles that are rational multiples of π ,
like in the examples shown in Fig. 1. It was shown that, de-
spite the presence of diffractive orbits originating from these
corners, the length spectra of isospectral QBs are identical.
Accordingly, the question arose how strong the effect of the
corners is on the spectral properties of the corresponding
NBs, especially, whether not only their eigenvalues but also
the fluctuations in their spectra and the length spectra are
distinct.

Section II briefly reviews the transplantation method which
is generally used to construct nonisometric pairs of isospectral
QBs with Dirichlet, Neumann, or mixed boundary conditions.
In Sec. III we outline why the transplantation method is not
applicable for NBs and then illustrate nonisospectrality in
Sec. IV for various shapes which are known to correspond
to isospectral QBs. The results on the spectral properties
and length spectra are presented in Sec. V. Our findings are
summarized and discussed in Sec. VI.

II. CONSTRUCTION OF NONISOMETRIC ISOSPECTRAL
PLANAR QBS WITH THE TRANSPLANTATION METHOD

We illustrate in Fig. 1 how the billiard shown in (b) is ob-
tained from that depicted in (a) by applying the transplantation
method which was used to construct all known nonisometric
and isospectral planar billiards and introduced by Bérard [11].
These are composed of several identical base tiles which
have three noncollinear straight-edge parts, which either form
common edges of, respectively, two of the building blocks or
part of the boundary of the billiard. In the examples shown in
Fig. 1 the building block is an equilateral right-angle triangle.
The eigenenergies and eigenfunctions of the corresponding
QB with domain � are obtained by solving the free-space
Schrödinger equation and imposing either Neumann (N) or
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Dirichlet (D) boundary conditions or a mixture of them [5,6]
on the wave functions along the boundary ∂�,

ĤQBψ (r) = −�x,yψ (r) = k2ψ (r), r ∈ �, (1)

ψ (r ∈ ∂�) = 0 (D),
(2)

∂nψ (r ∈ ∂�) = 0 (N),

with k =
√

2mE
h̄2 denoting the wave number associated with the

eigenenergy E . We consider here for the illustration of the
transplantation method the case of hard-wall boundaries, that
is, Dirichlet boundary conditions. The essential idea of this
method is to construct the eigenfunctions of a billiard from
those of a nonisometric one with the same boundary con-
ditions by translating and superimposing the wave function
components denoted by ψT (r) if r ∈ T with T = A, B, . . . , G,
while ensuring that their superposition fulfills the Dirichlet
condition along the boundary of the new domain and is contin-
uous and has a continuous normal derivative at the common
edges of the building blocks. For example, to construct the
wave function component in building block a of the domain
shown in Fig. 1(b) the three building blocks D, E , G (and
their wave functions) of that shown in (a) were moved to
domain a and arranged such that similar edges, that is, edges
plotted as dashed, dotted, and solid lines, respectively, were
on top of each other. For this the building block E needed to
be flipped about its dotted edge. Accordingly, it is denoted by
Ē . This procedure corresponds to a unitary mirror reflection
of a wave function about the associated edge so that the
original and the new wave function are either symmetric or
antisymmetric to each other with respect to the mirror axis.
Furthermore, since the Schrödinger equation satisfied by the
wave functions in each building block of the original billiard
is linear, any linear combination of translations of these wave
functions will be a solution of it with the same eigenvalue.
Hence, in order to construct billiards which are nonisometric
with respect to the original one, yet have identical eigenener-
gies, linear combinations of the wave function components
inside the building blocks need to be found which vanish
along the billiard boundary and are continuous and have a
continuous normal derivative at the common edges of the
building blocks. In Ref. [15] Chapman introduced a simple
procedure which corresponds to realizing the transplantation
method by using paper folding and stacking. For this several
copies of the original billiard shape are folded along the edges
of the building blocks in various ways, stacked on top of
each other, and then the wave functions are superimposed [2]
where a minus sign is assigned to wave function components
in building blocks which had to be folded in order to adjust
the wave functions to the new building block. The billiard
shown in Fig. 1(b) is obtained with the paper-folding method
by taking three copies of the domain (a) [2,15].

III. FAILURE OF THE TRANSPLANTATION
METHOD FOR NBS

In the relativistic case, the massless spin-1/2 particle
is confined to a bounded two-dimensional domain in the
(x, y) plane by imposing boundary conditions on the two-

component spinor ψ = (ψ1
ψ2

), where we chose those introduced
in Ref. [45] for NBs. Defining the boundary r(s) of the NB
in the complex plane by z(s) = x(s) + iy(s) through the arc-
length parameter s ∈ [0,L] with L denoting the perimeter,
confinement to the billiard domain is achieved with the bound-
ary condition that there is no outward flux, yielding

n̂ · j[r(s)] = n̂ · [ψ†∇pĤNBψ]|∂� = 0. (3)

Here, n̂ denotes the outward normal to the boundary and
j(r) = c(Re[ψ∗

1 (r)ψ2(r)], Im[ψ∗
1 (r)ψ2(r)]) the expectation

value of the current operator ĵ = ∇pĤNB at r. Accordingly,
the Dirac equation of neutrino billiards is given in terms of
the wave number k, E = h̄ck, by

ĤNBψ = −i

(
0 ∂

∂x − i ∂
∂y

∂
∂x + i ∂

∂y 0

)
ψ

= kψ, r ∈ �, (4)

ψ2(s) = iB(s)eiα(s)ψ1(s), r ∈ ∂�, (5)

where α(s) corresponds to the angle of n̂(s) with respect to
the x axis at r(s). We chose as in Ref. [45] for infinite-mass
confinement B(s) = 1, which implies that the current flows
for all eigenstates in the same rotational direction along the
boundary. The boundary condition Eq. (5) links the wave
function components ψ j (s), j = 1, 2 along the boundary.

The transplantation method uses the fact that a mirror
symmetry of a QB implies that its wave functions are either
symmetric or antisymmetric with respect to the associated
symmetry axis, that is, fulfill there the Neumann, respectively,
Dirichlet boundary condition. However, the Dirac Hamilto-
nian ĤNB is not invariant under mirror reflection operation,
implying that the eigenfunctions of a NB generated by reflec-
tion of a building block at one of its straight line segments
cannot be classified according to their symmetry properties
with respect to the reflection axis. If the latter is chosen
along the x or y axis the corresponding unitary reflection
operators are Û x = σ̂x and Û y = iσ̂y, respectively. Then the
eigenfunctions of the transformed Hamilton operator

Ĥ
′
NB = Û

†
ĤNBÛ (6)

are obtained from those of ĤNB, denoted by ψ = (ψ1
ψ2

), as [53]

ψ̃x =
(

ψ̃x,1

ψ̃x,2

)
=

(
ψ2

ψ1

)
, ψ̃y =

(
ψ̃y,1

ψ̃y,2

)
=

(−ψ2

ψ1

)
. (7)

In the transformed coordinate system the normal vector be-
comes eiα̃ = e−iα for Û x and eiα̃ = −e−iα for Û y. Invariance
with respect to these reflection operations, and thus any
combination of them, holds if the transformed eigenfunction
components of ĤNB also fulfill the boundary condition

ψ̃2(φ) = i eiα̃(φ)ψ̃1(φ), (8)

which obviously is not the case. This implies that a wave
function obtained by reflections of those in the building blocks
won’t be an eigenfunction of ĤNB, which is crucial for the
construction of nonisometric isospectral billiard pairs with the
transplantation method.
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Note that ĤNB(−x, y) = Ĥ∗
NB(x, y) and ĤNB(x,−y) =

σ̂zĤ∗
NB(x, y)σ̂z, with the star denoting complex conjugation,

that is, the effect of the unitary reflection operations Û x

or Û y is equivalent to that of a generalized antiunitary
operator of the form T̂ = ÛK̂ with Û and K̂ denoting a
unitary operator and complex conjugation, respectively.
Thus some of the reflected wave functions will have the
properties [ψ1(−x, y), ψ2(−x, y)] = ±[ψ∗

1 (x, y), ψ∗
2 (x, y)]

and [ψ1(x,−y), ψ2(x,−y)] = ±[ψ∗
1 (x, y),−ψ∗

2 (x, y)],
respectively, i.e., will correspond up to a possible sign to
the complex conjugates of the original wave functions, which
comply with the boundary condition Eq. (5). However, since
the operator T̂ is not unitary this is not necessarily the case.
Nevertheless, as can be seen from these relations, even in
these cases the real and imaginary parts of the wave function
components ψ1 and ψ2 transform differently under reflection
as dictated by the boundary condition Eq. (5).

Furthermore, the Dirac Hamiltonian ĤNB of a NB with
two perpendicular symmetry axes is invariant under rotations
by π . Accordingly, the components ψ1 and ψ2, resulting
from two consecutive reflections of those in the interior of,
e.g., the building block of domains 1 and 2 in Fig. 1 at
the two perpendicular straight-line edges, and the original
components would be symmetric and antisymmetric to each
other, respectively, or vice versa with respect to a rotation
by π at the common corner. However, generally, a procedure
consisting only of such rotations is not sufficient to realize
pairs of nonisometric isospectral billiards.

Failure of the transplantation method may be attributed to
the additional spin degree of freedom which is not appropri-
ately accounted for and to the chirality property which leads
to the discrepancies under the reflection operation. Indeed, the
direction of the flow at the boundary is fixed for all eigenstates
of a NB by the choice of B(s) in Eq. (5) and reversed when
applying a reflection operation which would correspond to
a change of sign of B(s). Consequently, the construction of
wave functions which fulfill the boundary conditions, that
is, exhibit unidirectionality of the flow along the boundary,
and are continuous and have continuous normal derivatives
along the common edges of the building blocks is not possible
through purely geometric operations. In the following section
we report on the numerical analysis of two pairs of NBs with
the shapes of isospectral QBs.

IV. NUMERICAL EVIDENCE OF NONISOSPECTRALITY
FOR NBS WITH THE SHAPES OF ISOSPECTRAL QBS

We used the boundary integral method for the computation
of the eigenstates of the NBs since, in contrast to other
numerical methods, it incorporates the boundary conditions
and reduces the two-dimensional eigenvalue problem to an
integral equation along the boundary. Yet, it is known that
due to the presence of inner corners in polygonal QBs like
the ones shown in Fig. 1, it is an intriguing task to obtain the
eigenvalues with high precision. Accordingly, for comparison
of numerical results and the test of accuracy we also used
this method for the determination of the eigenstates of the
corresponding QBs. In order to overcome the problems asso-
ciated with corners present when using the boundary integral
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FIG. 2. (a) First 20 unfolded eigenvalues ki,n, i = 1, 2 of do-
mains 1 and 2 depicted in Fig. 1 for the QBs (dots and circles for
domains 1 and 2, respectively) and the NBs (triangles down and up
for domains 1 and 2, respectively) for b = 80. Here, the average value
kn = (k1,n + k2,n)/2 was subtracted from the associated eigenvalues.
(b) The difference �k(u) = (k(u)

1,n − k(u)
2,n) versus n of the first 1000

unfolded eigenvalues of the NBs with the shapes shown in Fig. 1.
The number of quadrature points equaled b = 80.

method we applied a regularization procedure [20,54]. For
the interested reader it is reviewed in Appendix A. For the
computation of the eigenstates of the corresponding NBs
we employed the expanded boundary integral method [53].
Information on the case of NBs with corners and on the
extension of the regularization procedure for QBs to NBs is
provided in Appendix B.

We computed the first 1000 eigenvalues of QBs and NBs
with the shapes of domains 1 and 2 in Fig. 1 solving Eqs. (A6)
and (B6), where we chose the same number N of Gauss-
Legendre quadrature points for both cases. The former are
known to be isospectral. Accordingly, we used the differences
of the eigenvalues of the two QBs as an additional measure
for the numerical accuracy for both cases and also in order
to decide whether those between close-lying eigenvalues of
the two NBs are due to numerical inaccuracy or indicate
nonisospectrality. In panel (a) of Fig. 2 the first 20 eigenvalues
of the two QBs and NBs are plotted. Here, we subtracted
from the eigenvalues k(u)

i,n , i = 1, 2 corresponding to domains

1 and 2, respectively, their average k̄n = (k(u)
1,n + k(u)

2,n)/2. While
the shifted eigenvalues of the QBs marked by dots and cir-
cles, respectively, all are close to zero, those of the NBs

032215-4



KAC’S ISOSPECTRALITY QUESTION REVISITED IN … PHYSICAL REVIEW E 101, 032215 (2020)

TABLE I. Comparison of the first 20 eigenwave numbers ob-
tained for the two shapes shown in Fig. 1 for the nonrelativistic and
the relativistic cases, respectively.

QB NB

No. Domain 1 Domain 2 � Domain 1 Domain 2 �

1 3.18706 3.18682 −0.00025 1.75309 1.73430 −0.01879
2 3.82432 3.82448 0.00016 2.28064 2.34326 0.06262
3 4.55001 4.54986 −0.00015 3.11267 3.03381 −0.07885
4 5.11373 5.11371 −0.00002 3.65205 3.65844 0.00639
5 5.38449 5.38448 −0.00001 4.09310 4.07982 −0.01328
6 6.06938 6.06938 −0.00000 4.60576 4.76562 0.15986
7 6.51062 6.51061 −0.00001 4.98236 4.99969 0.01732
8 6.79453 6.79451 −0.00002 5.24984 5.16930 −0.08054
9 7.02485 7.02485 0.00000 5.59598 5.44636 −0.14962
10 7.22599 7.22597 −0.00003 5.85172 5.90382 0.05210
11 7.56674 7.56673 −0.00001 6.17963 6.09573 −0.08390
12 7.96777 7.96772 −0.00005 6.43579 6.61390 0.17811
13 8.23207 8.23207 −0.00000 6.65991 6.73070 0.07080
14 8.40600 8.40600 −0.00000 7.02229 6.96273 −0.05956
15 8.71348 8.71340 −0.00008 7.27651 7.22720 −0.04931
16 9.13948 9.13947 −0.00000 7.67091 7.62805 −0.04286
17 9.21914 9.21908 −0.00006 7.79204 7.83741 0.04537
18 9.43037 9.43035 −0.00002 8.10593 8.00462 −0.10131
19 9.73885 9.73885 −0.00000 8.21310 8.21551 0.00241
20 9.89530 9.89530 −0.00000 8.30338 8.31231 0.00893

corresponding to triangles up and down, respectively, clearly
deviate from each other except for a few cases like for n = 4
and n = 19. The obtained eigenwave numbers of the four
billiards are listed in Table I. The distances between the
eigenvalues of the QBs are all less than 0.0001 for n > 3,
whereas in the NBs they are typically larger than 0.01. The
reason for these deviations from zero cannot be attributed to
the numerical inaccuracy of the eigenvalues; see Fig. 17. In
Fig. 2(b) we show the differences of corresponding unfolded
eigenvalues of domains 1 and 2. The distances are consider-
ably larger than their numerical inaccuracy and typically of
the order of �0.3 mean spacings. Thus we may conclude that,
in contrast to the QBs, the NBs with the shapes of domains 1
and 2 of Fig. 1 are not isospectral.

To corroborate these findings, we furthermore analyzed
the eigenvalue spectra of NBs with the shapes of warped
propellors [16] depicted in the insets of Fig. 3(a). The cor-
responding QBs were shown to be isospectral and, indeed,
the unfolded eigenvalues k(u)

i,n shown as dots and circles,
respectively, coincide within the numerical error. In contrast,
for the NBs the distance between corresponding eigenvalues
k(u)

1,n and k(u)
2,n plotted as triangles up and down, respectively,

is typically considerably larger than 0.05 on the scale of the
mean spacing, as also demonstrated in Fig. 3(b) for the first
1000 unfolded eigenvalues, and thus may not be attributed
to the numerical inaccuracy which is similar to that for the
domains shown in Fig. 1 (see Fig. 17). Accordingly, NBs with
the shapes of these warped propellors are also not isospectral,
even though Dirichlet isospectrality has been proven based on
the transplantation method for the corresponding QBs [16].

In order to gain further insight into the differences be-
tween isospectral QBs and NBs of corresponding shapes, we
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FIG. 3. Same as in Fig. 2 for the pair of billiards shown in the
insets in panel (a). Their isospectrality was demonstrated for the
nonrelativistic case in [16].

furthermore computed wave functions. A few examples for
the domains shown in Fig. 1 are plotted in Fig. 4. The top
row presents the intensity distributions |ψn(r)|2 for the states
n = 1, 9, 19 of the QBs and the middle row the corresponding
ones, |ψn(r)|2 = |ψ1,n(r)|2 + |ψ2,n(r)|2 of the spinor wave

functions ψ(r) = (ψ1(r)
ψ2(r)) of the NBs. While the intensity dis-

tributions of the QBs exhibit clear nodal-domain patterns, this
is not the case for the NBs, the reason being that the wave
functions are real in the former case, whereas the spinor com-
ponents ψ j (r), j = 1, 2 of ψ(r) are complex [55,56]. Conse-
quently, their absolute values at most possess nodal points, as
illustrated for the 19th eigenstate in Fig. 5. Indeed, the real
and imaginary parts of the two wave function components,
which are depicted in the first and second row, obey along the
boundary different boundary conditions, as can be checked
by separating that for the wave function given in Eq. (5)
accordingly. Furthermore, they exhibit nodal lines which are
at distinct locations. This is demonstrated in Appendix C.
Consequently, |ψ j (r)|, j = 1, 2 only vanishes at crossings of
the nodal lines of its real and imaginary parts, as illustrated
in the third row of Fig. 5. Note that, for this example, the
imaginary part of ψ1(r) is small compared to the real part, so
that the structure of |ψ1(r)| is similar to that of the latter. The
fourth row shows the phases of ψ j (r) = |ψ j (r)|ei arg(ψj ), j =
1, 2. The nodal points, where arg(ψj ) experiences a jump from
0 → ±π along the nodal lines of the imaginary part of ψ j (r)
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FIG. 4. First row: density plots of |ψ |2 for the first, ninth, and 19th pairs of eigenstates of the nonrelativistic isospectral QBs with the
shapes of domains 1 and 2 in Fig. 1. The wave functions exhibit clearly visible nodal-domain patterns. Second row: density plots of |ψ |2 =
|ψ1|2 + |ψ2|2 of the spinor wave functions of the corresponding NBs for the first, ninth, and 19th eigenstate. Third row: the associated local
currents | j|. They also show clear nodal-domain patterns which are absent in the density plots of |ψ |2.

and from −π/2 to π/2 along those of the real part, are clearly
visible.

In a NB boundary conditions are not imposed on the wave
functions, but on the normal component of the current. There-
fore, one should also consider the current structure inside the
billiard. The modulus square of the current, | j(r)|2, associated
with the states n = 1, 9, 19 of the NBs with shapes shown in
Fig. 1 is shown in the bottom row of Fig. 4. In contrast to
the intensity distribution of the wave function it exhibits a
clear structure which is formed by the vortices of the flow
and is similar to that exhibited by the wave functions of the
corresponding QB. Yet, as will be outlined in more detail
in Sec. V, we were not able to identify eigenstates of the
NB possessing a vanishing normal flow along the edges of
all building blocks, which would be the analog of the trivial
wave functions of the corresponding QBs mentioned at the
beginning of Sec. II, one example being wave function no. 9
in Fig. 4, which corresponds to a combination of the lowest
eigenstates of the individual triangular building blocks.

As visible in Fig. 4, the wave functions associated with
the first eigenstate of the NBs have a strong support at the
diffracting corners for the first eigenstate. The associated
boundary wave function shown in Fig. 16 exhibits sharp
peaks at the diffractive corners, which might induce a large
numerical error in the determination of the corresponding
eigenvalue when using Eq. (B4). However, as outlined in
detail in Appendix B, the impact of these discontinuities on
the numerical accuracy in the determination of the eigenstates
is smaller for NBs than it is for QBs. This corroborates our
assumption that the observed nonisospectrality may not be
attributed to numerical inaccuracies.

V. FLUCTUATION PROPERTIES IN THE EIGENVALUE
SPECTRA OF THE NBS

We also investigated the spectral properties and the length
spectra of the pairs of NBs and compared them with those
of the corresponding QBs. In the latter case the spectral
properties evidently coincide for each pair. Accordingly, a
central question was whether not only the eigenvalues but also
the fluctuations in the eigenvalue spectra are different in the
relativistic case.

As mentioned in the Introduction, the spectral properties
of QBs with shapes of domains 1 and 2 in Fig. 1 are
nonuniversal. They had been studied in [57]. After removal
of all trivial wave functions, which constituted about 13% of
the 598 eigenvalues, the authors found good agreement with
GOE statistics. This implies that the eigenvalue spectra are
composed of regular eigenstates corresponding to the trivial
wave functions and chaotic ones of which the wave functions
are spread over the whole billiard area. The fact that the
eigenvalues corresponding to the trivial wave functions can
be simply taken out of the spectra to achieve good agreement
with GOE implies that they are only weakly correlated with
the nontrivial ones. Accordingly, a random matrix ensemble
composed of eigenvalues from the GOE and Poissonian ran-
dom numbers describes the spectral properties of the spectrum
comprising all 598 eigenvalues [58–60] well.

We investigated the fluctuation properties in the eigenvalue
spectra of NBs with these shapes and also of the pair of
isospectral propellor billiards shown in the insets of Fig. 3(a).
We analyzed short-range correlations in terms of the nearest-
neighbor spacing distribution P(s) and the cumulative nearest-
neighbor distribution I (s), and long-range correlations in
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FIG. 5. Wave function components corresponding to the 19th
eigenstate of the NBs with the shape of domain 1 in Fig. 1. From
up to down are shown the real part, the imaginary part, and modulus
and phase of ψ j = |ψ j |ei arg(ψ j ), respectively. The left column shows
the first component ( j = 1) and the right one the second one ( j = 2).

terms of the number variance �2(L) and the spectral rigidity
�3(L) [47] of the unfolded eigenvalues. Figure 6 shows the
fluctuating part of the integrated spectral density, Nfluc(kn) =
N (kn) − NWeyl(kn) and Fig. 7 exhibits the results for the NBs
with the shapes of domains 1 and 2 in Fig. 1. The curves
for domain 1 (red full lines and triangles up) and domain
2 (green dashed line and triangles down) differ slightly but
deviations are clearly visible. For the short-range correlations
the spectral properties are close to the corresponding GUE
curves, whereas notable deviations from GUE statistics are
visible for the long-range correlations. To identify the origin
of this behavior, we computed the associated wave functions
and currents and found several which are strongly localized
along classical periodic orbits that bounce back and forth
between opposite sides as in the first example in Fig. 8 or
between three or four sides as in the other three examples, that
is, they exhibit the same feature as the bouncing-ball orbits in
the stadium billiard [61] and thus might be responsible for

FIG. 6. Fluctuating part of the integrated spectral density of
domains 1 (black) and 2 (red) shown in Fig. 1.

the deviations of the spectral properties from GUE behavior
observed in Fig. 7. Their presence is reflected by the slow
oscillations visible in Figs. 2 and 6 and their effect on the
spectral statistics is similar to that of the trivial eigenstates
in the corresponding QBs.

To verify whether the deviations of the long-range cor-
relations in Fig. 7 from GUE behavior are due to these
bouncing-ball orbit type states, we accordingly compared

FIG. 7. Spectral properties of the NBs with the shapes of do-
mains 1 and 2 shown in Fig. 1 (red [solid line histogram and
triangles up] and green [dashed line histogram and triangles down],
respectively). Shown are the nearest-neighbor spacing distribution
P(s), the integrated nearest-neighbor spacing distribution I (s), the
number variance �2(L), and the spectral rigidity �3(L). The dashed
lines, full lines, and dash-dotted lines show the corresponding curves
for Poisson, GOE, and GUE statistics, respectively. The curves
agree well with the turquoise ones which were obtained from level
sequences composed of eigenvalues of random matrices from the
GUE and a 6% admixture of Poissonian random numbers (see main
text).
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FIG. 8. |(ψ1,n)| (first column), |(ψ2,n)| (second column), and
current (third column) for the eigenstates n = 305, 335, 573, 808
from up to down of the NB with the shape of domain 1 in Fig. 1.
For this shape and also domain 2 we found many wave functions
which are uniformly distributed over the whole billiard area, but also
some which are localized on bouncing-ball orbits as illustrated in this
figure.

their spectral properties to those of eigenvalue sequences
generated from random matrices from the GUE and Pois-
sonian random numbers and indeed found good agreement
with the curves corresponding to domain 1 for the case where
the latter constituted 6% of the spectrum, and for a slightly
higher percentage for domain 2. This result corroborates our
assumption that the bouncing-ball orbit type eigenstates are
weakly coupled with the remaining ones which behave like
those of quantum systems with classically chaotic dynamics
and violated time-reversal invariance.

We also analyzed the spectral properties of the propellor-
shaped NBs. The results are shown in Fig. 9. Again, the curves
for the two NBs differ; however, the deviations are smaller
than in Fig. 7. In this case, we found good agreement with
GUE statistics. Indeed, for this case the fluctuating part of the
integrated spectral density shown in Fig. 10 doesn’t exhibit
slow oscillations and we found only very few wave functions
which are localized along bouncing-ball-like orbits.

It was demonstrated [46] that trajectories in billiard (a) in
Fig. 1 which hit the diffractive corners do not have a counter-
part in billiard (b). Still, as expected for isospectral QBs, the
length spectra—that is, the modulus of the Fourier transform

FIG. 9. Same as Fig. 7 for the NBs with the shapes shown in the
insets of panel (a) of Fig. 3.

of the fluctuating part of the spectral density, which exhibits
peaks at the lengths of classical periodic orbits—coincide.
This property is referred to as “isolength spectrality” and
implies that there is a correspondence between the diffractive
trajectories of the two billiards. It was identified and shown
to be a consequence of the transplantation property used to
construct all known planar isospectral billiards in Ref. [46].
Thus such diffractive trajectories do not destroy isospectral-
ity and isolength spectrality. In Figs. 11(a) and 11(b) we
compare the length spectra for the NBs with the shapes of
domains 1 and 2 in Fig. 1 and of the domains depicted in
the insets of Fig. 3(a), respectively. They clearly confirm that
NBs besides being nonisospectral do not possess isolength
spectrality. In both cases, the pairs of NBs exhibit essentially
peaks at the same positions, that is, periodic orbits of the
same length, yet the amplitudes and, accordingly, the weights
of their contributions in the ray-dynamical limit deviate
considerably.

FIG. 10. Fluctuating part of the integrated spectral density of the
NBs shown in the upper (black) and lower (red) insets of panel (a) of
Fig. 3.
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FIG. 11. Length spectra for the NBs with the shapes of domains
1 and 2 shown in Fig. 1(a) (black solid line and red dashed line,
respectively) and in the insets of Fig. 3(a) (black solid line and red
dashed line, respectively). They only agree, e.g., at peaks correspond-
ing to bouncing ball orbits. Thus the eigenvalue spectra are neither
isospectral nor isolength spectral.

VI. CONCLUSION

We have revisited Kac’s famous question for massless
spin-1/2 particles confined to a planar domain. To be more
explicit, we investigated the properties of the eigenvalues and
eigenfunctions of nonisometric pairs of NBs which are known
to be Dirichlet and Neumann isospectral in the corresponding
nonrelativistic QBs and illustrate in detail that isospectrality
and also isolength spectrality are no longer present in the rela-
tivistic case. For this, we performed numerical high-precision
calculations using the expanded boundary integral method
[53]. The quantization of billiards with the shapes of the
domains shown in Figs. 1 and 3 is a challenging task, so
that the achievement of the high accuracy exhibited, e.g., in
Fig. 17 is not self-evident and corroborates the efficiency of
that method. Isospectral pairs of QBs are constructed on the
basis of the transplantation method. The origin of the failure
of isospectrality in the corresponding NBs is due to that of
this method, since it does not take into account the additional
spin degree of freedom and the chirality property [45] for

NBs. Actually, as outlined in Sec. III, the Dirac Hamiltonian
with the boundary condition Eq. (5) for NBs is not invariant
under mirror reflection. Thus the reflection operations applied
in the transplantation method to the wave functions in the
building blocks do not generate wave functions with the same
eigenvalue except if two consecutive reflections are performed
with respect to two perpendicular axes, which is crucial for the
construction of nonisometric isospectral pairs of billiards.

The spectral properties of the pair of isospectral QBs
shown in Fig. 1 were demonstrated to be well described
by a random-matrix ensemble consisting of an admixture of
eigenvalues of matrices from the GOE and of Poissonian
random numbers accounting for chaotic eigenstates and the
trivial ones, respectively. We found a similar behavior for the
eigenvalues of the corresponding NBs, except that the spectral
properties of the chaotic part of the eigenvalue spectrum
coincides with those of matrices from the GUE and that
the trivial eigenstates correspond to bouncing-ball modes.
However, the spectral properties and also the amplitudes in
the length spectra differ; that is, the pairs of NBs correspond
to distinct relativistic quantum systems with differing ray-
dynamical limits.

As mentioned in the Introduction, the field of relativistic
quantum chaos arose with the fabrication of two-dimensional
graphene sheets which exhibit relativistic phenomena in the
vicinity of the touch points of the conduction and valence
band [40,41], which are generally referred to as Dirac points.
These features are attributed to the honeycomb lattice struc-
ture which is composed of two interpenetrating triangular
lattices. At the touch points the electronic excitations are
governed by a four-dimensional Dirac equation, comprising
the Dirac operators for massless Dirac fermions associated
with the two independent triangular lattices. On the grounds of
Ref. [45], the spectral properties of chaotic graphene billiards
(GBs) were expected to follow GUE statistics. Numerical and
experimental studies, however, revealed that they coincide
with those of time-reversal invariant chaotic systems, as is
the case for nonrelativistic Schrödinger billiards [29,30,32–
35,38]. These discrepancies result from the intervalley scat-
tering at the boundary of GBs [30], which induces a mixing
and thus a coupling of the two independent Dirac equations.

We investigated the spectral properties of a pair of GBs
with the shapes considered in the article in the regions of the
band edges and the Dirac point, respectively, and found that
(i) like the corresponding NBs, they are not isospectral, and
(ii) their spectral properties coincide with those of matrices
from a random-matrix ensemble consisting of an admixture
of eigenvalues of matrices from the GOE and of Poissonian
random numbers, respectively. Here, the ratio of the lengths
of both spectra is similar to that found for the NBs. The result
(i) is at a first glance in contradiction to the general supposi-
tion that, in the vicinity of the band edges, in good approxima-
tion, the eigenvalues and wave functions of GBs are directly
related to those of the corresponding QBs [37,38,62]. While
the wave functions of the pair of GBs associated with the low-
est eigenstates are similar to those of the corresponding QBs,
their eigenvalues do not coincide. Yet, this approximation is
expected to become inapplicable when the deviations between
the shape of a QB and the honeycomb lattice, i.e., GB, fitted
into it become resolvable by the waves excited inside the
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billiard. The two GBs with the shapes of the isospectral QBs
considered in the present article, constructed by cutting out
the shapes from a honeycomb lattice, always have distinct
structures at the edges and thus differing boundary conditions.
According to our numerical results these differences induce
nonisospectrality starting from the bottom of the eigenvalue
spectrum.

In the present article we consider NBs guided by the Dirac
Hamiltonian for massless spin-1/2 particles with the bound-
ary condition Eq. (5). However, the particles may also be
confined to a planar domain by imposing different boundary
conditions [63], which may have different chirality properties
so that naturally the question arises of whether isospectrality
may be encountered in such relativistic billiards. We came
in Sec. III to the conclusion that the answer is no for rela-
tivistic billiards with the shapes of isospectral QBs, since the
transplantation method does not account for chirality and the
additional spin degree of freedom.
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APPENDIX A: COMPUTATION OF THE
EIGENSTATES OF QBs

While the isospectrality of a billiard composed of several
copies of a building block and another one, constructed from
it by applying the transplantation method, can be proven
mathematically, finding the eigenvalues and eigenfunctions
is a challenging task. The only exceptions are trivial eigen-
states of which the eigenfunctions fulfill the same boundary
condition along the edges of all building blocks, that is, e.g.,
exhibit nodal lines there for the case of Dirichlet boundary
conditions. For the determination of the other eigenstates
a numerical procedure is needed which can cope with the
unavoidable inner corners created when gluing together the
building blocks. The basic idea of the method of particular
solutions [2,64] is to use as an ansatz for the eigenfunctions an
expansion around a diffracting corner with angle θ in terms of
the solutions of the Schrödinger equation in polar coordinates,
i.e., a sum of the form

ψ (r, ϕ) =
∑

l

alJ π l
θ

(kr) sin

(
π l

θ
ϕ

)
, (A1)

which vanishes at the two edges connected to the corner [65].
However, this method fails if the billiard comprises more
than one diffracting corner, yet was improved considerably in
Ref. [66]. In Ref. [57] the mode matching method was applied
to the two squares and three triangles forming the shapes
shown in Fig. 1. A superposition of the known solutions in
the five subdomains was used as ansatz and the associated
amplitudes were determined by requiring that solutions of

the Dirichlet problem and their normal derivatives should
be continuous at the boundaries separating the subdomains.
This method, however, relies on the existence of analytic
solutions of the Schrödinger equation inside the subdomains
with Dirchlet and Neumann boundary conditions along their
edges. In other numerical calculations the billiards were de-
composed into subdomains with each one containing no more
than one diffracting corner [67] and using as ansatz for the
wave functions in these subdomains expansions in terms of
Bessel functions as in Eq. (A1). Furthermore, to determine the
superposition of the wave functions best approximating the
eigenfunctions of the billiards an algorithm proposed in [68]
was applied which avoids the singularities occurring when
using the mode-matching method.

A standard method to compute the eigenvalues and eigen-
functions of a QB, of which the boundary r(s) is defined
by an arc-length parameter s and is composed of a finite
number of C2 arcs �1, �2, . . . , �m bordered by m corners at
r(s̃i ) = ci, i = 1, . . . , m with inner angles θi and of which
the eigenfunctions satisfy Dirichlet boundary conditions, is
to solve a boundary integral equation deduced from Green’s
theorem [54,69,70],

ik

2

∮
∂�

ds Q(s′, s; k)u(s) = χu(s′), (A2)

with

χ =
{

1, r(s′) ∈ ∂�\{c1, c2, . . . , cm},
θi
π
, r(s′) = c1, c2, . . . , cm,

(A3)

and u(s) = n̂(s) · �∇ψ[r(s)] denoting the outward normal
derivative of the wave function ψ[r(s)] and

Q(s′, s; k) = −n̂(s′) · r(s′) − r(s)

ρ(s′, s)
H (1)

1 (kρ(s′, s)), (A4)

where H (1)
1 (kρ(s, s′)) is the order-one Hankel function of the

first kind and ρ(s′, s) = |r(s′) − r(s)|. Note that for QBs the
integrand of the boundary integral equation for the eigenstates
has singularities so that, instead of analyzing the associated
single layer equation, the double layer equation (A2) for the
normal derivative of the wave function along the boundary is
solved. It can be reduced to a matrix equation by discretizing
the boundary parameter s with appropriate quadrature points
{s1, s2, . . . , sN } and weights {w1,w2, . . . ,wN }, yielding

u(si ) = ik

2

N∑
j=1

Q(N )(si, s j ; k)w ju(s j ). (A5)

This set of equations has a nontrivial solution if and only if

det[A(N )(k)] = 0, A(N )
i j (k) = δi j − Q(N )(si, s j ; k)w j,

(A6)

with δi j denoting the Kronecker δ. We chose the Gauss-
Legendre quadrature, which is known to provide for a given
N a more accurate approximation of line integrals than,
e.g., an equidistant partition. The solutions are at discrete
values k = kn, n = 1, 2, . . ., and k1 � k2 � k3 · · · . These are
expected to approach the eigenvalues of the original Dirichlet
problem with increasing discretization size N . An estimate
of the required number of quadrature points N is given by
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the number of k-dependent de Broglie wavelengths λk = 2π
k

fitting into the perimeter L, L/λk . A measure for the accuracy
of this procedure can be obtained either from the deviation of
| det [A(N )(kn)]| or of the original boundary integral equation
for the wave functions, from which Eq. (A2) was deduced,∮
∂�

ds u(s)G[r(s′), r(s); kn] = 0, from zero, with G(r′, r; k)
denoting the free-space Green function. It, indeed, can be
shown that, if the domain is piecewise smooth with no corners,
det [A(N )(k)] converges for N → ∞ and its zeros coincide
with the sought-after eigenvalues. Only under these conditions
the integral kernel Q(s′, s; k) is continuous so that Fredholm’s
theory applies, which guarantees this convergence. The reason
is that the singularity of H (1)

1 (kρ(s, s′)) approached for s′ → s,

H (1)
1 (kρ(s′, s)|) → − 2i

πkρ(s′, s)
+ i

kρ(s′, s)

π
ln

[
kρ(s′, s)

2

]
+ O[kρ(s′, s)], (A7)

is compensated by the prefactor

n̂(s′) · r(s′) − r(s)

ρ(s′, s)
→ 1

2
κ (s′)ρ(s′, s) + O[ρ(s′, s)2]. (A8)

Here, κ (s) denotes the curvature of the boundary at s. How-
ever, the 1/ρ singularity of H1(kρ) is not canceled when
r(s) and r(s′) approach each other from opposite sides of
a corner, because of the discontinuity experienced by the
normal vector n̂ when changing from one side to the other
one. Choosing, e.g., for a polygonal billiard like those shown
in Fig. 1 the boundary parametrization such that the corner
with interior vertex angle θi is at s̃i, and the two straight-line
segments bordering it are symmetric with respect to the x
axis, where the origin of the local coordinate system is chosen
at s̃i, then r(s) = [s̃i − s](cos θi

2 , sin θi
2 ) for s̃i−1 < s < s̃i and

r(s) = [s − s̃i](cos θi
2 ,− sin θi

2 ) for s̃i < s < s̃i+1. Since κ (s)
equals zero for both segments, Q(s′, s; k) vanishes when s and
s′ are along the same segment according to Eq. (A8), whereas
for s̃i−1 < s < s̃i and s̃i < s′ < s̃i+1 the prefactor is given by

n̂(s′) · r(s′) − r(s)

ρ(s′, s)
= ε sin θi√

ε2 + ε′2 − 2εε′ cos θi

, (A9)

with ε = s̃i − s and ε′ = s′ − s̃i which approaches cot (θi/2)
for ε → ε′ and ε′ → 0. Consequently, the Fredholm theory
cannot be applied to prove that the matrix equation gives the
correct eigenvalues with increasing n [20].

The shapes shown in Fig. 1 exhibit diffractive corners with
angles θi = 3π/2 for i = 2, 7 and θi = 3π/4 for i = 1, 5 in
(a). In Fig. 12 we show two examples of the eigenvectors solv-
ing Eq. (A5), that is, of the normal derivatives u(s) along the
boundary, where the positions of the corners are marked as in
Fig. 1. The boundary functions exhibit cusps at the diffractive
corners corresponding to the arc lengths s = s̃i, i = 1, 2, 5, 7
and less pronounced ones at the π/2 corners at s̃3 and s̃4. Yet,
as clearly visible in Fig. 12 the curves for different values of
b coincide, the only exception being the diffractive corners 2
and 7, where they exhibit sharp peaks of which the heights
increase with decreasing distance of s from the respective
corner, that is, with increasing b. A closer look at the cusps
reveals that the boundary functions approach zero for the
diffractive corners at s̃1 or s̃5 and increase algebraically ∝

FIG. 12. Normal derivative of the wave functions along the
boundary for the first (a) and the 19th (b) state of the QB with shape
of domain 1 in Fig. 1 for different numbers b of quadrature points in
a wavelength. The s values of the corners are marked using the same
notation as in Fig. 1. The curves lie on top of each other, except at the
diffractive corners marked by 2 and 7, where they exhibit sharp peaks
of which the heights increase with decreasing distance of s from the
corner, i.e., with increasing b.

|s − s̃i|−δ when approaching those at s̃2 or s̃7 from either side,
where 0 � δ < 1. Actually, close to a corner with inner angle
θi, the solution of the integral equation (A2) with Eq. (A9)
approaches u(s → s̃i ) � Jπ/θi (k|s−s̃i|)

|s−s̃i| → |s − s̃i|π/θi−1 [71] [see
also Eq. (A1)] which is in accordance with our numerical
results. Thus particular care has to be taken in the vicinity of
the corners with θi = 3π/2.

For boundaries with corners det [A(N )(k)] approaches
zero for all values of k with increasing N [20,54]. It
has been shown that, nevertheless, the zeros of the ratio
det [A(N )(k)]/ det [A(N )(ε)] with ε � k1 converge to the cor-
rect eigenvalues with increasing n thus justifying the use of
the boundary integral method for their determination. This
is illustrated in Fig. 13 for the first mode of domain 1 in
Fig. 1 for ε = 0.02 and a varying number b of quadrature
points in a wavelength. Here, the discretization was chosen on
each straight-line segment such that the value of the smallest
distance of the si values from the corners decreases with in-
creasing b. The curves are close to each other and the positions
of their minima approach the same value k(u) = k(u)

n with
increasing b. Here, k(u)

n denotes the unfolded nth eigenvalue.
Unfolding, i.e., the rescaling of the eigenvalues such that the
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FIG. 13. Ratio | det[A(N )(k)]|/| det[A(N )(ε)]| versus the rescaled
k(u) for domain 1 in Fig. 1 (see main text), with ε = 0.02 for different
numbers b of quadrature points in a wavelength.

spectral density is uniform, that is, independent of k and
the mean spacing equals unity, was achieved with the Weyl
formula for QBs providing the average integrated spectral
density [72], k(u)

n = NWeyl(kn) = A
4π

k2
n − L

4π
kn + const, with A

denoting the area of the billiard. The applicability of this reg-
ularization procedure to QBs with corners has been justified
rigorously in Refs. [20,54]. Therefore, we used it to obtain the
eigenvalues of the QBs considered in the present article.

APPENDIX B: COMPUTATION OF THE EIGENVALUES
AND EIGENFUNCTIONS OF NBs

The eigenvalues and eigenfunctions are determined by
solving a boundary integral equation for the two wave func-
tion components which is derived by proceeding similarly to
the nonrelativistic case, with the free-space Green operator in
coordinate representation being a 2 × 2 matrix [45],

−i
k

4

∮
∂�

ds ψ∗
1 (s)

{
H (1)

0 [kρ(s, s′)]

− e−iα(s)eiξ (s,s′ )H (1)
1 [kρ(s, s′)]

} = χ

2
ψ∗

1 (s′), (B1)

i
k

4

∮
∂�

ds ψ∗
2 (s)

{
H (1)

0 [kρ(s, s′)]

+ eiα(s)e−iξ (s,s′ )H (1)
1 [kρ(s, s′)]

} = χ

2
ψ∗

2 (s′), (B2)

where

eiξ (s,s′ ) = z(s) − z(s′)
|z(s) − z(s′)| , ρ(s, s′) = |z(s) − z(s′)|. (B3)

We determined the value of χ by proceeding as in [69]
yielding the result given in Eq. (A3). For both equations
the integrand has a singularity for s → s′, which can be
removed by combining them and applying again the boundary
condition Eq. (5) yielding

ik

4

∮
∂�

ds Q̃(s′, s; k)ψ∗
1 (s) = χψ∗

1 (s′), (B4)

with
Q̃(s′, s; k) = [ei[α(s′ )−α(s)] − 1]H (1)

0 [kρ(s, s′)]

+ [eiα(s′ )−iξ (s,s′ ) + e−iα(s)+iξ (s,s′ )]H (1)
1 [kρ(s, s′)].

(B5)
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FIG. 14. Same as Fig. 13 for the corresponding NB.

The corresponding boundary integral equation for ψ∗
2 (s) is

deduced from Eq. (B4) by applying Eq. (5). Equation (B4) is
transformed to a matrix equation by proceeding as described
in Appendix A and discretizing the boundary parameter s
using Gauss-Legendre quadrature,

det[A(N )(k)] = 0, A(N )
i j (k) = δi j − Q̃(N )(si, s j ; k)w j .

(B6)
Actually, to improve the precision of the eigenvalues we used
the expanded boundary integral method which we developed
in Ref. [53]. Like in the nonrelativistic case, the zeros of this
equation are found by plotting the absolute value of either
det [A(N )(k)] or of the eigenvalue emin(k) of A(N )(k), which
is closest to zero versus k, and determining the positions of
the minima, which yield the discrete solutions kn of Eq. (B6)
up to a numerical error. An estimate of the latter is provided
by their deviations from zero. Similarly, it can be shown that
these solutions converge with increasing N to those of the
boundary integral equation (B4) for billiards with a smooth
boundary. In fact, in distinction to the nonrelativistic case,
the integrand of Eq. (B4) vanishes when s′ → s, since the
prefactors of H (1)

0 [kρ(s, s′)] and H (1)
1 [kρ(s, s′)] approach zero

faster than their singularities diverge for ρ(s, s′) → 0 [53].
Yet, as in the nonrelativistic case, the singularities cannot be
compensated by the respective prefactor when z(s) and z(s′)
approach each other from opposite sides of a corner, because
α(s′ → s) experiences a jump at the corner. Using the same
notation as for Eq. (A9), Q̃(s′, s; k) equals zero when both s
and s′ are chosen along the same side, whereas when s and
s′ are on opposite sides, i.e., s̃i−1 < s < s̃i and s̃i < s′ < s̃i+1,
the prefactor of H (1)

0 [kρ(s, s′)] equals −(1 + e−iθi ) and that of
H (1)

1 [kρ(s, s′)] equals

[eiα(s′ )−iξ (s,s′ ) + e−iα(s)+iξ (s,s′ )]

= −i(1 + e−iθi )
(ε − ε′)√

ε2 + ε′2 − 2εε′ cos θi

, (B7)

with ε = s̃i − s and ε′ = s′ − s̃i, which in contrast to the
prefactor in Eq. (A9) approaches zero for ε → ε′ and ε′ → 0,
yet not sufficiently fast to compensate the 1/ρ singularity of
H (1)

1 [kρ(s, s′)].
Figure 14 shows the ratio | det[A(N )(k)]|/| det[A(N )(ε =

0.02)]| for the NB with the shape of domain 1 in Fig. 1 for
different numbers b of quadrature points versus the unfolded
k(u). Unfolding was performed with the Weyl formula for NBs
[45], k(u)

n = NWeyl(kn) = A
4π

k2
n + const, where the perimeter
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FIG. 15. Illustration of the convergence of the solutions kn of
the boundary integral equation (B4) with increasing number N
of quadrature points for the NB with the shape of domain 1 in
Fig. 1. Shown is the difference between the unfolded eigenvalues
k(u)

n,b and k(u)
n,80 with b � 80 denoting the number of quadrature points

in a wavelength for the 20th eigenvalue. From light color to dark
(b, N ) = (5, 72), (8,114), (12, 170), (15,212), (20, 278), (40, 555),
and (80,1107).

term L
4π

kn occurring in that for the correponding QB [72]
is absent. The different curves coincide and the positions
of their minima converge to the same values k = kn with
increasing b. This is demonstrated for the first 20 eigen-
states in Fig. 15, which shows the deviations of the unfolded
eigenvalues k(u)

n,b, with b = 5, 8, 12, 15, 20, 40, 80 denoting the
number of quadrature points fitting into a wavelength, from
those obtained for the largest considered b = 80. In Fig. 16
we show two examples of the eigenvectors solving Eq. (B6),
that is, of the wave function component ψ1(s) along the
boundary for three values of the number of quadrature points
b in a wavelength. The positions of the corners are marked
as in Fig. 1. The boundary functions exhibit, like in the
nonrelativistic case, cusps at all corners of domain 1 except at
the π/4 corners at s̃0, s̃6 and are especially pronounced at the
diffractive corners s̃2 and s̃7, where they have sharp peaks. The
boundary wave functions for different values of b differ only
there. When approaching a diffractive corner at s̃i, i = 2, 7
(see Fig. 1) from either side, the boundary functions again
increase algebraically ∝|s − s̃i|−δ , but the value of δ is smaller
than in the nonrelativistic case. Consequently, the drawbacks
of the boundary integral equation due to the presence of
singularities cause less problems in the numerical analysis
of NBs than they do in QBs. Yet, as outlined in Appendix
A, the boundary integral method including the regularization
procedure yields the correct eigenvalues for the latter. Thus
we may expect that the same holds for NBs. We, indeed,
were able to compute the first 1000 eigenvalues with high
accuracy with the expanded boundary integral method [53],
as demonstrated in Fig. 17. There the absolute value of the
smallest eigenvalue of A(kn) is plotted versus n, which is
supposed to equal zero at the eigenvalues k = kn solving
the boundary integral equation (B4). It takes values of the
order 10−4 or less. Actually, according to our experience this
accuracy is sufficient to obtain the eigenvalues of NBs with a
smooth boundary with a high precision.
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FIG. 16. Same as Fig. 12 for the modulus of the first wave
function component ψ1(s) along the boundary.

APEENDIX C: ABSENCE OF NODAL LINES IN NBs

To demonstrate that the real and imaginary parts of the
wave function components have nodal lines at distinct loca-
tions let us assume that ψ1(r) has a nodal line denoted by �̃,
that is, that its real and imaginary parts vanish simultaneously

1 200 400 600 800 1000

n

0.0

0.5

1.0

1.5

2.0

|e m
in
(A

(k
n
))
|

×10−4

FIG. 17. Absolute value of the smallest eigenvalues emin(kn) of
the matrix A(kn) defined in Eq. (B6) at the minima of | det [A(k)]|
corresponding—within the numerical error—to solutions k = kn of
Eq. (B6) for a NB of the shape of domain 1 in Fig. 1(a). Their devia-
tions from zero provide an estimate for the accuracy of the numerical
evaluation of Eqs. (B4) and (B6). The number of quadrature points
equaled b = 80.

032215-13



YU, DIETZ, XU, YING, HUANG, AND LAI PHYSICAL REVIEW E 101, 032215 (2020)

along that curve, and choose perpendicular coordinates (t, n)
with t varying along �̃ and n normal to it. Denoting the
tangential vector to �̃ by t = [− sin β(t ), cos β(t )] and the
normal one by n = [cos β(t ), sin β(t )] with β(t ) correspond-
ing to the angle between n and the x axis, and using ∂t = t · ∇
and ∂n = n · ∇, yields

∂x ± i∂y = e±iβ(t )(∂n ± i∂t ). (C1)

Since ψ1(r)|�̃ = 0 is constant along �̃, we have ∂tψ1(r)|�̃ =
0. Transforming the Dirac Hamiltonian from Cartesian to
(t, n) coordinates and using these properties, Eq. (4) becomes

kψ2(r)|�̃ = −i eiβ(t )∂nψ1(r)|�̃,

0 = (∂n − i∂t )ψ2(r)|�̃ . (C2)

From these equations we may immediately deduce that ψ1

and ψ2 cannot exhibit nodal lines simultaneously, since this
would imply that ∂tψ j (r)|�̃ = 0 and ∂nψ j (r)|�̃ = 0 for j =

1, 2. Hence, in this case, both wave function components
vanish not only along a line, but in some region of the billiard
area.

The second condition on the partial derivatives of ψ2

implies that it can only depend on z̃ = n + it . Applying the
Dirac Hamiltonian in Eq. (4) twice to ψ yields with Eq. (C2)(

∂2

∂2
n

+ ∂2

∂2
t

+ β̇(t )
∂

∂n

)
ψ1(r)|�̃ = 0, (C3)

(
∂2

∂2
n

+ ∂2

∂2
t

)
ψ2(r)|�̃ = −k2ψ2(r)|�̃ . (C4)

Summarizing, ψ1 can only have a nodal line when the nor-
mal derivatives of ψ2 are related according to the second
of Eqs. (C2), and ψ2 itself is governed by the Schrödinger
equation (C4) along �̃ with the first of these equations and
Eq. (5) as conditions along �̃ and the billiard boundary,
respectively, which, typically, is not the case.
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