
PHYSICAL REVIEW B 85, 245448 (2012)

Conductance fluctuations in graphene systems: The relevance of classical dynamics
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Conductance fluctuations associated with transport through quantum-dot systems are currently understood to
depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. However, we find that in
graphene quantum-dot systems, when a magnetic field is present, signatures of classical dynamics can disappear
and universal scaling behaviors emerge. In particular, as the Fermi energy or the magnetic flux is varied, both
regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between
the two. By carrying out a detailed analysis of two types of integrable (hexagonal and square) and one type of
chaotic (stadium) graphene dot system, we uncover a universal scaling law among the critical Fermi energy, the
critical magnetic flux, and the dot size. We develop a physical theory based on the emergence of edge states and
the evolution of Landau levels (as in quantum Hall effect) to understand these experimentally testable behaviors.
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I. INTRODUCTION

A fundamental problem in quantum transport through
nanoscale devices is conductance fluctuations. Consider, for
example, a quantum-dot system. As the Fermi energy of the
conducting electrons is varied, the conductance can exhibit
fluctuations of distinct characteristics, depending on the
geometrical shape of the dot. Research in the past two decades
has demonstrated that the nature of the corresponding classical
dynamics can play a key role in the conductance-fluctuation
pattern.1–4 For example, when the classical scattering dynam-
ics is integrable or has a mixed phase-space structure, there
can be sharp resonances in the conductance curve. However,
when the classical dynamics is fully chaotic, the conductance
variations tend to be smoother.

There have been tremendous recent efforts in graphene5–8

due to its relativistic quantum physical properties and its
potential for applications in nanoscale electronic devices and
circuits. The study of transport in open graphene devices
is thus a problem of vast interest.8 For example, the role
played by disorder in conductance fluctuations in graphene
was investigated, where anomalously strong fluctuations9 or
suppression of the fluctuations10 were reported. A recent work
has revealed that, in graphene quantum dots, the characteristics
of conductance fluctuations also depend on the nature of
the classical dynamics similar to those for conventional two-
dimensional electron-gas (2DEG) quantum-dot systems.11 In
these recent works, magnetic field is absent. The magnetic
properties of graphene, however, are different from those
associated with 2DEG systems. For example, in graphene the
quantum Hall effect can be observed even at room temperature
due to the massless Dirac fermion nature of the quasiparticles
and significantly reduced scattering effects.12 Especially, the
linear energy-momentum relation13 in graphene stipulates that
the Landau levels are distributed according to ±√

N , where N

is the Landau index, as opposed to the proportional dependence
on N in 2DEG systems.14

In this paper, we study conductance fluctuations in graphene
quantum-dot systems in the presence of magnetic field. We

present two main results. First, in the parameter plane spanned
by the perpendicular magnetic flux and the Fermi energy, there
are regions of regular and random conductance oscillations,
respectively. As the Fermi energy or the magnetic flux is
changed, the fluctuations can be either regular or random,
implying a kind of “coexistence” of regular and irregular
conductance fluctuations as a single physical parameter is
varied. Second, an experimentally significant issue is how
conductance fluctuations are affected by the size of the
quantum dot in the presence of a perpendicular magnetic
field. In a previous experimental study15 of quantum dots
of sizes ranging from 0.7 to 1.2 μm, the authors found
nearly periodic conductance oscillations as the magnetic-field
strength is varied. The frequency of the oscillation pattern, the
so-called magnetic frequency, was found to follow a scaling
relation with the edge size of the dot.15 In a recent study of
the magnetic scaling behavior in graphene quantum dots,16,17

it was found that for small dots of edge size less than 0.3 μm,
the magnetic frequency exhibits a scaling relation with the
dot area. Here we shall focus on an important set of scarred
orbits and examine the resulting conductance oscillations. We
find that, for graphene quantum dots, below the first Landau
level, the conductance exhibits periodic oscillations with the
magnetic flux and with the Fermi energy. In fact, the magnetic
frequency scales linearly with the dot size. However, the energy
frequency, the inverse of the variation in the Fermi energy for
the conductance to complete one cycle of oscillation, scales
inversely with the dot size. Beyond the regime of periodic
conductance oscillations, new sets of scarred orbits emerge
and evolve as successive Landau levels are crossed, each with
its own period, leading to random conductance fluctuations.
The remarkable feature is that these scaling behaviors are
independent of the nature of the underlying classical dynamics,
i.e., regular or chaotic. Considering that a large body of existing
literature points to the critical role played by the nature of the
classical dynamics in conductance fluctuations,1–4 our finding
that the presence of magnetic field can greatly suppress this
sensitivity to classical dynamics is striking.
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The rest of the paper is organized as follows. Sec-
tion II describes briefly the tight-binding Hamiltonian and
the nonequilibrium Green’s function method to calculate the
conductance for graphene quantum dots. Extensive evidence
of periodic conductance oscillations and the emergence of
random conductance fluctuations is presented in Sec. III.
In Sec. IV, we develop a theoretical understanding of the
numerical results based on the emergence of edge states and
semiclassical quantization. Conclusive remarks are presented
in Sec. V.

II. GRAPHENE QUANTUM DOTS AND
CONDUCTANCE CALCULATION

We use the standard tight-binding framework18 to compute
the conductances through graphene quantum dots of various
geometrical shapes, where pz orbitals and nearest-neighbor
hopping are assumed. The tight-binding Hamiltonian has the
form

H =
∑

i,j

−tij (c†i cj + H.c.), (1)

where the summation is over all nearest-neighbor pairs and c
†
i

(cj ) is the creation (annihilation) operator, tij is the hopping
energy7 from atom j and to atom i, and the onsite energy has
been set as the reference energy as it is the same for all the
atoms. In the absence of magnetic field, the nearest-neighbor
hopping energy is tij = t0 = 2.7 eV. When a perpendicular
uniform magnetic field B with vector potential A = (−By,0,0)
is applied, the hopping energy is altered by a phase factor:

tij = t0 exp(−i2πφi,j ), (2)

where φi,j = (1/φ0)
∫ i

j
A · dl, and φ0 = h/e = 4.136 ×

10−15 Tm2 is the magnetic flux quanta. For convenience, we
use magnetic flux through a hexagonal plaque of graphene,
φ = BS, as a control parameter characterizing variations
in the magnetic-field strength, where S is the area of the
hexagonal plaque composed of six carbon atoms. Thus, S0 =
3
√

3a2
0/2, where a0 = 1.42 Å. Here, we treat graphene devices

as flat two-dimensional systems. Large ripples modify the
hopping and can induce localization and additional transport
fluctuations.19

At low temperature, the conductance G of a quantum-dot
device is approximately proportional to transmission T and
is given by the Landauer formula:20 G(E) = (2e2/h)TG(E).
The standard nonequilibrium Green’s function (NEGF)
method21,22 can be used to calculate the transmission, which
can be expressed by18,23

T (E) = Tr(�LGD�RG
†
D), (3)

where GD is the Green’s function of the device given by
GD = (EI − HD − �L − �R)−1, HD is the Hamiltonian of
the closed device, the semi-infinite leads are accounted for
by the self-energies �L and �R , and �L,R are the coupling
matrices given by

�L,R = i(�L,R − �
†
L,R). (4)
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FIG. 1. (Color online) Schematic illustration of hexagonal-,
square-, and stadium-shaped graphene quantum dots in a perpen-
dicular magnetic field. Note that the magnetic field exists only in the
device region.

The local density of states (LDS) for the device is

ρ = − 1

π
Im[diag(GD)]. (5)

To be representative, we consider graphene quantum dots
of three different geometric shapes: hexagonal, square, and
stadium, as shown in Fig. 1. Hexagonal geometry is interesting
due to the graphene lattice symmetry, i.e., the boundaries
consist of zigzag edges only. Thus, regardless of the device
size, the boundaries remain to be zigzag. The square geometry
has both zigzag and armchair boundaries along the two
perpendicular directions, respectively. The classical dynamics
in these two structures are integrable. The stadium-shaped
quantum dot, however, has chaotic dynamics in the classical
limit, which has been used as a paradigmatic system in
the quantum-chaos literature to explore various quantum
manifestations of classical chaos.24

The geometrical parameters of the three types of devices
are as follows. For the hexagonal geometry the height (the
distance between the two parallel boundaries) is 10.934 nm.
The width of the lead is 1.136 nm, which is chosen somewhat
arbitrarily. For the square device the width is 10.934 nm and
the width of the lead is 1.136 nm so that the overall size is
comparable to the hexagonal dot. The size of the rectangular
part of the stadium dot structure is 16.898 ×10.988 nm and its
lead width is 1.136 nm.

III. NEARLY PERIODIC CONDUCTANCE OSCILLATIONS
AND EMERGENCE OF RANDOM CONDUCTANCE

FLUCTUATIONS

Figures 2–4 are representative examples of conductance
variations either with the Fermi energy for fixed magnetic
flux or with the magnetic flux for fixed Fermi energy, for the
hexagonal, square, and stadium dot shape, respectively. In all
cases, a critical point can be identified unequivocally (denoted
by either E1 or φ1), where the conductance variations are
nearly periodic on one side of the point and random on the
other side. In particular, for all three geometrical shapes, for
fixed magnetic flux, the conductance varies quite regularly for
E < E1 but randomly for E > E1. For fixed Fermi energy,
the conductance variations are regular for φ > φ1 and random
for φ < φ1. Better insights into the transition from regular
to random conductance variations (or vice versa) can be
gained by examining the typical LDS patterns about the
critical point. For example, for the hexagonal geometry, there
is a circularly localized pattern at E1 = 0.2350t , as shown
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FIG. 2. (Color online) Conductances of the hexagonal-shaped
quantum dot. The height of the dot is WD = 10.934 nm and the
lead width is WL = 1.136 nm. The device region contains 4158
carbon atoms. (a) Conductance versus the Fermi energy EF for fixed
magnetic field φ = 0.005φ0. The energy values of the shown LDS
patterns are those of the Landau levels: E1 = 0.2350t , E2 = 0.3395t ,
E3 = 0.4100t , and E4 = 0.4730t, respectively. (b) Conductance
versus the magnetic flux φ for fixed Fermi energy E = 0.35t .
At this energy, there are Landau levels located at φ1 = 0.0115φ0,
φ2 = 0.0057φ0, φ3 = 0.0037φ0, and φ4 = 0.0024φ0 (from large to
small). The corresponding LDS patterns are also shown.

in Fig. 2(a), where the conductance of the dot structure is
effectively zero due to the localization of conducting electrons
inside the device. Figure 2(a) also displays several similar,
recurring LDS patterns at E2, E3, and E4. The ratios among
these energy values are E1 : E2 : E3 : E4 = 1 : 1.44 : 1.74 :
2.01 ≈ 1 :

√
2 :

√
3 : 2. We observe that the energy values are

approximately proportional to
√

N , where N is the index of
EN . These behaviors have also been observed for the square
and stadium-shaped quantum dots. For example, Fig. 3(a)
shows, for the square geometry, occurrences of the transition
between regular and random conductance fluctuations at E1 :
E2 : E3 = 0.2344t : 0.3289t : 0.4021t ≈ 1 :

√
2 :

√
3 : 2 for

fixed magnetic flux 0.005φ0. The ratio is also consistent
with the Landau level distribution as in Eq. (6) below. In
Fig. 3(b), the Fermi energy is fixed at E = 0.4t , and the
transition points are φ1 : φ2 : φ3 = 0.01508φ0 : 0.00756φ0 :
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FIG. 3. (Color online) Conductance variations in a square
graphene quantum dot of side length WD = 10.934 nm and lead width
WL = 1.136 nm, which contains 4802 atoms. (a) For fixed magnetic
flux, Landau levels are located at E1 = 0.2344t , E2 = 0.3289t , and
E3 = 0.4021t , and so on. In (b) where the Fermi level is fixed, the tran-
sition points are φ = 0.01508φ0, 0.00756φ0, 0.00501φ0, and so on.
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FIG. 4. (Color online) Conductance variations in the stadium ge-
ometry. The rectangular region of this chaotic dot has the dimensions
WD = 16.898 nm and 10.988 nm, and the lead size is WL = 1.136 nm.
The stadium shape contains 6410 atoms. Energy Landau levels are
located at E1 = 0.263t , E2 = 0.369t , and E3 = 0.4471t , and so
on for fixed magnetic flux. For fixed Fermi energy E = 0.3t , the
magnetic Landau levels occur at φ = 0.0084φ0, 0.0042φ0, 0.0028φ0,
and so on.

0.00501φ0 = 1 : 1/1.99 : 1/3.00, which are consistent with
Eq. (7) (to be discussed below). For the stadium-shaped device,
the conductance curve shares the same features as Figs. 2 and 3.
The transition points (as indicated in the figure and the caption)
also fit into the same Landau level distribution as given by
Eqs. (6) and (7) below. These numerical results indicate that the
coexistence of regular and random conductance fluctuations
and the transitions between them are determined by the Landau
levels, regardless of the geometric shape of the graphene
quantum dot. Note that, however, the LDS patterns do depend
on the geometrical shape of the dot.

In nonrelativistic quantum, 2DEG systems of infinite size,
the Landau levels are distributed linearly with the level index
N as EN = (N + 1/2)(eBh̄/m). However, for relativistic
quantum quasiparticles in graphene, due to the linear energy-
momentum relation E = vF k near the Dirac point, the Landau
levels are distributed according to25

E(N ) = ±ωc

√
N, (6)

where ωc = √
2vF /�B is the cyclotron frequency of Dirac

fermions (electrons) and �B = √
h̄/eB is the magnetic length.

When a Landau level rises, the charge carriers are localized
approximately at the center of the device, leading to a near-
zero conductance. The numerically obtained LDS patterns
thus indicate that the critical energy values, for example, in
Fig. 2(a), are nothing but the Landau levels.

From Eq. (6), we can obtain the corresponding Landau
levels in terms of the magnetic flux for fixed Fermi energy:

B(N ) = h̄E2

2ev2
F

1

N
. (7)

This formula can be verified by noting that, for example, as
shown in Fig. 2(b), for fixed Fermi energy at E = 0.35t in
the hexagonal dot, varying the magnetic field also partitions
the conductance curve into different regions with regular and
random conductance fluctuations. The critical magnetic fluxes
are φ1 = 0.0115φ0, φ2 = 0.0057φ0, φ3 = 0.0037φ0, and
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φ4 = 0.0024φ0, leading to the approximate ratios of 1 : 1/2 :
1/3 : 1/4, which is consistent with Eq. (7).

IV. SEMICLASSICAL THEORY OF REGULAR
CONDUCTANCE OSCILLATIONS AND UNIVERSAL

TRANSITION TO RANDOM CONDUCTANCE
FLUCTUATIONS

Our numerical computations indicate strongly that the
emergence and properties of the Landau levels are key to
understanding the origin of regular conductance oscillations
in the presence of magnetic field. In fact, significant physical
insights can be gained from the phenomenon of integer
quantum Hall effect in semiconductor 2DEG systems, which
is a direct manifestation of the evolution of the Landau levels.
In that case, when the magnetic field strength is fixed and the
Fermi energy is increased, the conductance reaches minimum
when the Fermi energy is at a Landau level and takes on a
much larger value when the Fermi energy is in between two
neighboring Landau levels. This is contrary to the behavior
of the density of the states, which is appreciable only at the
Landau levels. The basic reason is that, for a quantum dot,
at the Landau level the charge carriers tend to be localized
in the central region of the dot and so cannot participate in
the transport process. However, when the Fermi energy is in
between two adjacent Landau levels, edge states arise which
circulate around the boundary of the quantum dot, facilitating
a strong coupling with the propagating modes in the semi-
infinite leads and resulting in a large conductance. In our case,
there is a new feature. Between two neighboring Landau levels,
the energy difference 	Eh, where the subscript “h” stands
for Hall effect, is enormous so that, besides the formation
of the circular edge states associated with the quantum Hall
effect, another class of circular edge states can be formed, as
stipulated by the semiclassical Bohr-Sommerfield quantization
condition. This introduces another energy period 	Eq , where
“q” stands for quantization, in which the Bohr-Sommerfield
edge states form and disappear. Since the circular edge states
facilitate transport through the quantum dot and since 	Eq is
typically smaller than 	Eh, the fulfillment of the semiclassical
quantization condition contributes to fine-scale oscillations in
the conductance curve.

To exploit the Bohr-Sommerfield quantization condition
for the edge states in graphene, it is convenient to modify the
size of the device but keep the geometric shape unchanged.
Without loss of generality, we focus on the hexagonal geometry
that possesses zigzag boundaries. We choose (somewhat
arbitrarily) several heights of the hexagonal devices: WD1 =
19.454 nm, WD2 = 10.934 nm, and WD3 = 6.674 nm with
the relative ratio WD1 : WD2 : WD3 = 2.9 : 1.7 : 1. Figure 5
shows, for these devices, periodic conductance oscillations
below the first Landau level.

Bohr-Sommerfield quantization theory stipulates that the
action integral for two successive edge states satisfies the
condition26 	I = h, where h is the Planck constant and
I = ∮

p · dq. In the presence of a magnetic field with vector
potential A, the generalized momentum is p = h̄k + eA and
the wave vector k has the same direction as dq. For a given
periodic orbit of length L, we have

I = |p|L = h̄|k|L + eBS, (8)
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FIG. 5. (Color online) Conductance oscillations in hexagonal
quantum dots of different sizes. The device width for (a) and
(d) is WD = 19.454 nm and it contains 12938 atoms, for (b) and
(e) it is WD = 10.934 nm and the device has 4158 atoms. In (c) and
(f), the device has width WD3 = 6.674 nm and 1616 atoms. Every
subfigure indicates the period of the regular oscillations.

where S is the area that the periodic orbit encloses in the
physical space. For a fixed magnetic-field strength, we then
have 	kL = 2π , where L is length of the periodic orbit.
For graphene, we have E = h̄vF k near the Dirac point, so
the relationship between the energy interval 	Eq due to the
quantization condition and the length of the periodic orbit is

	Eq = hvF /L. (9)

Due to the different boundary conditions in two dimensions,
we only test the ratio of the energy interval. In Figs. 5(a), 5(c),
and 5(e), the energy intervals can be determined, giving
the ratios 	Eq1 : 	Eq2 : 	Eq3 = 1/L1 : 1/L2 : 1/L3 = 1 :
1.76 : 2.92, which are quite close to the inverse ratios
of the device size 1/WD1 : 1/WD2 : 1/WD3 = 1 : 1.7 : 2.9.
Moreover, for L = WD , we can estimate the Fermi velocity
vF = 	EqWD/h ≈ 106 m/s, which is close to the Fermi
velocity calculated from the dispersion curve. This means
that the length of the circulating orbit is comparable to the
device height, indicating that the effective diameter of the
orbit is smaller than that of the device. We thus see that
the regular conductance oscillations are a consequence of the
Bohr-Sommerfield quantization of the edge states between two
Landau levels. In particular, when the quantization condition
is satisfied, a strong LDS pattern emerges at the edge of the
device, as shown in Fig. 6, which bridges with the transmitting
modes in the two leads and leads to the peak value 2e2/h

for the conductance. On the contrary, when the quantization
condition is violated, edge states cannot form, giving rise to
minimal conductance. Similarly, for fixed Fermi energy, or
equivalently, fixed wave-vector (from the dispersion relation),
the quantization condition becomes 	(eBS) = h, or

	φ = 	BS = φ0, (10)

where φ0 = h/e is the magnetic flux quanta. Since the
edge states typically circulate the device boundaries, S is
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FIG. 6. (Color online) A hexagonal geometry device with 4158
atoms. Colors of the contour lines represent conductance G/G0. The
red dash lines are four Landau-levels, which divide the G ∼ E ∼
φ contour into several distinct regions. In each region, there are
one or several conductance fluctuation patterns (patterns 1,2,3). Each
conductance pattern corresponds a distinct LDS pattern.

proportional to the area of the device. From Figs. 5(b), 5(d),
and 5(f), we obtain 	φq1 : 	φq2 : 	φq3 = 1 : 3.2 : 9 ≈
1/W 2

D1 : 1/W 2
D2 : 1/W 2

D3. Compared with the numerical re-
sults of 	Eq , the error in 	φq is larger due to our approx-
imation of S. When the area surrounded by the circulating
orbit is determined more precisely, we find that the magnetic
quantization condition [Eq. (10)] is satisfied. Note that in the
absence of magnetic field or if the field is weak, edge states
occur only at zigzag boundaries. However, under a strong
magnetic field (above the first Landau level), edge states can
emerge for both armchair and zigzag boundaries.

From the above analysis of the Bohr-Sommerfield quanti-
zation condition, we find that the conductance oscillations are
related to the Fermi energy, the magnetic-field strength, and the
size of the device. To obtain a quantitative scaling relationship
among those parameters, we develop the following physical
analysis. Theoretically, the size of a device is related to the
electron cyclotron radius at the Fermi energy, because only
the electrons near the Fermi surface contribute to device
transmission or conductance. The ratio of the cyclotron
surrounding area and perimeter is given by17

S/L = kF �2
B, (11)

where S/L can be regarded as a single parameter character-
izing the device size. In a graphene system, the energy near
a Dirac point is proportional to the Fermi wave-vector kF :
EF = h̄vF kF or kF = EF /(h̄vF ), where the Fermi velocity
is given by vF = √

3t0a/2h̄ and a = 2.46 Å is the graphene
lattice constant. Substituting these back into Eq. (11), we
obtain the relationship of Fermi energy E, the device size
D, and the magnetic flux φ as follows:

S/L = 2h̄S0√
3eat0

E

φ
, (12)

or in a different form as (for a given, fixed device size)

S/L = 2h̄S0√
3eat0

	E

	φ
. (13)

This relation can be used to infer the characteristic size D of
the device from the conductance oscillations. For example, for
the hexagonal geometry, S = √

3D2/2 and L = 2
√

3D. The
scaling relation can be modified to

Dhex = 12h̄S0√
3eat0

	E

	φ
, (14)

which can be readily verified numerically. In particular, since
the curves shown in Fig. 5 are for the edge states circulating
the device, we can use 	E and 	φ from the figure to infer the
corresponding values of D, which yields D1 = 13.926 nm,
D2 = 7.836 nm, and D3 = 4.734 nm. Comparing with the
actual size of the dot WD as described in the caption of Fig. 5,
we observe somewhat large discrepancies. However, if we
compare the ratios, we have D1 : D2 : D3 = 2.94 : 1.655 : 1,
which are extremely close to the ratios of the actual dot sizes
WD1 : WD2 : WD3 = 2.915 : 1.640 : 1. We also see that, for
the three dot sizes, the ratio WD/D is the same, which is
about 1.4. The discrepancies in the actual size are caused by
the approximation in Eq. (11) and by the assumption that the
diameter of the circulating orbits is equal to the device size.
Nevertheless, since the estimated values of D and WD are of
the same order of magnitude, it can be used to infer the dot size
from the conductance oscillations versus the Fermi energy and
the magnetic flux, which can be used as corroborative evidence
and be compared with other direct/indirect measurements.

The scaling relation (14) may be feasibly observed ex-
perimentally in graphene quantum dots because, for low
Fermi energy, the underlying phenomenon emerges even
when the applied magnetic field is weak, i.e., φ → 0. For
conventional semiconductor 2DEG systems with a parabolic
energy-momentum relation, similar scaling can in principle be
observed but only for enormous magnetic field, as we have
verified numerically. In particular, for a graphene quantum
dot of size D ∼ 1 μm, the minimally required magnetic-field
strength to observe the periodic conductance oscillations is
about 3T . While for a 2DEG device of the same size as 1 μm
made of GaAs/AlGaAs heterogeneous structure, the minimum
magnetic field required is27 about 10T .

To obtain a global view of the conductance oscilla-
tions/fluctuations in terms of a combination of Eqs. (6) and
(7), we overlay the Landau levels on top of the contour plot
of the conductance versus both energy E and magnetic flux
φ for the hexagonal dot, as shown in Fig. 6. We see that
the Landau levels divide the whole parameter space of (E,
φ) into different regions with behaviors ranging from regular,
parallel line patterns to complicated irregular patterns.28 We
have analyzed the case that the Fermi energy is below the first
Landau level, where the edge states recur with the period 	Eq ,
leading to regular conductance oscillations of the same energy
period. For EF > E1, there are two sets of edge states, leading
to two uncorrelated repetitive patterns, each with its own period
	Eq . This is also manifested in Fig. 6 for the hexagonal dot
that, in region 2 (between the first and the second Landau
levels), there are two sets of conductance lines: one with the
same slope as in region 1 (the overlapped gray lines) and
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another with a larger slope (brown lines) that originates in this
region but persists in regions between higher Landau levels. In
region 3 a new pattern appears, as indicated by the blue dashed
lines in Fig. 6. The corresponding edge states are also shown
in Fig. 6 for these typical line segments. We see that, for a fixed
magnetic flux, as the Fermi energy is increased across a Landau
level, a new set of edge states appears, adding a new set of line
segments in the conductance plot. Since the energy period 	Eq

is uncorrelated for different types of edge states, as can be seen
from Fig. 6, the conductance will fluctuate randomly when
there are many sets of edge states. This explains the transition
from regular conductance oscillations to random conductance
fluctuations, as shown in Figs. 2(a), 3(a), and 4(a). A similar
analysis can be carried out when the magnetic flux is varied
[Figs. 2(b), 3(b), and 4(b)]. Since the transition is caused by
the crossing of Landau levels and the variation of the edge
states, it holds regardless of the detailed geometric shape of
the quantum dot and the nature of the underlying classical
dynamics, i.e., integrable or chaotic. The transition can thus
be characterized as universal.

While our discussion has been focused on the hexagonal
dot, here we briefly show that the same mechanism leading to
regular conductance oscillations and the transition to random
fluctuations holds for other geometries as well. To demonstrate
this in a comprehensive manner, we show in Fig. 7 the
conductance in the (φ,E) plane for all three cases. We see

FIG. 7. (Color online) (a)–(c) Conductance G(E,φ) for the
hexagonal-, square-, and stadium-shaped graphene quantum dots,
respectively, where the colors indicate the values of the conductance.

that the conductance is symmetric with respect to reversal of
the magnetic flux [T (φ) = T (−φ)] due to the two-terminal
characteristic of our device.18 The patterns of the conductance
oscillations and fluctuations for the three cases are apparently
similar, due to the fact that the patterns are all partitioned by
the Landau levels [e.g., Eq. (6)] that do not depend on the
geometric details of the device. However, the fine structures
can be different. First, below the first Landau level, the slopes
of the line patterns indicate the size of the device because
the edge states are exactly circulating the “edge” of the
device (Fig. 6), which are slightly different for the three
cases. Second, above the first Landau level, the details of
the conductance patterns are more distinct. This is because,
in contrast to the edge states below the first Landau level,
these states are now more dispersive and also depend on the
shape of the device (comparing the LDS patterns in Figs. 2–4).
Third, conductance fluctuations in the chaotic stadium billiard
tend to be more smooth as compared with those in the two
integrable cases.29,30 This feature is especially pronounced in
the small-φ regime. When the classical dynamics is chaotic,
the characteristic energy scale in the conductance-fluctuation
pattern of the underlying quantum dot tends to be much
larger,11 leading to a smoother variation. For quantum dots
with integrable or mixed dynamics, there are sharp resonances
in the conductance-fluctuation curves. This can be seen, e.g.,
from the sudden change of the color scale from blue to red,
or vice versa, in Fig. 7(b) for φ ∼ 0. [In the chaotic case, the
change in the color scale is much more smooth, as shown in
Fig. 7(c)]. In addition, in the chaotic graphene quantum dot,
there is level repelling, which can also be seen from Fig. 7(c)
in the φ ∼ 0 regime, where the conductance lines tend to avoid
each other, a feature that is absent in both Figs. 7(a) and 7(b).

V. CONCLUSION

Previous works on conductance fluctuations associated
with transport through nanoscale, quantum-dot systems
emphasized the difference between situations where the
underlying classical dynamics are chaotic or integrable.1–4

A general understanding is that Fano-type31 of sharp
resonances typically occur in dot systems with integrable
classical dynamics, and chaos can effectively smooth out these
resonances quantum-mechanically. This picture holds for both
2DEG and graphene systems in which the quantum dynamics
are nonrelativistic and can be relativistic, respectively, and
it has been suggested recently32 that altering classical chaos
can effectively modulate quantum transport in terms of
conductance-fluctuation patterns.

We find that the presence of magnetic field can alter
the existing understanding of the quantum manifestations of
classical chaos in that the difference in the quantum transport as
caused by different types of classical dynamics can diminish.
As a result, universal behaviors emerge. The remarkable
phenomenon has been observed in graphene quantum dots
of integrable and chaotic geometries. In particular, the con-
ductance curves contain both regular oscillations and random
fluctuations, and the transition is caused by the emergence of
new edge states when crossing the Landau levels. In the region
of regular oscillation, the periods in the Fermi energy and in
magnetic flux are related to the size of the device in a universal
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manner, regardless of the nature of the corresponding classical
dynamics. The key to this universal scaling is the quantization
of classically circulating edge orbits, which does not depend
on the specific details of the geometrical shape of the dot.
The details do appear in the fine-scale variations, where the
random conductance fluctuations are typically smoother when
the classical dynamics is chaotic.
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