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Enhancing optical response of graphene through stochastic resonance
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Enhancing the optical response of graphene is a topic of interest with applications in optoelectronics. Subject
to light irradiation, graphene can exhibit nontrivial topologically insulating states, effectively turning itself into
a Floquet topological insulator due to the time periodicity of the external driving. We find that, when random
disorder is present, its interplay with the topologically insulating states can have a dramatic effect on electronic
transport through graphene. In particular, we consider the prototypical setting where a graphene nanoribbon is
irradiated by circularly polarized light, where the length of the nanoribbon is sufficiently long so that evanescent
states have little effect on transport. We uncover a resonance phenomenon in which the conductance is enhanced
as the disorder strength is increased from zero, reaches a maximum value for an optimal level of disorder,
and decreases as the disorder is strengthened further. With respect to its value at the zero-disorder strength, the
maximum conductance value can be as much as 50% higher. Qualitatively, this can be understood as a result of the
dynamical interplay between disorder and Floquet states (channels) generated by light irradiation. Quantitatively,
the resonance phenomenon can be explained in the framework of Born theory, where the disorder reorganizes the
Floquet Hamiltonian and enhances the effective coupling between the adjacent Floquet conducting channels. That
is, disorder is capable of promoting both photon absorption and emission, leading to significant enhancement of
nonequilibrium electronic transport. We demonstrate the robustness of the resonance phenomenon by investigating
the effects of spatial symmetry breaking on transport and provide an understanding based on analyzing the behavior
of the density of states of the Floquet channels.
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I. INTRODUCTION

The optical absorption of monolayer graphene is deter-
mined exclusively by the fine-structure constant α and has
little dependence on the frequency in a wide spectral range as
a consequence of the low-energy electronic structure in which
the electron and hole conical bands meet each other at the
Dirac point in a linear fashion. The value of the absorption
is thus low: about πα ≈ 2.3% for a wide frequency range
containing the visible spectrum [1–4], making graphene effec-
tively “transparent” to light. With conventional methods such
as electrostatic gating and doping, light absorption in graphene
can be improved but not dramatically. For applications in
optoelectronics, it is of interest to enhance the response of
graphene to light even without significant enhancement in
absorption. In this paper, we report a stochastic resonance
phenomenon [5–12] by which the interplay between light
irradiation and random disorder can maximize the conductance
through a graphene nanoribbon.

When an external light beam irradiates on a graphenelike
or a spin-orbit-coupled system, dynamical and topologically
insulating states can arise [13]. Such nontrivial states with time-
periodic variations can be described by the Floquet theory;
henceforth, we use the term Floquet topological insulators
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(FTIs). Subsequently, various properties of FTIs and the as-
sociated phenomena have been studied theoretically and com-
putationally, such as transport [14–17], edge states [18–21],
topological transitions [22,23], dynamical polarizability [24],
modulated and disorder-induced topological states [25–27],
valleytronics [28], and local pseudospin textures [29]. Exper-
imental observation of Floquet-Bloch states on the surface of
a topological insulator [30] has also been reported.

Transport dynamics in Floquet systems have a nonequi-
librium nature [14,31] due to the time-dependent external
light field, leading to behaviors that are distinct from those
in equilibrium transport systems. For example, a short, light-
irradiated graphene ribbon can exhibit a superdiffusive behav-
ior caused by the evanescent modes [32]. In a light-irradiated
bulk graphene system, the phenomenon of disorder-enhanced
transport can arise [22] through breaking of the spatiotemporal
symmetry. This should be compared with nonirradiated sys-
tems, where disorder-enhanced transport assisted by evanes-
cent states can be observed in short structures [33–35] or in
systems with pointer states induced by specific mechanisms
such as scattering sources [36,37] or an external magnetic
field [38]. Earlier, a stochastic resonance phenomenon was
uncovered [39,40] with which the transmission through a
disordered graphene nanojunction can be maximized for an
optimal level of random disorder. This can be understood as
the breaking of the localized edge states by weak impurities,
resulting in enhanced transmission, but strong disorder can
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lead to Anderson localization, reducing the conductance. From
the standpoint of scattering, the effects of random impurities
are similar to those of classical chaos [41], indicating that
chaos can play a role in modulating quantum transmission
[42–51]. In previous works on the effects of random impurities
on transport in graphene nanoribbons, the disorder-enhanced
conductance is typically small: �G � G0 = 2e2/h. We also
note that bulk transport is not completely representative of
transport dynamics in the ribbon structure.

In this paper, we study transport through a light-irradiated
graphene ribbon structure with on-site disorders which is con-
nected with two doped leads. We focus on the weak-disorder
regime because FTIs are typically weak topological insulators
[52,53]. We study the setting where a circularly polarized light
beam irradiates a sufficiently long graphene ribbon so that
evanescent states have no contribution to the transport. We
find that on-site disorder can enhance the transport. As the
disorder strength is increased, the conductance can increase
and reach a maximum at some optimal value of the disorder
strength, mimicking a stochastic resonance. This resonance
phenomenon is robust with respect to variations in other
parameters of the system. We develop a theory based on
the Born approximation to understand the mechanism for
resonance. Our analysis indicates that disorder can effectively
enhance the coupling between light and graphene with respect
to photon absorption or emission. We also consider symmetry
breaking by assuming that there is only partial disorder in the
system, find the persistence of the resonance phenomenon, and
offer an explanation based on analyzing the density of states
in different Floquet channels. While disorder has been known
to be capable of enhancing electronic transport in a graphene
ribbon in the absence of external light, our work reveals,
quite surprisingly, that the interaction between electromagnetic
radiation and graphene can be significantly enhanced when a
certain amount of disorder is present.

II. NONEQUILIBRIUM TRANSPORT AND
FLOQUET THEORY

For a graphene ribbon subject to uniform, circularly polar-
ized light irradiation, the time-dependent Hamiltonian under
the unit convention h̄ = vF = 1 is given by H (t) = H0 +
H1[A(t)], where H0 is the unperturbed Hamiltonian in the
absence of light and H1[A(t)] is the perturbation term due
to the vector potential A(t) = (eA0/h̄)[cos (�t), sin (�t)] that
characterizes the effect of the rotating electric field in the (x,y)
plane: E(t) = −∂A(t)/∂t , with � being the frequency of light
and A0 being a quantity related to the light intensity. The
time-dependent Schrödinger equation is

HF (t)|�(r,t)〉 = [H (t) − i∂t ]|�(r,t)〉 = 0, (1)

where HF (t) is the Floquet Hamiltonian [15]. Since H (t) is
periodic, the wave function can be expressed as the Floquet
states |�α(r,t)〉 = eiεαt |	α(r,t)〉, where εα is the quasienergy
and |	α(r,t + T )〉 = |	α(r,t)〉, with T = 2π/� being the
driving period. The Schrödinger equation can then be reduced
to HF (t)|	α(r,t)〉 = εα|	α(r,t)〉. The wave function can be

FIG. 1. Schematic illustration of the system configuration. A two-
terminal graphene nanoribbon of length L and width W is irradiated
by a circularly polarized light beam of strength A0 and frequency �.
The random black dots denote the on-site potential disorder. The left
and right leads are shielded from light irradiation by the electrodes.
The quantities VL,R represent the potential at the left and right leads,
respectively.

expressed in the discrete Fourier form as

|	α(r,t)〉 =
∑
m

eim�t
∣∣ϕm

α (r)
〉
, (2)

where |ϕm
α (r)〉 is static. Since HF is Hermitian, the Floquet

states |	α(r,t)〉 are orthonormal to each other [26]:∑
m

〈
ϕm

α

∣∣ϕm
β

〉 = δαβ.

In the tight-binding framework, the time-dependent Hamil-
tonian is given by

H (t) = −
∑
〈ij〉,s

γij (t)c†i,scj,s +
∑
i,s

uic
†
i,sci,s , (3)

where c
†
i,s (ci,s) is the creation (annihilation) operator, s =↑ ,↓

denotes spin, and ui is the on-site disorder potential at site i.
The manifestation of the light field is the following dependence
of the hopping energy on the vector potential:

γij = γ0 exp [iAij (t)],

where

Aij (t) = (e/h̄)(rj − ri) · A.

The value of the random potential ui is taken from a uniform
distribution in the interval [−U0/2,U0/2] with 〈ui〉 = 0 and
〈uiuj 〉 = (U 2

0 /12)δij .
We study a two-terminal transport system, as shown in

Fig. 1, where the “scattering” region is irradiated by a circularly
polarized light beam. In experiments, the left and right leads
are typically covered by electrodes and are thus not irradiated.
This is a nonequilibrium transport system due to photon
absorption and emission, where electrons are injected from
the left lead with Fermi energy E, interact with light in the
scattering region, and exit from either the left or the right
lead with energy E + kh̄�, where k is the number of photons
absorbed or emitted. The zero-temperature conductance can
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FIG. 2. Main result: enhancement of conductance by light-disorder interplay. (a) Under relatively weak light irradiation, average conductance
〈G〉 versus the disorder strength U0. Blue rightward and red leftward triangles denote the conductance associated with transport in the L → R

and R → L directions, respectively. The black curve corresponds to the mean conductance G. The quantity Gdefect , represented by the blue curve,
is the conductance for the case where impurities are distributed uniformly in a semicircular region of radius r = W/2, as indicated in Fig. 1.
The green dashed curve is the theoretical prediction based on the Born approximation. The arrows at ε = 0 and �/2 in the inserted quasienergy
band structure correspond to the FTI states. The parameters are L = 70a0, W = 50a, A0 = 0.15, and � = 0.8γ0, with a0 = √

3a = 2.46 Å
being the lattice constant of graphene. The convention h̄ = 1 has been used. (b) Average conductance versus A0 and U0. The red curve is a fit
with the conductance peaks.

be obtained from the nonequilibrium Green’s function method
as G = (GRL + GLR)/2, where

Gν←μ(E) ≡ Gνμ(E) = G0

∑
k

T (k)
νμ (E),

T (k)
νμ (E) = Tr

[
�(k)

ν G(k)
1N (E)�(0)

μ G(k)
1N

†
(E)

]
.

See Appendix A for a detailed description of the computational
method.

III. RESULTS

A. Light-mediated, disorder-enhanced transport

To calculate the conductance of the irradiated region, we
assume that the leads are doped to increase the number of
transverse modes injected from the leads into the scattering
region. Computationally, this can be implemented by setting
the potentials at the left and right leads as VL = VR = γ0. To
eliminate the effect of evanescent states, we set the length-
to-width ratio of the scattering region to be L/W � 2.5. We
use the notation G to represent the time-averaged conductance,
whereas the notation 〈· · · 〉 is reserved for the ensemble average
over the disorder configurations.

Figure 2(a) shows the average conductance versus the
disorder strength, which exhibits a resonance phenomenon:
there exists an optimal value of the disorder strength U0 which
maximizes the conductance. In particular, as U0 is increased
from zero, the average conductance increases, reaches max-
imum for U0/� ≈ 0.7, and decreases monotonically from
the maximum value as U0 is increased further. Note that,
when the disorder is uniformly distributed, there is a right-left

symmetry in the system, leading to 〈GRL〉 = 〈GLR〉. However,
the resonance phenomenon persists when such a symmetry is
not present. For example, we have also studied a nanoribbon
with impurities uniformly distributed in a semicircular region,
as indicated by the black dashed curve in Fig. 1, and found
similar behavior in the conductance.

To better understand the effects of the interplay between
irradiated light and random disorder on electronic transport,
we generate a diagram of conductance versus both A0 and
U0, as shown in Fig. 2(b). In the absence of light (A0 = 0),
the conductance remains at near-zero values as the disorder
strength is varied. When irradiated light even of low intensity
is present, a nontrivial FTI state is induced, and the conductance
rapidly rises to a value about the order of magnitude of G0 as
the disorder strength is increased from zero. The reason that
the conductance enhancement is insignificant in the regime
of low light intensity is that the FTI state is not robust
and the impurities induce a localization effect, resulting in a
decrease in the conductance as U0 is increased further. For
relatively strong light intensity, e.g., A0 > 0.04, impurities
can lead to considerable conductance enhancement. We find
that the maximum conductance Gmax obeys the following
scaling relation with the light intensity: Gmax ∼ A

1/3
0 . In the

(A0,U0) parameter plane, the locations at which Gmax is
achieved constitute approximately a straight line given by
U0/� − 5A0 = 0.

Previously, it was found that, associated with bulk transport
through a graphene nanoribbon, disorder-enhanced conduc-
tance is due to the breaking of the entwined spatiotemporal
symmetry at the � point [22]. In our system, the substantial
disorder-enhanced conductance in a zigzag ribbon occurs not
only at the � point but for a range of the intensity of light
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FIG. 3. Enhancement of conductance by random disorder in the
regime of strong light intensity. (a) Average conductance 〈G〉 versus
the disorder strength U0. Blue rightward and red leftward triangles
denote GRL and GLR , respectively. The black curve corresponds to
the average conductance G = (GRL + GLR)/2. The parameters are
L = 122a, W = 50a, A0 = 1, and � = 1.533γ0. (b) The correspond-
ing Floquet spectrum, where the red and blue curves correspond to
the FTI states. (c) and (d) Floquet conductances G

(k)
RL and G
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U0/�, respectively.

irradiation (e.g., A0 < 0.5). Even for strong light intensity
(e.g., A0 � 1), the phenomenon of disorder-enhanced conduc-
tance persists, as exemplified in Fig. 3.

For a graphene ribbon with zigzag boundaries, the phe-
nomenon of light-mediated, disorder-enhanced transport typ-
ically occurs near the quasienergy level ε/� = N/2, where
N is an integer. If the quasienergy of the irradiated region
is close to the levels of the bulk states, random impurities
will weaken or even block the transport due to the sensitivity
of the bulk states to weak disorder. Thus, the phenomenon
can arise only when the quasienergy level is distinct from the
bulk levels. Another constraint is that the light frequency �

should be lower than the tight-binding bandwidth; otherwise,
the conductance will remain at a value in the weak-disorder
regime. Numerically, we find that the boundary type of the
graphene nanoribbon does not affect the emergence of the
phenomenon of light-disorder-interplay-induced conductance
enhancement. For example, for the armchair boundaries,
we observe similar behaviors.

B. Theoretical understanding based on the Born approximation

To understand the phenomenon of enhanced transport
caused by the interplay between disorder and light irradiation,
we exploit the first-order Born approximation by starting

from the standard single-resonance Hamiltonian in the low-
energy regime and incorporating random disorder to obtain
an effective Hamiltonian. The average self-energy associated
with the disorder can be written as [27]

�dis(z,k) =
∫

FBZ

dk′〈Udis(k,k′)GF
0 (z,k′)Udis(k′,k)

〉
, (4)

where FBZ stands for the first Brillouin zone and the off-
diagonal elements represent the coupling between different
Floquet channels. For weak light irradiation, i.e., A0 � 1, the
effective coupling strength is

Ã± = A0
(
1 + α±U 2

0

)
, (5)

where α±(�,A0) is an integral over the FBZ with the relation
α+ = α

†
−. The disorder self-energy indicates that impuri-

ties can contribute positively to the coupling and, conse-
quently, enhance the transitions among the different Floquet
states. In general, the increase in the conductance due to
enhanced coupling is approximately proportional to U 2

0 : 〈G〉 ≈
(1 + |α±|U 2

0 )GU0=0. A simple fitting of this formula with the
numerical results is shown by the green curve in Fig. 2(a).

The Born theory provides a mechanism by which the phe-
nomenon of disorder-enhanced transport under light irradiation
can be understood. Specifically, Fig. 4(a) shows a schematic
diagram of the transport process where the levels m at differ-
ent coordinate locations represent the Floquet channels and
the short wave trains denote the photon absorption/emission
process. For instance, for electrons injected into the Floquet
channel m = 0 from the left lead, the probability of photon
absorption/emission is enhanced by the disorder in the light-
irradiated region. As a result, the transmission from channel
m = 0 to channel k is enhanced for |k| > 1, leading to an
enhancement in the total conductance which is proportional
to the sum of the transmission T (k).

Another speculative mechanism for transport enhancement
is disorder-induced breaking of the match between wave
functions at the boundaries of the light-free and light-irradiated
regions which, if true, would represent a correction to the
Born theory. To test whether such a correction is necessary, we
calculate, for a closed nanoflake, the surface Green’s function
Gk

1N for the transition from Floquet state m = 0 to state k,
which is the block matrix

GF (z) = [z + iη − HF ]−1,

with its normalized form given by

gk
1N = Gk

1N

/ ∑
m

Gm
1N .

We use 103 sets of disorder realizations for each U0 and
calculate the average normalized surface Green’s function.
The results are shown in Fig. 4(b). We see that, as the
disorder strength is increased, the function g

(k)
1N (E) with |k| > 1

becomes more and more elevated. This rules out the boundary
wave-function matching as a possible contributing factor to
disorder enhanced transport.

It should be noted that, although we have exploited the Born
approximation to obtain the theoretical results, the finite-size
Kubo formula [54] can also be used to obtain the same results.
In particular, in the Kubo formula for linear response theory, the
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FIG. 4. A schematic diagram illustrating the process by which transport is enhanced by disorder in the presence of light irradiation.
(a) Nonequilibrium transport through a two-terminal, light-irradiated system with disorder. Electrons are injected from the left lead into the
Floquet channel m = 0, pass the light-irradiated scattering region, and exit the right lead through the Floquet channels m = 0,±1,±2, . . . . The
orange wave trains signify photon absorption and emission between adjacent Floquet channels, and the gray arrows represent transport within
the Floquet channels. (b) Surface Green’s function gk

1N describing the contact between slices 1 and N when k photons are absorbed in a closed
nanoflake (inset).

effective Hamiltonian of a finite Floquet system (e.g., a finite
irradiated graphene nanoribbon) is the same as that used in the
Green’s function method. The Kubo formula can thus be used
to predict the phenomenon of disorder-enhanced conductance.

C. Asymmetrical transport in a partially disordered system

To test the generality of light-mediated, disorder-enhanced
transport, we study the case in which random impurities exist
only in part of the light irradiated scattering region. Concretely,
we assume that impurities exist only in a subregion of length
Ldis, which is at distance ddis from the left lead, as shown
in Fig. 5(a), where the top and bottom panels represent the
transport processes in the two opposite directions: L ← R and
R → L, respectively. We examine the distribution of the local
density of states (LDOS) in different Floquet channels. For
the m = 0 channel, due to the wave-function mismatching
at the boundaries of the region with impurities, the LDOS
concentrates near the boundaries and assumes low values
elsewhere. For this channel, the disorder has little effect on
the transport. However, for channels m = ±1, LDOS in the
disordered region is greatly enhanced. Marked enhancement in
the LDOS distribution also occurs for higher Floquet channels
(|m| > 1). The enhancement in the LDOS for most Floquet
channels is consistent with the theoretical prediction based on
the Born approximation.

Figures 5(b) and 5(c) show, for the partially disordered
system, the conductances associated with transport in the
two opposite directions (i.e., L → R and R → L) versus the
disorder strength and the location of the impurity region,
respectively. The striking phenomenon is a high degree of
asymmetry in the conductances GLR and GRL: their values
and trends of variation are drastically different. In particular,

as shown in Fig. 5(b), the values of GRL and GLR gradually
drift away from each other, and their ratio can reach the
value GRL/GLR ≈ 2 as U0 is increased. However, the average
conductance 〈G〉, which takes into account transport in both
directions, is enhanced only slightly by disorder. As the
distance ddis is varied, the difference between GRL and GLR

is modulated, as shown in Fig. 5(c), where the GRL and
GLR versus ddis curves exhibit monotonously decreasing and
increasing behaviors, respectively, and cross each other at the
left-right symmetrical point ddis = 20a0.

While it is generally true that, for a driven system, the
transport processes in the two opposite directions are not on
equal footing [31], the highly asymmetric behavior in Figs. 5(b)
and 5(c) involves an additional mechanism. In particular, we
note that, for the Floquet channel m = 0, the conductance G

(0)
βα

has small values due to its low LDOS in most of the scattering
region. As a result, for L → R transport, electrons injected
into the left lead tend to accumulate there. Due to a larger
overlapping area on the left side between the LDOS patterns of
the Floquet channels m = 0 and m = ±1, there is a high prob-
ability that the electrons transfer from the m = 0 channel to the
m = ±1 channels. Similarly, the probabilities for electrons to
transmit from the m = ±1 channels to higher Floquet channels
are also appreciable. As a result, the conductances G

(|k|>0)
LR

are enhanced by impurities distributed near the left lead, as
shown by the curved lines in Fig. 5(a). On the contrary, for the
R → L transport, the overlap in the LDOS between channels
m = 0 and m = ±1 is insignificant, so fewer electrons can be
transferred to higher channels, leading to a small conductance.
We thus see that an asymmetric distribution of the disorder
in the light-irradiated region can lead to a dramatic difference
between the values of the conductances GRL and GLR . Our
LDOS-based argument suggests that increasing the distance
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FIG. 5. Asymmetric transport in a partially disordered system. (a) Diagram schematically illustrating nonequilibrium transport in a two-
terminal irradiated system in which disorder exists in only part of the system. The top and bottom diagrams are for L → R and R → L

transport, respectively, Ldis is the length of the region containing disorder, and ddis is the distance between the disordered region and the left
lead. The LDOS patterns in various Floquet channels are averaged by 100 disorder realizations for U0/� = 1.6, L = 80a0, Ldis = 30a0, and
ddis = 2a0. (b) Average conductance versus the disorder strength for � = 0.8γ0, A0 = 0.15, and Ldis = 20a0 for a zigzag graphene ribbon
of length L = 70a0 and width W = 50a. (c) Average conductance versus the location of the disorder region for Ldis = 30a0. The average
conductance is calculated using 200 disorder realizations.

ddis can reduce the conductance GRL associated with R ← L

transport.

IV. DISCUSSION

A monolayer graphene subject to light irradiation can
exhibit a class of quantum states that are not possible in
the absence of light: topologically insulating Floquet states
[13]. For a graphene nanoribbon of sufficient length such
that the effects of evanescent states can be neglected, the
Floquet states correspond to the distinct conducting channels.
A proper level of random disorder promotes the transitions
between the adjacent Floquet channels and, consequently,
facilitates transport through the ribbon, leading to significant
conductance enhancement. Qualitatively, the conductance as
a function of the disorder strength can exhibit a resonancelike
behavior: the conductance increases as the disorder strength is
increased from zero, reaches maximum for an optimal value
of the disorder strength, and decreases as disorder is further
strengthened. The improvement in the conductance is quite
remarkable: the ratio between the maximum value and its value
for zero disorder can reach a value of about 1.5. The resonance
phenomenon is quite robust: it persists even when only part of

the ribbon region is doped with impurities (although the extent
of conductance enhancement is not as large as that for the case
where the whole ribbon region is doped). Quantitatively, the
resonance phenomenon can be explained by resorting to the
Born approximation.

The resonance phenomenon uncovered in this paper has
an origin that is distinct from that reported in previous works
without any external time-periodic driving [39,40], which is
generated by the breaking of the edge states in a graphene
nanoribbon through random scattering. Here, the physical
mechanism for the resonance is disorder-enhanced coupling
between the adjacent Floquet channels that are created by light
irradiation. The conductance enhancement associated with the
resonance is thus a result of the interplay between light and
disorder, implying, counterintuitively, that the response of
graphene to light can be enhanced through random disorder.
This may find applications in graphene-based optoelectronics.

We remark that the physical mechanism for the resonance
phenomenon is quite distinct from the traditional photon
absorption process associated with interband transitions. In
a system free of disorders, the Floquet state is, in fact, a
light-dressed state, and the irradiated light serves to change the
trivial transmission mode to a nontrivial one. In particular, say
we compare the irradiation-free system to that with irradiation
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at the Fermi energy ε = �/2. Without irradiation, there is one
trivial mode in the graphene nanoribbon with the transmission
mode. However, the mode is not robust against impurities. In
the presence of light radiation, a gap is opened at ε = �/2,
making the mode disappear, but a nontrivial edge state can
arise, the Floquet topological edge state, which is topologically
protected and is robust against disorder. The decay length of the
evanescent states from the leads is determined by the gap size
in the band structure. The Born theory stipulates that disorder
can effectively reduce or even eliminate the light-induced gap,
stretch the “tails” of the evanescent states, and, consequently,
enhance the transport. In the light-irradiated Floquet system,
there are then two main contributing factors to the conductance:
topologically protected edge and evanescent states. Disorder
can enhance transport associated with the latter but will not
affect the transport due to the former. The physics of the Floquet
states is thus distinct from that of the photon absorption process
associated with interband transitions. These considerations
suggest that direct absorption of electromagnetic radiation
contributes little to the observed conductance enhancement.

We discuss the feasibility of experimental observation of
the resonance phenomenon uncovered in our paper in terms
of the two key requirements: laser irradiation and disorder
tuning. For the irradiated laser in Fig. 2, the value of frequency
� corresponds to a wavelength of 3.6 μm, and the value
of A0 requires a laser with a power of 0.2 mW/μm2. Such
lasers are readily available (e.g., infrared lasers), insofar as the
frequency satisfies the inequality h̄� < γ0 or the wavelength
is larger than 2.88 μm. As for disorders, there are experimental
methods to tune their strength. For example, the strength can
be controlled by modifying the density of electric charge
doping in an insulated substrate or through ion irradiation on
a graphene surface. Irradiation of gallium ions can change
the disorder strength up to 1.5 eV with little effect on the
graphene electric structure [55]. If the graphene ribbon is
prepared by chemical-vapor deposition [56], impurities can be
doped during the preparation process, and the disorder strength
can be tuned by controlling the doping elements and their
densities. We thus expect the resonance phenomenon to be
experimentally observable.
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APPENDIX A: FLOQUET GREEN’S FUNCTION

The time-dependent Schrödinger equations for an irradiated
system connected with leads are[

H (t) − i
∂

∂t
− i�/2

]
|	α(t)〉 = (εα − iηα)|	α(t)〉,[

H (t) − i
∂

∂t
+ i�/2

]
|	̃α(t)〉 = (εα + iηα)|	̃α(t)〉, (A1)

where the self-energy � describes the effects of leads [57]. The
imaginary part of the eigenenergy ηα represents the decay rate
of the quantum states into the semi-infinite leads. Due to the
time periodicity, the wave function can be written as

|	α(t)〉 =
+∞∑

m=−∞
eim�t

∣∣ϕm
α

〉
, (A2)

where |φm
α 〉 is time independent. The time-dependent terms in

Eq. (A1) can be eliminated by utilizing Eq. (A2) through an
integral over a period of external driving. The original time-
dependent system can then be transformed into the following
time-independent system:

[εα − iηα + n� − i�/2]
∣∣ϕn

α

〉 =
∑
m

(Hn−m)
∣∣ϕm

α

〉
,

[εα + iηα + n� + i�/2]
∣∣ϕ̃n

α

〉 =
∑
m

(Hn−m)
∣∣ϕ̃m

α

〉
,

(A3)

where

Hn = (1/T )
∫ T

0
H (t)exp[in�t]dt.

The Floquet Green’s function is given by

Gn =
∑

α

∑
m

∣∣ϕn−m
α

〉〈
ϕ̃m

α

∣∣
E − εα + iηα − m�

. (A4)

In numerical calculations, a matrix framework is desired. The
retarded Green’s function of the whole system can be written
as

Gr = I
E + iη + � − H − i�/2

, (A5)

where

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · H0 H1

· · · H−1 H0 H1 · · ·
H−1 H0 · · ·

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

�(E + �)

�(E)

�(E − �)

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

+1�

0

−1�

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · G11 G01 G−11 · · ·
· · · G10 G00 G−10 · · ·
· · · G1−1 G0−1 G−1−1 · · ·

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A6)

and G0k ≡ G(k). We use the recursive Green’s function scheme
in numerical computations [58,59]. Finally, the quantum trans-
mission is given by

T k
νμ(E) = Tr

[
�(k)

ν G(k)
1N (E)�(0)

μ G(k)
1N

†
(E)

]
, (A7)

where μ(ν) = L,R.

APPENDIX B: BORN APPROXIMATION

We provide a theoretical understanding of the phenomenon
of disorder-enhanced coupling by resorting to the first-order
Born approximation, which is valid in the low-energy regime.
In our simulations within the tight-binding framework [Eqs. (1)
and (3)], the frequency � of the irradiated field is smaller
than the bandwidth of the system. As a result, a resonance
(topological gap) can emerge at both integer and half-integer
times of the frequency. To gain insights into the essential
physics, we focus on the case of a single resonance. The
effective Hamiltonian containing two diagonal Floquet blocks
can be written as

HF =
(

Heff + � V+
V− Heff

)
, (B1)

with

Heff =
(

�0 k−
k+ −�0

)
. (B2)

The two Floquet blocks are coupled to each other byV+ andV−,
where k± = kx ± iky and �0 = v2

F A2
0/� is the topological

mass. In the absence of disorder, the Floquet Green’s function
is

GF
0 (z,k) = [z − HF (k)]−1. (B3)

The disorder potential in real space can then be written as

Udis(r) =
∑

i

(
uA

i δ
(
r − rA

i

)
0

0 uB
i δ

(
r − rB

i

)), (B4)

where u
A,B
i are uniformly distributed in the range

[−U0/2,U0/2] and satisfy the relations〈
u

A,B
i

〉 = 0, (B5)

〈
us

i u
s ′
j

〉 = U 2
0

12
δij δss ′ , (B6)

with s,s ′ = A,B. Using the Floquet Green’s function and the
disorder potential expressions, we obtain

�dis(z,k) =
∫

FBZ

dk′〈Udis(k,k′)GF
0 (z,k′)Udis(k′,k)

〉
, (B7)

where the approximations A0 � 1 are used. The off-diagonal
block of the effective Hamiltonian H̃ F = HF + �dis can be
written as

Ṽ+ =
(

0 0

A0 + Ã+ 0

)
, Ṽ− =

(
0 A0 + Ã−
0 0

)
, (B8)

where

Ã± = A0
(
1 + α±U 2

0

)
, (B9)

α± = − �

12

∫
FBZ

k±dk(
k+k− + �2

0

)(
k+k− + �2

0 − �2
) . (B10)
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