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Transport signatures of relativistic quantum scars in a graphene cavity
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Wave function scars refer to localized complex patterns of enhanced wave function probability distributions
in a quantum system. Existing experimental studies of wave function scars concentrate nearly exclusively on
nonrelativistic quantum systems. Here we present a combined experimental and theoretical study of a relativistic
quantum cavity system realized by etching a graphene sheet. The conductance of the graphene cavity has
been measured as a function of the back gate voltage (or the Fermi energy) and the magnetic field applied
perpendicularly to the graphene sheet, and characteristic conductance contour patterns are observed at low
temperatures. In particular, two types of high-conductance contour lines, i.e., straight and paraboliclike high-
conductance contour lines, are found in the measurements. The theoretical calculations are performed within
the framework of the tight-binding approach and Green’s function formalism. Characteristic high-conductance
contour features similar to those in the experiments are found in the calculations. Specifically, the equally spaced,
parallel, straight high-conductance contour lines signify the persistence of relativistic quantum scars. The wave
functions calculated at points selected along such a straight conductance contour line are found to be dominated
by a chain of scars of high-probability distributions arranged as a necklace following the shape of the cavity, and
the current density distributions calculated at these point are dominated by an overall vortex in the cavity. These
characteristics are found to be insensitive to increasing magnetic field. However, the wave function probability
distributions and the current density distributions calculated at points selected along a paraboliclike contour line
show a clear dependence on increasing magnetic field, and the current density distributions at these points are
characterized by the complex formation of several localized vortices in the cavity. Our work brings insight into
quantum chaos in relativistic particle systems and should greatly stimulate experimental and theoretical efforts
in this still emerging field.

DOI: 10.1103/PhysRevB.101.085404

I. INTRODUCTION

In mesoscopic chaotic structures, the wave functions of
eigenstates can coalesce in particular coordinate space to
form scars with enhanced probability distributions [1–18].
Typically, the scars are along closed orbits in the semiclassical
limit when one considers its classical counterpart, namely,
a billiard system where a point particle moves freely inside
the billiard and reflects specularly at the boundary [2,3,8].
They can also result from a superposition of several regular
eigenstates in a closed structure [4]. It is feasible to mea-
sure such quantum scars in an open quantum system via
transport measurements. In spite of the fact that coupling to
an environment will wash out the characteristics of quantum
states, a few eigenstates of the corresponding closed structure,
which can effectively mediate the transport, can be selected
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and visualized by transport measurements [4,8,19,20]. Scars
have been experimentally observed in different systems, in-
cluding microwave billiard [14,15] and mesoscopic cavities
[1,9,16,17,21,22]. For example, at low magnetic fields, certain
characteristic patterns in the conductance of an open meso-
scopic system are shown to be related to the underlying en-
ergy spectrum of the corresponding closed structure [22–24].
But so far, experimental studies of mesoscopic cavities have
nearly exclusively been performed in nonrelativistic systems
described by the Schrödinger equation with a quadratic energy
dispersion in a corresponding infinite system. An interesting
question is whether such scars can generally appear with
new characteristics in relativistic quantum systems described
by the Dirac equation, which, for an infinite system, gives
a linear energy dispersion. Graphene is a two-dimensional
material consisting of carbon atoms in the honeycomb lattice
[25]. Graphene exhibits rich interesting physics properties
[26–31], such as linear energy dispersion in the vicinity of the
Dirac point, chiral carriers of zero mass, and extremely high
mobility. Thus, a graphene cavity is an excellent candidate for
the study of quantum scars in a finite relativistic system. Theo-
retical works have predicted [32–36] unequivocal evidence of
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quantum scars in relativistic systems, i.e., relativistic quantum
scars, which can have a significant effect on the transport
properties, such as characteristic conductance fluctuations.
On the experimental side, observation of quantum scars was
achieved only very recently in a mesoscopic graphene ring
device using the scanning gate technique [37]. Nevertheless,
direct transport evidence for the existence of relativistic quan-
tum scars has remained elusive.

In this work, we study the transport properties of an open
graphene cavity and demonstrate the observation of transport
signatures of quantum scars in the relativistic particle system.
The cavity is made of chemical vapor deposition (CVD)
grown graphene on a substrate of n-doped Si covered by a
thin layer of SiO2. The conductance of the graphene cavity
is measured as a function of the Fermi energy and magnetic
field. Characteristic patterns are found in the measurements
and are analyzed in terms of the underlying energy spectra.
The system is also studied via theoretical calculations based
on the Green’s function method. The calculated conductance
map (i.e., a plot of the conductance as a function of the
Fermi energy and the magnetic field) is found to be in good
agreement with the experiment. In both the measured and
calculated conductance maps, two distinct types of high-
conductance contour lines, i.e., straight and paraboliclike
lines, are found. These lines are typically caused by the scar
states in the corresponding closed system due to the Fano
resonance [38], which are confirmed by the plot of the local
density of states (LDOS) and the current density distributions.
These lines are inherent in the quantization condition of the
scar states and the linear dispersion relation of the graphene
cavity, as we shall detail in Sec. III, and thus are the transport
signatures of the relativistic quantum scars.

The rest of this paper is organized as follows. Section II ex-
plains the experimental details. Section III provides the main
results of this work, both experimental and the simulation
results with semiclassical analysis, identifying the transport
signatures of the underlying scar states. A discussion and
conclusions are provided in Sec. IV.

II. EXPERIMENTAL DETAILS

Our graphene cavity device was fabricated on a Si/SiO2

substrate from monolayer graphene grown via CVD. The
fabrication was started by transferring CVD-grown graphene
on a substrate of n-doped Si covered by a 300-nm-thick
layer of SiO2 [39]. After the transfer, a standard 16-μm-long
and 3-μm-wide Hall-bar structure with a cavity inside was
fabricated by electron beam lithography (EBL) and reactive-
ion etching with oxygen plasma. Contacts were subsequently
fabricated by an additional step of EBL and deposition of a bi-
layer of Ti/Au (10 nm/90 nm) by electron beam evaporation.
Figure 1(a) displays a false-color atomic force microscope
(AFM) image of the fabricated device and a schematic of
the measurement setup. The highlighted dark red region is
the graphene current channel. The small green regions are
graphene flakes which are isolated by narrow trenches from
the cavity structure. A zoom-in look at the cavity structure
is shown in Fig. 1(b). The graphene cavity structure has an
octagonal shape ∼1 μm in size and is connected to bulk
graphene via two 400-nm-wide constrictions. The device also

FIG. 1. Graphene cavity structure. (a) False-colored atomic force
microscope (AFM) image of the graphene device and schematics
for the device structure and measurement setup. Yellow parts are
electrodes. The red region is graphene. Green highlighted regions are
graphene pieces isolated from the cavity by etched trenches, which
could be used as side gates but are not used in this work. The device
is made on a Si/SiO2 substrate which is used as a back gate. V1 and V2

denote the voltage drops over the cavity and a graphene bulk region,
respectively, and VH is the Hall voltage generated in the graphene
bulk region. (b) Zoom-in AFM image of the cavity structure in
(a). (c) Hall resistance Rxy and longitudinal resistance Rxx of the
graphene bulk region measured at perpendicularly applied magnetic
field B = 5 T and temperature T = 60 mK. VBG is the applied back
gate voltage, and VDrift is the drifting gate voltage of the Dirac point.

consists of a region without a fine cavity structure. This
arrangement enables us to directly compare the transport mea-
surements of the cavity structure with bulk graphene on the
same device. The measurements were carried out by applying
a constant current I through the two most distant contacts, that
is, the source and the drain, and recording voltage drop V1

over the cavity structure and voltage drop V2 over the graphene
bulk at the same time. The conductance of the cavity region is
obtained as G1 = I/V1, and the conductance of the reference
bulk region is obtained as G2 = I/V2. The magnetotransport
measurements were performed in a 3He / 4He dilution re-
frigerator with magnetic field B applied perpendicular to the
graphene plane, using a standard ac lock-in technique (with a
current bias of 10–100 nA at a frequency of 13 Hz).

III. RESULTS AND DISCUSSION

A. Graphene bulk character

Before comparative studies of the cavity with the graphene
bulk, the graphene sheet was characterized by standard Hall
measurements. Figure 1(c) shows the measured Hall resis-
tance Rxy and longitudinal resistance Rxx in the bulk graphene
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(a) (b)

(c) (d)

FIG. 2. Low-temperature magnetotransport in the graphene cavity structure. (a) Longitudinal conductance of the graphene bulk region
measured as a function of the magnetic field B at different back gate voltages VBG and temperature T = 60 mK. Curves are successively
vertically offset by 1e2/h for clarity. (b) Conductance of the graphene cavity measured as a function of B at different back gate voltages VBG

and temperature T = 60 mK. Curves are successively vertically offset by 0.15e2/h. Black arrows denote the positions of conductance peaks
which evolute with increasing back gate voltage. (c) Conductance map of the bulk graphene region, i.e., longitudinal conductance measured
for the bulk graphene region as a function of VBG and B at T = 60 mK. (d) Conductance map of the graphene cavity at T = 60 mK.

region at magnetic field B = 5 T at 60 mK. Here, well-
developed quantized Hall plateaus are observed, demonstrat-
ing the high quality of the graphene [26]. The mobility ex-
tracted from the measurements is around 17 000 cm2 V−1 s−1

at carrier density n ≈ 1.0 × 1011 cm2, and the mean free path
le derived from semiclassical relation [31] le = (h̄/e)μ(πn)1/2

is about 100 nm. This indicates the existence of scatterers
in the phase-coherent transport, but our results are robust, as
shown by the numerical simulations with the same number
of scatterers as in the experiment (see Supplemental Material,
Figs. S6 and S7 [40]).

B. Conductance map of the graphene cavity and bulk

Figures 2(a) and 2(b) show the conductance G2 of the bulk
graphene region and the conductance G1 of the cavity region
measured as a function of the magnetic field at different back
gate voltages. Here and in the following, the longitudinal bulk
graphene conductance is denoted by G2. In Fig. 2(a), the
features of universal conductance fluctuations (UCFs) [41],
i.e., aperiodic fluctuations with fluctuation amplitude δg2D ≈
0.2e2/h, are observable. Through the theoretical prediction

[41] of δg2D ≈ Lϕ (W 1/2/L3/2)δg0, where W and L are the
width and the length of the bulk graphene Hall bar, Lϕ is the
phase coherence length, and δg0 ∼ e2/h, the phase coherence
length in our graphene sample is estimated to be on the order
of 1 μm, which is consistent with previous experiments [42].
In Fig. 2(b), instead of showing UCFs, the conductance curves
are smoother. In addition, we can observe that conductance
peaks (indicated by black arrows) appear at some particular
magnetic fields. These characteristics remind us about the
conductance enhancements via transport through the eigen-
states of the corresponding closed system [4]. To explore the
evolution of these conductance peaks further, we performed
the conductance map measurements, i.e., the measurements
of the conductance as a function of the back gate voltage
and the magnetic field, for both the bulk and cavity regions.
Figures 2(c) and 2(d) show the measured conductance maps
(on a color scale) for the bulk and cavity regions in a back gate
voltage window of VBG = 8 to 12 V and a magnetic field win-
dow of −0.2 to 0.2 T. The red regions in Fig. 2(c) and 2(d) rep-
resent the regions with high conductance. It is seen in Fig. 2(d)
that the measured conductance map exhibits a characteristic
“monkey face” pattern of enhanced conductance. However,
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FIG. 3. Characteristic conductance patterns. (a) Conductance
map of the graphene cavity measured at temperature T = 60 mK
over a large range of VBG. (b) Simulated conductance map of the
graphene cavity. Here, similar characteristic conductance patterns are
found in the measurements and the calculations. The red arrows point
to the direction towards the Dirac point.

the measured conductance map shown in Fig. 2(c) displays
a nearly structureless distribution of the conductance. In early
experiments, characteristic features similar to those seen in
Fig. 2(d) were found and were linked to the underlying energy
spectra of closed quantum cavities [4,22–24,43]. Furthermore,
because the carriers injected through a quantum point contact
will be in a collimated form [3,5,22,44–47], carriers can
enter the cavity with a sufficiently large probability only at
certain angles, and thus, only some particular eigenstates can
be preferentially excited and can contribute to the carrier
transport.

C. Conductance map and theoretical simulations
of the graphene cavity

Figure 3(a) is the conductance map measured in the same
magnetic field window of −0.2 to 0.2 T but a back gate
voltage window of VBG = 0 to 5.8 V. The Dirac point is around
VDirac ≈ 9 V [48]. Red arrows beside the graph indicate the
direction towards the Dirac point. Here, as we expected, the
overall conductance is found to decrease with increasing back
gate voltage, i.e., when the Fermi level moves towards the
Dirac point. But, more importantly, the measured conductance
map is found to exhibit complex contour patterns. To better

understand these complex features, full quantum-mechanical
transport calculations were performed for the graphene cavity
structure within the Landauer formalism [49], which relates
the zero-temperature two-terminal conductance G of the de-
vice to the transmission coefficient T in the form of G =
2e2

h T . The transmission coefficient T was calculated in the
Green’s function scheme within the tight-binding framework
[32,34,50,51]. The tight-binding Hamiltonian for electrons in
graphene including the hopping terms up to the third-nearest-
neighbor atoms takes the form [52–54],

Ĥ = −t
∑

i, j∈n.n.

e−iφi j c+
i c j − t ′ ∑

i, j∈n.n.n.

e−iφi j c+
i c j − t ′′

×
∑

i, j∈t.n.n.

e−iφi j c+
i c j, (1)

where t, t ′, t ′′ represent the nearest-neighbor (n.n.), next-
nearest-neighbor (n.n.n.), and third-nearest-neighbor (t.n.n.)
hopping energies, which take the values of 2.8, 0.28, and
0.07 eV [52–54], respectively, and φi j = (2π/φ0)

∫ ri

r j
dr · A,

where φ0 = h/e is the magnetic flux quantum and A is the
vector potential associated with the applied magnetic field.
Using the Landau gauge, the vector potential is given by
A = (By, 0, 0) for a perpendicular uniform magnetic field
B pointing out of the cavity plane. The magnetic field is
applied only in the device region in our simulation. Note that
the Dirac point will be shifted to 3t ′ when considering the
next-nearest-neighbor hopping energy [52]. Close to the Dirac
point, the pseudoparticles in graphene are described by the
Dirac Hamiltonian, Ĥ = vF σ̂ · p̂ + U (r) with the spinor wave
function � = [�1, �2]T , where vF is the Fermi velocity, σ̂

are the Pauli matrices, U (r) is the confinement or disorder
potential, and the pseudospin is actually the relative wave
function distribution on the two nonequivalent carbon atoms.
Transport properties can be calculated using the Dirac Hamil-
tonian [55,56], while here we would constrain ourselves by
solving the tight-binding Hamiltonian (1).

The cavity device can be split into three parts: left lead,
cavity, and right lead. The two leads are assumed to be semi-
infinite to simulate the open boundaries [41]. The Green’s
function of the device is given by GD(E ) = (EI − HD −
�L − �R)−1, where �L and �R are the self-energies caused
by the left and right leads and HD is the tight-binding Hamil-
tonian of the graphene cavity with hopping terms up to the
third-nearest-neighbor atoms included. The coupling matrices
between the leads and the cavity, 	L(E ) and 	R(E ), are given
in terms of self-energies 	L,R = i(�L,R − �

†
L,R). The trans-

mission T is given by T (E ) = Tr(	LGD	RG†
D). The LDOS

can be obtained by ρ = − 1
π

Im[diag(GD)]. The local current
flow is given by Ji→ j = 4e

h Im[HD,i jCn
ji(E )] [41], where Cn =

GD	LG†
D is the electron correlation function. The graphene

cavity for the simulation is scaled down from the experimental
one to a size of 19.2 by 16 nm2, i.e., between the upper and
lower boundaries and between the two narrow constrictions.

Figure 3(b) shows the results of the calculations, which
clearly succeed in reproducing the main features of the ex-
perimental results shown in Fig. 3(a). The satisfactory agree-
ment between the experiment and the theory inspires us to
get further understanding of the characteristic patterns of
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FIG. 4. Conductance patterns in region I near the Dirac point. (a) and (b) Zoom-in plot of the measurements shown in rectangular region
I of Fig. 3(a) and zoom-in plot of the calculations in the corresponding region shown in Fig. 3(b). Straight (paraboliclike) high-conductance
contour lines are highlighted with yellow (green) dashed lines. (c) and (d) Calculated wave function probability distributions and current
density distributions at points an, where n = 1, 2, 3, 4, and 5, selected along straight line A. Here, it is seen that the scar pattern does not show
a significant change with increasing magnetic field, and the current density distribution in each panel shows only one clockwise current vortex.
(e) and (f) Calculated wave function probability distributions and current density distributions at points bm, where m = 1, 2, 3, and 4, selected
along straight contour line B. Characteristic features in the wave function probability distributions and the current density distributions similar
to those in (c) and (d) are observed, except that the current vortex seen in each current density distribution is counterclockwise.

high-conductance contour lines by making a close comparison
between Figs. 3(a) and 3(b). Let us focus on the regions
marked by the two dashed rectangles in Fig. 3(a), which we
label as regions I and II. We note that region I is closer to the
Dirac point than region II.

D. The LDOS and current density distribution along
high-conductance contour lines

Figure 4(a) is a close-up plot of the measurements in region
I in Fig. 3(a), while Fig. 4(b) is a close-up plot of the calcu-

lations in the corresponding region shown in Fig. 3(b). Here
more featured high-conductance contour lines are observable.
Surprisingly, the patterns observed in the measurements and
the calculations are still well matched. Both Figs. 4(a) and
4(b) show similar straight high-conductance contour lines
(see, e.g., the lines marked by yellow dashed lines A and
B) and paraboliclike high-contour lines (see, e.g., the lines
marked by green dashed lines C). To get physical insight into
these characteristic high-conductance contour lines, we have
computed the LDOS and the current density distribution at
a few selected points in the (B, E ) parameter plane along
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the lines. In the tight-binding formulation (see Supplemen-
tal Material, Eqs. (11) and (12) [40]), the LDOS provides
the wave function probability spatial distribution (or charge
density spatial distribution) contributed by all the states at
energy E and a given magnetic field B, while the current
density spatial distribution provides information about current
paths for carriers with energy E to pass through the cavity at
magnetic field B.

Figures 4(c) and 4(d) show the calculated LDOS and
current density distribution at five selected points, denoted by
an, with n = 1, 2, 3, 4, and 5, along straight high-conductance
contour line A in Fig. 4(b). Red regions in Fig. 4(c) cor-
respond to the regions with high charge density probability
distributions. Note that here the color scales in different
panels are different. The patterns seen in Fig. 4(c) are highly
reminiscent of scars of enhanced wave function probabilities
in coordinate space [4,11]. For example, at point a1, the wave
functions are highly localized to the regions close to the
boundary of the cavity, looking like a chain of pearls (scars)
arranged in a peanut-shell-like structure. At point a2, where
a finite magnetic field is applied, the wave functions remain
localized to the regions close to the boundary of the cavity.
The same localization characteristics are also seen in the wave
function probability distributions at points a3 to a5, although
the scars become slightly smeared. In Fig. 4(d), the corre-
sponding current density distributions calculated at the same
five selected points along straight high-conductance contour
line A are plotted. Here it is seen that at zero magnetic field,
i.e., at point a1, the current density distribution is symmetric
with respect to the horizontal axis (marked by a dot-dashed
red line). On both the upper and lower sides of the axis, we
see an overall current flow from the left to the right, although
several sharp current turns inside the cavity are observable.
At finite magnetic fields, i.e., at points a2 to a5, the current
density distributions are no longer symmetric with respect to
the horizontal axis. Here on the upper side the current flows
from the left to the right, while on the lower side the current
flows from the right to the left, leading to the formation of an
overall clockwise current vortex in the cavity. Note that here
a net current passing through the cavity still continues to flow
from the left to the right. Note also that although we find that
the wave function probability distribution patterns at points
a2 to a5 are very similar in Fig. 4(c), their corresponding
current density distributions shown in Fig. 4(d) do exhibit
small, but noticeable differences. For example, although very
similar current density distribution patterns are found at points
a2 and a3 and at points a4 and a5, a small difference can be
seen when the current density distribution patterns at points
a3 and a4 are compared. This difference is most likely caused
by the difference in mixing of the scar states with other
states since the two points lie on the two sides of another
high-conductance contour line.

Similar localization characteristics have been found in the
calculated wave function probability distributions and current
density distributions at points bm, with m = 1, 2, 3, and 4,
selected along high-conductance contour line B. Here the
wave functions [Fig. 4(e)] are again highly localized to form
a chain of scars in the regions close to the boundary of the
cavity, and the current density distributions [Fig. 4(f)] are
seen to form an overall vortex in the cavity. However, it is

interesting to note that the current vortex found at each of
these points rotates counterclockwise, in contrast to the results
obtained at points a2 to a5. This difference is consistent with
the fact that high-conductance contour line B has a negative
slope, which is in contrast to line A (line A has a positive
slope).

Therefore, the high-conductance contour lines are typically
associated with localized scar states, or pointer states [7],
due to the Fano resonance [38]. The occurrence of the scar
states satisfies the semiclassical quantization condition, which
yields the position in the parameter space (B, E ) where a given
scar state can form and, consequently, where a conductance
peak may occur. Thus, the relation between B and E from the
quantization condition, which forms the energy spectrum of
the corresponding closed system, yields the high-conductance
contour lines in the conductance map. Note that only localized
scar states that have fewer interactions with the leads can
survive as the system is opened [7,22]. In particular, along
a high-conductance contour line for a graphene cavity, the
energy of the state in the cavity is approximately proportional
to the magnetic flux penetrating through an effective area S
enclosed in the current paths of an effective total length L,
i.e., E = E0 ± (vF eS/L)B [36], where the sign depends on the
orientation of the local current circulating the magnetic flux.
As we showed above, with increasing magnetic field along
a straight high-conductance contour line, the wave function
probability distributions and the current density distributions
remain roughly the same. Thus, the effective area enclosed in
the current vortex is approximately unchanged with increasing
magnetic field. As a result, the energy of the states increases
linearly with increasing magnetic field, as seen in line A
in Figs. 4(a) and 4(b). Following the quantization rule, the
scar state will recur when we vary the Fermi energy or
magnetic fields; for example, when B is fixed, �E = hvF /L
[33]. A unique feature of the relativistic case is that, for the
same scar state with fixed S and L, the slope of the straight
high-conductance contour lines, dE/dB, will be the same,
i.e., vF eS/L. This leads to the equally spaced, parallel, straight
high-conductance contour lines in the conductance map in the
(B, E ) parameter space, as shown in Fig. 3(b), which signifies
the presence of the relativistic quantum scars. The negative
slope seen in line B is because here the current vortices
are counterclockwise and thus the magnetic flux penetrating
the effective area enclosed in each of these vortices carries
an opposite sign. However, for the nonrelativistic case, in
contrast, the general functional form between E and B is
parabolic, but off-center, with the minimum point shifted
away from B = 0. However, when the scale is small, e.g.,
for B ∼ 0, it can still be approximated by a straight line, but
on one side, these lines are not equally spaced; they become
sparser as the energy goes higher. On the other side, the slope
dE/dB will not be a constant as it varies with both the energy
and the magnetic field, and for B = 0, dE/dB ∝ √

EB=0,
where EB=0 is the corresponding energy of the cross point of
the high-conductance contour line with the E axis. Thus, as
the energy becomes larger, these lines become sparser, and
in the meantime, the slop increases (see the Supplemental
Material, Fig. S4(b) [40]), in strong contrast to the equally
spaced, parallel, straight high-conductance contour lines in
the conductance map.
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FIG. 5. (a) and (b) Calculated wave function probability distributions and current density distributions at points ck , where k = 1, 2, 3, and
4, selected along paraboliclike contour line C in Fig. 4(b). Here, the scar distribution pattern shows change sensitive to change in magnetic field,
and the current density distribution exhibits the formation of a complex structure consisting of several localized clockwise and counterclockwise
current vortices.

Figures 5(a) and 5(b) show the calculated LDOS and
current density distributions at selected points ck , with k = 1,
2, 3, and 4, along paraboliclike high-conductance contour line
C shown in Fig. 4(b). Again, the charge density distributions
shown in Fig. 5(a) are all symmetric with respect to the
horizontal axis. But such symmetry is found in the current
density distribution only at zero magnetic field, as seen in
panel c1 of Fig. 5(b). However, when comparing these results
to the results shown in Figs. 4(c) to 4(f), significant differences
are found. First, high-density spots localized in the middle of
the cavity and arranged as vertically elongated X patterns are
found in the charge density distributions. Thus, no closed or-
bitlike structures are seen. Second, much more complex struc-
tures are seen in the current density distributions. In particular,
several small current vortices are present in the current density
distributions and are spread over the cavity. Third, at zero
magnetic field, clockwise- and counterclockwise-orientated
current vortices are symmetrically localized in the cavity, and
the areas enclosed by all clockwise- and all counterclockwise-
oriented vortices are equal. But with increasing magnetic
field, the area enclosed by all vortices oriented in one direction
(say, clockwise) grows slowly, and the area enclosed by all
vortices oriented in the opposite direction (say, counterclock-
wise) shrinks. This difference in the area enclosed by the
vortices in two different directions at finite magnetic field is
in contrast to the results shown in Figs. 4(d) and 4(f); that is,
instead of being a constant, the effective circulating area S in
this case increases with increasing magnetic field, which could
be the origin of the observed paraboliclike magnetic field
dependence of the energy as revealed by the high-conductance
contour lines C shown in Figs. 4(a) and 4(b).

Figure 6(a) shows a close-up plot of the measured con-
ductance map in region II in Fig. 3(a), and Fig. 6(b) shows
a plot of the calculated conductance map in the corresponding

region. By comparison of the results shown in Figs. 6(a) and
6(b), similar features can again be found in the measurements
and calculations. Straight high-conductance contour lines can
be recognized and are marked by dashed yellow lines. Fig-
ures 6(c) and 6(d) show the calculated LDOS and the current
density distributions at four selected points dl , with l = 1,
2, 3, and 4, along yellow dashed line D in Fig. 6(b). Here,
as we have seen in Figs. 4(c) to 4(f), the charge density
distributions and the current density distributions shown in
Figs. 6(c) and 6(d) display similar ringlike orbit structures
and exhibit little changes with increasing magnetic field.
This result is consistent with the linear dependence of the
state energy on the magnetic field, as we discussed above.
However, comparing these results to the results calculated for
region I in Fig. 4, here we can recognize clearly that additional
current paths appear along the edges of the cavity. This might
manifest the higher conductance observed in this region far
from the Dirac point.

IV. CONCLUSION

In summary, we have studied the quantum transport proper-
ties of a relativistic quantum cavity. The cavity was made from
a CVD-grown graphene sheet on a Si/SiO2 substrate. Low-
temperature measurements of the conductance map, i.e., the
conductance in the linear response regime as a function of the
back gate voltage and the magnetic field applied perpendicular
to the graphene plane, have been carried out for the cavity
device. The complex characteristic features were found in
the measured conductance map. To analyze the underlying
physics revealed in these measurements, the graphene cav-
ity device was modeled by a third-nearest-neighbor tight-
binding Hamiltonian, and the conductance, charge density
distribution, and current density distribution were calculated
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FIG. 6. Conductance patterns in region II. (a) and (b) Zoom-in plot of the measurements shown in rectangular region II in Fig. 3(a) and
zoom-in plot of the calculations in the corresponding region shown in Fig. 3(b). Note that region II is far from the Dirac point compared with
region I. Yellow dashed lines highlight straight high-conductance contour lines observable in the measurements and the calculations. (c) and
(d) Calculated wave function probability distributions and current density distributions at points dl , where l = 1, 2, 3, and 4, selected along
straight line D in (b). Characteristic features in the charge density distributions and the current density distributions similar to those in Fig. 4
are observed, except that a well-defined additional current path along the edge of the cavity is observable in each current density distribution
panel.

based on the Green’s function formalism. The calculated
conductance map exhibits complex characteristics similar to
those observed in the measurements. The calculated charge
density distributions show the formation of scars, and the
current density distributions display the formation of com-
plex vortices in the cavity. In particular, both straight and
paraboliclike high-conductance contour lines were found in
the calculated and measured conductance maps. It has been
found that along a straight high-conductance contour line,
the scar pattern remains almost unchanged with increasing
magnetic field, while the circulating direction of the current
in the cavity at finite magnetic field is closely related to the
slope of the contour line: it circulates clockwise when the
contour line has a positive slope but counterclockwise when
the contour line has a negative slope. It should be emphasized
that the equally spaced, parallel, straight high-conductance
contour lines and the associated characteristics found in the

scar pattern and the current density distribution are inherit in
a relativistic quantum cavity. However, along a paraboliclike
high-conductance contour line, it has been found that the
charge density distribution displays a complex scar pattern
and the current density distribution exhibits the formation of
several local vortices. Furthermore, although at zero magnetic
field the total effective areas enclosed by the vortices cir-
culating in opposite directions are the same, this balance is
broken at a finite magnetic field, and the difference in the total
effective area enclosed by the vortices of opposite directions
changes with increasing magnetic field. A paraboliclike high-
conductance contour line has been commonly observed for a
nonrelativistic quantum system at low Fermi energy. Here we
showed it can also be observed in a relativistic quantum cavity
but with a completely different mechanism. We expect that
our work will stimulate experimental and theoretical studies
of quantum chaos in relativistic quantum systems.
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