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Quantum signatures of transitions from stable fixed points to limit cycles in optomechanical systems
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Optomechanical systems, due to its inherent nonlinear optomechanical coupling, owns rich nonlinear
dynamics of different types of motion. The interesting question is that whether there exist some common
quantum features to infer the nonlinear dynamical transitions from one type to another. In this paper, we study
the quantum signatures of transitions from stable fixed points to limit cycles in an optomechanical phonon laser
system. Our calculations show that the entanglement of stable fixed points in the long run does not change with
time; however, it oscillates periodically with time at the mechanical vibration frequency for the limit cycles.
Most strikingly, the entanglement quite close to the boundary line remains constant, and it is very robust against
thermal phonon noise, as strong indications of this particular classical transitions.
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I. INTRODUCTION

Optomechanics, which deals with the nonlinear dynamics
of coupled radiation fields and mechanical vibrations, has
attracted huge recent attention [1]. Ground-state cooling is
expected in many applications [2], therefore it is very impor-
tant to make clear the quantum states and quantum properties
of systems at low temperature. Due to the intrinsic nonlinear
nature, the optomechanical system owns rich nonlinear dy-
namics such as bistability, limit cycle, and chaos [3]. When the
temperature goes down, the influence of quantum fluctuations
becomes prominent and various quantum properties would
also appear. An interesting question is that when the classical
nonlinear dynamics changes from one type to another, are
there any signatures of these transitions in the corresponding
quantum system?

There are already several related works [4–8] in this regard.
Reference [4] shows that the time evolution of quantum entan-
glement is periodic for limit cycles, while it exhibits beat-like
behavior with two distinct frequencies for quasiperiodic mo-
tion. And the most surprising feature is that the entanglement
vanishes abruptly at the boundary of these two motions, as
a strong quantum fingerprints of this particular transition. In
a system of two coupled optomechanical cavities, the en-
tanglement of two mechanical modes reveals a second-order
phase transition type of change at the critical point from
their in-phase to antiphase synchronization [5]. Reference
[6] proposes new measures for quantum synchronization,
and points out that their data are not sufficient to clarify
the functional relationship between quantum synchronization
and quantum discord. Another group also investigates the
measure for quantum synchronization, and they find out that
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quantum discord behaves similarly to the measure of quan-
tum synchronization based on their concrete optomechanical
model [7]. The entanglement in the bistable regime has also
been analyzed, which will jump discontinuously along the
hysteresis loop [8]. Most of the previous works discuss only
one set of parameters passing through the transition point. It is
natural to ask whether the changing quantum properties show
common features no matter where to cross the boundary of
two different types of nonlinear motions.

In this article, we investigate the quantum signatures of
transitions from stable fixed points to limit cycles. Our dis-
cussions is based on a two-dimensional phase diagram of an
optomechanical phonon laser model [9]. The phonon laser,
also referred to as a mechanical self-sustained oscillation [1],
is essentially a limit cycle from the perspective of nonlinear
dynamics. It has been studied thoroughly [10–18] and realized
in recent experiments [9,19,20] in the context of optome-
chanics. The phonon laser in Ref. [9] is generated by the
parametric down conversion process [21]. The system will
reach a stable fixed point in the long run when the driving
power is not very strong but undergoes a limit cycle motion
once above a certain driving threshold. Our aim is to look
for the common changing features of quantum entanglement
around the boundaries of these two nonlinear motions. To do
that, we choose several different paths to cross the boundaries.
Our calculations show that the entanglement for the stable
fixed points does not change with time, while it oscillates
at the mechanical frequency for the limit cycles. The most
striking phenomenon is that the entanglement of those points
very close to their boundary line is a constant, and it is very
robust to the mechanical thermal noise, as obvious quantum
signatures of this nonlinear dynamical transitions from one
to another. Our paper is organized as follows, in Sec. II,
we introduce the physical model and derive its equations of
motion. In Sec. III, we first present the classical equations of
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motion and give a two-dimensional phase diagram regarding
the strength and detuning of the driving laser, and then discuss
the classical nonlinear dynamics along three different paths in
the phase diagram. In Sec. IV, we show the general procedures
to calculate the quantum entanglement and study how it will
change along the three above-mentioned paths. In Sec. V, we
summarize our results.

II. PHYSICAL SYSTEM

The optomechanical system in the experiment of Ref. [9]
consists of two coupled cavity modes, one of which is coupled
to a mechanical mode by the radiation pressure force, and the
other is driven by an input laser. The Hamiltonian of the whole
system is

Ĥ = h̄ωa(â†
1â1 + â†

2â2) + h̄J (â†
1â2 + â1â†

2) − h̄gâ†
2â2q̂

+ h̄ωm

2
( p̂2 + q̂2) + ih̄�(â†

1e−iωLt − â1eiωLt ), (1)

where the two localized cavity modes have the same fre-
quency ωa, and their tunneling rate is denoted by J . The
mechanical mode with frequency ωm is coupled to cavity
mode 2 by a constant coupling strength g. The operators q̂ =

1√
2
(b̂† + b̂), p̂ = 1√

2i
(b̂ − b̂†) represent the dimensionless po-

sition and momentum of the mechanical mode, respectively.
The last term describes the driving of cavity mode 1 by a laser
with frequency ωL and amplitude �.

A proper analysis of the system must include photon losses
in the cavity and the Brownian noise acting on the mechani-
cal vibration. This can be accomplished by considering the
following set of nonlinear Langevin equations [written in the
interaction picture with respect to h̄ωL(â†

1â1 + â†
2â2)] [22]:

·
â1 =

(
i� − κ

2

)
â1 − iJâ2 + � + √

κ âin,1,

·
â2 =

(
i� − κ

2

)
â2 − iJâ1 + igâ2q̂ + √

κ âin,2,

(2)
·
q̂ = ωm p̂,
·
p̂ = gâ†

2â2 − ωmq̂ − γm p̂ + ξ̂ .

Here � = ωL − ωa denotes the laser detuning from the cavity
resonance, γm is the mechanical damping rate, and κ is the
optical intensity decay rate. The operators âin,1, âin,2 are
the vacuum radiation input noise. Their mean values satisfy
〈âin, j (t )〉 = 0, and their only nonzero correlation functions
fulfill 〈âin, j (t )â†

in, j′ (t
′)〉 = δ j j′δ(t − t ′) with j = 1, 2. The

Hermitian Brownian noise operator ξ̂ with zero mean value
satisfies a delta-correlated function 1

2 〈ξ̂ (t )ξ̂ (t ′) + ξ̂ (t ′)ξ̂ (t )〉 =
γm(2n + 1)δ(t − t ′) in the limit of high mechanical quality
factor [4,7,23], i.e., Q = ωm/γm � 1, where n = [exp( h̄ωm

kBT ) −
1]−1 is the mean thermal phonon number at temperature T ,
and kB is Boltzmann’s constant.

The mechanism to generate the phonon laser can be un-
derstood more clearly if we transform to the basis with
supermodes defined as ĉ1 = 1√

2
(â1 + â2), ĉ2 = 1√

2
(â1 − â2).

The Langevin equations are now in the following forms:

·
ĉ1 =

(
i(� − J ) − κ

2

)
ĉ1 + ig

2
(ĉ1 − ĉ2)q̂ + �√

2
+ √

κ ĉin,1,

·
ĉ2 =

(
i(� + J ) − κ

2

)
ĉ2 − ig

2
(ĉ1 − ĉ2)q̂ + �√

2
+ √

κ ĉin,2,

(3)
·
q̂ = ωm p̂,
·
p̂ = g

2
(ĉ†

1ĉ1 + ĉ†
2ĉ2 − ĉ†

1ĉ2 − ĉ†
2ĉ1) − ωmq̂ − γm p̂ + ξ̂ ,

where ĉin,1 = 1√
2
(âin,1 + âin,2) and ĉin,2 = 1√

2
(âin,1 − âin,2),

obeying similar correlation functions as for âin,1 and âin,2.
The eigenfrequencies for the c1 and c2 modes in the inter-
action picture are −(� − J ), −(� + J ) respectively. If their
frequency difference 2J is near resonant with the mechanical
frequency ωm, i.e., 2J � ωm, then an efficient driving of the c1

mode with � � J could lead to a parametric down conversion
process via the interaction term ĉ†

1ĉ2b̂ + ĉ†
2ĉ1b̂†, which means

that, when one photon in the c1 mode disappears, a photon in
the c2 mode and a phonon are born. When the driving is above
the threshold power, coherent oscillation (i.e., mechanical
lasing) would occur in the mechanical mode. Moreover, this
two-mode squeezing interaction term will inevitably result
in the quantum entanglement between the optical c2 mode
and the mechanical mode, as discussed in many previous
works [24–31].

III. NONLINEAR DYNAMICS

Equation (3) in the regime of weak coupling g � κ and
moderate driving � can be solved by the mean-field approx-
imation [1], in which quantum operators are separated into
Ô = 〈Ô〉 + δÔ, where 〈Ô〉 ≡ O is the mean field describing
the classical behavior of the system, and δÔ is the quantum
fluctuation with zero mean value around the classical orbit. In
this section, we focus on the classical dynamics of the system.
The equations of motion for the classical mean fields form a
set of nonlinear differential equations given by

·
c1 =

[
i(� − J ) − κ

2

]
c1 + ig

2
(c1 − c2)q + �√

2
,

·
c2 =

[
i(� + J ) − κ

2

]
c2 − ig

2
(c1 − c2)q + �√

2
,

·
q = ωm p,
·
p = −ωmq − γm p + 1

2 g(c∗
1c1 + c∗

2c2 − c∗
1c2 − c∗

2c1), (4)

which is obtained by averaging both sides of Eq. (3) and
approximates 〈F̂ Ĝ〉 with 〈F̂ 〉〈Ĝ〉.

First, we do the stability analysis of the fixed points [3]
in Eq. (4). The fixed points are the solutions after letting all
the first-order derivatives

·
O be zero. Their stability can be

judged by the linearized Langevin equations for the quantum
fluctuation operators, which can be expressed in the compact
matrix form as [8,32]

·
u(t ) = S(t )u(t ) + n(t ), (5)

023838-2



QUANTUM SIGNATURES OF TRANSITIONS FROM STABLE … PHYSICAL REVIEW A 101, 023838 (2020)

where we have defined uT (t ) = (δX̂1(t ), δŶ1(t ),
δX̂2(t ), δŶ2(t ), δq̂(t ), δ p̂(t )) and the input noise
operators nT (t ) = (

√
κX̂in,1(t ),

√
κŶin,1(t ),

√
κX̂in,2(t ),√

κŶin,2(t ), 0, ξ̂ (t )), with quadrature operators δX̂ j =
1√
2
(δĉ j + δĉ†

j ), δŶj = 1√
2i

(δĉ j − δĉ†
j ), and the corresponding

Hermitian input noise operators X̂in, j = 1√
2
(ĉin, j + ĉ†

in, j ),

Ŷin, j = 1√
2i

(ĉin, j − ĉ†
in, j ) ( j = 1, 2). Furthermore, the

coefficient matrix S has the form

S(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− κ
2 −(� − J ) − g

2 q 0 g
2 q − g

2 (y1 − y2) 0

(� − J ) + g
2 q − κ

2 − g
2 q 0 g

2 (x1 − x2) 0

0 g
2 q − κ

2 −(� + J ) − g
2 q g

2 (y1 − y2) 0

− g
2 q 0 (� + J ) + g

2 q − κ
2 − g

2 (x1 − x2) 0

0 0 0 0 0 ωm

g(x1 − x2) g(y1 − y2) −g(x1 − x2) −g(y1 − y2) −ωm −γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Here x j , y j are the real part and imaginary part of the
complex amplitude c j ( j = 1, 2) respectively. The dynamics
of matrix S depends on the time evolution of Eq. (4) under
the assumption that the quantum fluctuations always follow
the classical orbit, which is guaranteed as long as none of the
Lyapunov exponents in the corresponding classical equations
is positive [4]. For analysis of the stability, the linearization is
performed around the fixed point. The system is stable only if
all eigenvalues of matrix S evaluated at the fixed point have
negative real parts.

In Fig. 1(a), we choose 2J = ωm and plot the two-
dimensional phase diagram with respect to the driving

strength � and driving detuning �. The system will even-
tually arrive at the fixed points in region I; by contrast
it will settle into the limit cycles in region II. The me-
chanical freedom in the latter case conducts an approxi-
mately sinusoidal oscillation at its unperturbed frequency,
i.e., q(t ) = q0 + A cos(ωmt ) with shifted equilibrium posi-
tion q0 and amplitude A. The threshold value for lasing
can be obtained by demanding that the effective mechanical
damping rate γeff = γm + γopt = 0 [11], where γopt is the
optomechanical damping rate induced by the radiation pres-
sure force. We calculate the mechanical susceptibility [1] and
get

γopt = ωm|α2|2g2 2κ�
[
3B2 − 2B

(
ω2

m + �2
) − (

ω2
m − �2

)2 − Bκ2
]

[(B − (ωm + �)2]2 + κ2(ωm + �)2{[B − (ωm − �)2]2 + κ2(ωm − �)2} ,

with B = J2 + κ2

4 , and α2 = (c1 − c2)/
√

2 evaluated at the
corresponding fixed point. As shown in Fig. 1(b), γopt is neg-
ative and decreases with driving amplitude. The intersection
point of the two lines γopt (�) and −γm indicates the driving
threshold �th. It becomes larger when the driving detuning
goes away from the resonant case � = J .

To get more insights into the interplay between nonlinear
dynamics and quantum entanglement, we choose three typical
paths to cross the boundaries [see Fig. 1(a)]. The long time
behavior of the three points marked on path 1 in Fig. 1(a) is
explicitly displayed in Fig. 2. All the variables keep constant
values at the fixed point (the left point on path 1), while in
region II (the middle and right points on path 1) they oscillate
with time at the mechanical frequency ωm. The middle point
described in Fig. 2(b) is very close to the boundary, the oscil-
lation for x1 has only one maximum and one minimum within
one cycle. As we move away a little bit from the boundary, the
number of oscillation extrema for x1 doubles [see Fig. 2(c)],
developing into the period-2 orbit [33]. In Fig. 3, we plot the
mechanical oscillation amplitude A on the three paths. Path
1 in Fig. 3(a) represents the resonant driving of the c1 mode,
with the amplitude starting from A = 0, and is an example
of a Hopf bifurcation. The amplitude A is proportional to√

� − �th, and the bottom part shows the corresponding

new equilibrium position q0 pushed by the radiation pressure
force. The stronger the input driving, the more the mechanical
resonator will be shifted. Until, to some extent, it oscillates
coherently. Path 2 in Fig. 3(b) goes vertically in the phase
diagram, and passes the boundary twice. The amplitude near
the boundary has a similar square root relationship as in path
1, i.e., A ∝ √|� − �th|, where �th is the detuning at the
boundary. Path 3 in Fig. 3(c) introduces some detuning in the
driving of mode c1. The amplitude A, which is proportional
to 4

√
� − �th, increases more rapidly in the vicinity of the

threshold than the resonant driving.

IV. QUANTUM ENTANGLEMENT

To check whether there exist quantum signatures of this
classical transition, we calculate the degree of quantum entan-
glement by using the logarithmic negativity [34]. The quan-
tum statistical properties of the system can be investigated
through the small fluctuations of the operators around the
time-dependent mean values evolving according to Eq. (4).
The standard linearization [35] around the classical orbit gives
rise to Eq. (5). Since the equations are linear, the fluctuations
will remain Gaussian if the input noise is Gaussian. In this
case, the properties of quantum fluctuations are fully charac-
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FIG. 1. (a) Phase diagram describing the long-time dynamical
behavior of the optomechanical phonon laser with the parameters
J/κ = 10, ωm/κ = 20, g/κ = 0.02, γm/κ = 0.01. The three dashed
lines labeled with 1, 2, 3 denote path 1, path 2, and path 3, respec-
tively (path 1: resonant driving of c1 mode with � = J; path 2: going
vertically in the diagram with �/κ = 7; path 3: driving c1 mode with
detuning �/κ = 9.5). The time evolution of the three marked points
on path 1 from left to right with �/κ = 3, 5.01, 8, will be shown
below. (b) Calculation of the lasing threshold value (or transition
point) for path 3 by finding the intersection point of the two lines
γopt (�) and −γm.

terized by the covariance matrix V , with its elements defined
by Vi j = 1

2 [〈ui(t )u j (t ) + u j (t )ui(t )〉]. The equation of motion
for the covariance matrix is governed by [32]

·
V (t ) = S(t )V (t ) + V (t )ST (t ) + D, (7)

where D = diag( κ
2 , κ

2 , κ
2 , κ

2 , 0, γm(2n + 1)) is the diffusion
matrix. The optical c2 mode and the mechanical mode are
entangled, and their entanglement is related to the covariance
matrix W between these two modes, which is a submatrix
of V :

W =

⎛
⎜⎝

V33 V34 V35 V36

V43 V44 V45 V46

V53 V54 V55 V56

V63 V64 V65 V66

⎞
⎟⎠ =

(
M C
CT N

)
, (8)

with M, N , C being 2 × 2 matrices. M and N account
for the local properties of the c2 mode and the mechani-
cal mode, respectively, while C describes intermode corre-
lations. The logarithmic negativity can be obtained with the
formula EN = max[0,− ln 2η−], where η− = 2− 1

2 {∑(W ) −
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FIG. 2. Long-time dynamical behavior for the three marked
points from the left to right in Fig. 1(a) corresponds to panels (a),
(b), and (c), respectively, here.
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FIG. 3. Mechanical oscillation amplitude A on paths 1, 2, 3
depicted in panels (a), (b), and (c), respectively. The corresponding
shifted equilibrium position q0 on path 1 is also included in panel (a).

[
∑

(W )2 − 4 det W ]
1
2 } 1

2 , and
∑

(W ) = det(M ) + det(N ) −
2 det(C) [35]. We are interested in the long-time behavior of
the entanglement. In our numerical integration of Eqs. (4) and
(7), we start with a set of random initial values for V , c1,
c2, q, p until EN reaches a steady state. The entanglement in
region I will evolve to a constant value, while in the region II
it oscillates periodically with the mechanical frequency. Since
the quantum fluctuations follow the classical orbit, it is not
surprising that the entanglement has similar time dependence
as the classical dynamics, either stationary or periodic. The
linearization method to calculate the entanglement for limit
cycles has been used in several recent works [4,5,7,36]. All of
them are discussed in the weak coupling and strong-driving
regime. In the opposite case of strong coupling and weak-
driving regime, there are works that have shown the phase
diffusion phenomenon for limit cycles with a full simulation
of the master equations [11,37]. In principle, the random noise
will make the steady-state distribution smear out around the
circle, in contrast to the point-like picture assumed above.
But since in our case the optomechanical coupling is weak
and the temperature considered is very low, the influence
of noise should be relatively small, leading to much longer
transient time before any phase diffusion is significantly likely
to happen. In such a case, the point-like picture is still mean-
ingful. The strictest way to check is to do the full simulations
of master equations, which is impossible in our parameter
regime due to the huge Hilbert space involved. This is an open
question and deserves further study.

In Fig. 4, we plot the steady-state entanglement of the
three typical paths at zero temperature. EN (t ) varies over time
within a certain range of values, and we denote its maximum
and minimum values as Emax and Emin, respectively. The
entanglement for path 1 is depicted in Fig. 4(a), where the
two lines for Emax and Emin coincide below the threshold,
increase as approaching the transition point, where they start
to separate apart more and more with increasing driving
amplitude. We give the details of EN (t ) for the three marked
points [see Figs. 4(1a), 4(2a), and 4(3a)]. The entanglement
for a stable fixed point is a constant and does not change with
time. Beyond the threshold, for the point that is close to the
boundary, the entanglement EN (t ) oscillates in a symmetric
sinusoidal form. As the point moves away from the boundary,
EN (t ) gets tilted over time. This is related to the emergence
of the period-2 orbit mentioned above. Figure 4(b) shows the
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entanglement for path 2, which has two bifurcations corre-
sponding to passing the boundary twice and also demonstrates
the tendency to increase before the bifurcations. The max-
imum entanglement is achieved at some place in between,
where the mechanical oscillation amplitude A is compara-
tively large. The features for path 3 in Fig. 4(c) are quite sim-
ilar; however, the change at the bifurcation is much steeper,
which is due to the rapid increase of the amplitude A near the
threshold.

The most interesting phenomenon is that the entanglement
of those points quite close to the boundary line is a constant
and is the maximum entanglement for all the stable fixed
points, which is a strong quantum fingerprint for the transition
from stable fixed points to limit cycles. Here, we emphasize
that the points can never be exactly on the boundary due to
the numerical discreteness, either on its left side or right side.
As shown in Fig. 5, there is a tendency of rapid increase of
mechanical fluctuations in a very tiny range approaching the
boundary, which makes the linearization methods fail to apply.
So we exclude this tiny range in our calculations. However,
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[� 1
2 (〈δ2 p̂〉)1/2] for stable fixed points of path 1 and path 2

shown in panels (a) and (b), respectively. Dashed lines are the
boundary lines and red stars are the nearest points to the boundary
chosen in our numerical calculations.

the nearest points to the boundary (see red stars in Fig. 5)
we have chosen are good enough to indicate the transition
position. Note that, although the parameter values in region
I of Fig. 1(a) are all for stable fixed points, the positions of
the fixed points in the parameter space are generally different.
In particular, the four points closest to the boundary that the
three paths in Fig. 1(a) encounter have different positions,
but they have the same entanglement. We have also checked
randomly many other points quite close to the boundary: the
entanglement remains the same. For the parameters chosen in
Fig. 4, the constant is about 0.014 88. We guess this should
be related to the function of the boundary line, which is
contained in the expression of the entanglement and leads to a
constant value just quite near the boundary. But the analytical
calculation of this entanglement is too complicated for our
model.

We now consider the influence from the temperature. The
entanglement of path 1 and path 2 with different mean thermal
phonon numbers is given by Fig. 6. The entanglement on both
sides of the transition point falls down obviously with the
increase of temperature, while the entanglement quite near
the boundary is very robust against the presence of thermal
mechanical noise. It decreases relatively slower with rising
temperature, but keeps constant along the boundary line. In
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FIG. 6. Temperature influence of the steady-state entanglement
for path 1 in panel (a) and path 2 in panel (b).
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the limit cycle region, the difference between the maximum
and minimum of entanglement, i.e., Emax − Emin, also de-
creases with higher temperature. Emin touches zero first, and
then Emax follows, which means that there is no entanglement
any more; for example, the situation in Fig. 6(a) with �/κ = 9
and n = 50.

V. CONCLUSION

To summarize, we have studied how the quantum entan-
glement changes from stable fixed points to limit cycles in an
optomechanical phonon laser system, with the aim of finding
the quantum signatures of these particular nonlinear dynami-
cal transitions. We pick out three different paths to cross the
boundary and analyze their nonlinear dynamics and quantum
entanglement properties. Our calculations show that, indeed,
there are some quantum features in common to indicate this
classical transition: (1) The quantum entanglement for the
stable fixed points is a constant number, whereas it oscillates
in time at the mechanical frequency for the limit cycles. The
transition point is where this oscillation starts to happen.
(2) The entanglement of the stable fixed points increases
upon approaching the transition boundary and reaches the
maximum value quite close to the boundary. Most strikingly,
the entanglement of those points quite close to the boundary

line is a constant, which is a strong signal for the indication
of the transition border line. (3) The entanglement around the
boundary line is very robust against the influence of thermal
noise, so that it decreases relatively slower with increasing
temperature. Furthermore, even at finite temperature, although
the entanglement decreases, it has the same value along the
boundary line. Thus we can still easily find out the transition
boundary by the amount of quantum entanglement. In a word,
we have investigated the fundamental problem of quantum
manifestations of transition between different types of mo-
tions in nonlinear dynamical systems, which deserves much
more effort in the future for transitions between other more
complex dynamical behavior.
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