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Abstract. Range and load play key roles in the problem of attacks on links
in random scale-free (RSF) networks. In this paper we obtain the approximate
relation between range and load in RSF networks by the generating function
theory, and then give an estimation about the impact of attacks on the efficiency
of the network. The results show that short-range attacks are more destructive
for RSF networks, and are confirmed numerically.
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Range-based attacks on links in random scale-free networks

Attacks on complex networks, especially in the context of the Internet and biological
networks, have been an interesting issue, and different aspects of attacking have been
analyzed recently [1]. Many works focus on attacks on nodes, and the strategies provided
include random attacks, degree-based attacks, etc [2]. Also, some works consider attacks
on links, and the strategies include range-based attacks, load-based attacks, etc [3].

Motter et al [4] studied attacks on links in scale-free networks basing on range. Range
is introduced by Watts [5] to characterize different types of links in networks: the range
of a link lij connecting nodes i and j is defined as the length of the shortest path between
the nodes i and j in the absence of lij. The small-world model introduced by Watts
and Strogatz [6] (WS model) is more sensitive to attacks on long-range links connecting
nodes that would otherwise be separated by a long distance. It is not true for many
scale-free networks, though most of them also have a short average path length like the
WS model. Motter et al found that short-range links rather than long-range ones are
vital for efficient communication between nodes in these networks. They argued that the
average shortest path is a global quantity which is mainly determined by links with large
load, where the load of a link is defined as the number of shortest paths passing through
this link [7, 8]. And for scale-free networks, with exponent in a finite interval around 3,
due to the heterogeneous degree distribution, the load is on average larger for links with
shorter range, making the short-range attacks more destructive.

In this paper, employing the generating function theory, we first derive an approximate
relation between R(k1, k2) and L(k1, k2) for RSF networks analytically, where R(k1, k2) and
L(k1, k2) are defined as the expected value of range and load respectively for links between
nodes with given degree k1 and k2. We then give an estimation about the decrement of
efficiency as a function of R(k1, k2) and L(k1, k2), showing that short-range attacks are
more destructive for RSF networks. Numerical simulations are also performed to confirm
our analytical results.

To study range-based attacks on links in RSF networks, we measure the efficiency of
the network as each link is removed. The efficiency of a network with size N is defined
as [9]

E =
2

N(N − 1)

∑ 1

dij

, (1)

where dij denotes the length of the shortest path between the node-pair (i, j); the sum is
over all pairs of nodes in the network. The efficiency defined above has a finite value even
for disconnected networks, and larger values of E correspond to more efficient networks.

When a link is removed from the network, the efficiency of the network generally
decreases. The decrement of efficiency involves two quantities: (1) the number of node-
pairs whose geodesic lengths increase; (2) the average increment of the geodesic lengths
of these node-pairs. The first quantity is related to the load of the removed link, and the
second quantity is related immediately to the range of the removed link.

For RSF networks, the expected value of the geodesic length of node-pairs with given
degree k1 and k2 is

d(k1,k2) =
∑

i=1

ipi (k1,k2) ,
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where pi(k1,k2) is the probability that the node-pair with given degree k1 and k2 has a
geodesic length i. For RSF networks, we have5

p1(k1,k2) ≈
k1k2

2Nz1
, (2)

where N is the number of nodes in the network, and z1 is the average number of first
neighbors. By the generating function formalism, we can obtain [10]

d(k1,k2) ≈ 1 +
ln(N · z1/(k1 · k2))

ln(z2/z1)
, (3)

where z2 is the average number of second neighbors. Accordingly the expected diameter
of RSF networks is [10]

D ≈ 1 +
ln(N/z1)

ln(z2/z1)
. (4)

Since the RSF network is totally random in all aspects other than the degree
distribution, R(k1, k2) is thus equal to the expected value of the geodesic length of
nonadjacent node-pairs with given degree k1 − 1 and k2 − 1, that is

R(k1,k2) =
∑

i=2

i
pi (k1 − 1, k2 − 1)

1 − p1(k1 − 1, k2 − 1)
,

i.e.,

R(k1,k2) =
d(k1 − 1, k2 − 1) − p1(k1 − 1, k2 − 1)

1 − p1(k1 − 1, k2 − 1)
. (5)

Combining equations (2), (3) and (5), we can obtain

R[(k1 − 1)(k2 − 1)] ≈ 1 +
ln(Nz1/((k1 − 1)(k2 − 1)))/ln(z2/z1)

1 − (k1 − 1)(k2 − 1)/2Nz1
. (6)

Furthermore, we assume that the network is spare, and can be seen as a tree with
expected diameter D. Consider a link lij connecting node i and j, where i has a degree k1

and j has a degree k2. When removing lij , the network can be regarded as a tree Ti rooted
as i or Tj rooted as j, both of which have a depth of D − 1. Staring from the root i, the
first layer has k1 − 1 nodes, the second layer has z1(k1 − 1), and the mth (0 < m < D)
layer has zm−1

1 (k1 − 1) nodes. Similarly, the mth layer of Tj has zm−1
1 (k2 − 1) nodes.

The geodesic path from nodes in the d1th (d1 < D − 1) layer in Ti to nodes in the d2th
(d2 <= D − 1 − d1) layer in Tj is expected to pass lij, which has a contribution of 1 to

5 The RSF network considered here has in total 3Nz1 half-links. Pairs of half-links are chosen and connected
totally randomly; thus the probability of a pair of nodes with degree k1 and k2 connected directly should be equal
to p1(k1,k2) ≈ k1k2/2Nz1.
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Figure 1. Average range as a function of the product (k1 − 1)(k2 − 1) in RSF
networks with N = 104, the exponent of the degree distribution λ = 3.5, the
minimal degree m0 = 6, and the maximal degree mmax = 500. The solid line is
the theoretical curve and the hollow squares are simulation results. Inset: average
load as a function of the product (k1 − 1)(k2 − 1). Numerical data are obtained
from 100 realizations.

the load of lij. Thus the expected value of the load of lij is

L(k1, k2) =
D−2∑

d=1

(
(k1 − 1)

(z1 − 1)d − 1

z1 − 2
+ 1

)
(k2 − 1)(z1 − 1)D−d−2

+

(
(k1 − 1)

(z1 − 1)D−1 − 1

z1 − 2
+ 1

)
+ (k2 − 1)(z1 − 1)D−2

=

(
(D − 2)(z1 − 1)D−2

z1 − 2
− (z1 − 1)D−2 − 1

(z1 − 2)2

)
(k1 − 1)(k2 − 1))

+ (k1 + k2 − 2)
(z1 − 1)D−1 − 1

z1 − 2
+ 1. (7)

When k1 � z1, k2 � z1, the above equation can be rewritten as

L(k1, k2) =
((D − 2)(z1 − 2) − 1)(z1 − 1)D−2 + 1

(z1 − 2)2
(k1 − 1)(k2 − 1), (8)

showing that the load is directly proportional to the product of (k1−1) and (k2−1) when
k1 and k2 are large enough. For simplicity, we rewrite equation (8) as

L[(k1 − 1)(k2 − 1)] = c(k1 − 1)(k2 − 1), (9)

where c is the coefficient (((D − 2)(z1 − 2) − 1)(z1 − 1)D−2 + 1)/(z1 − 2)2.
The above analytical results can be numerically verified in the following. We plot

R(k1, k2) in figure 1, and L(k1, k2) in the inset of figure 1. From the inset of figure 1, it
can be seen that the load is directly proportional to the product (k1 − 1)(k2 − 1) when
(k1 − 1)(k2 − 1) is large enough.

Combining equations (6) and (9), we can see that the load and the range have a
negative correlation, that is

R(L) ≈ 1 +
ln(cN · z1/L)/ln(z2/z1)

1 − L/2Ncz1
. (10)
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Figure 2. Average load as a function of range. Square: theoretical value; circle:
averaged simulation value over 100 realizations. The error bar is also given.
(All the parameters are the same as in figure 1). The values for R = 2 are much
larger than for other R, and thus are not plotted in this figure.

This expression gives an estimation of the relation between R and L, suggesting that
short-range links are expected to be passed through a large number of shortest paths.
From equations (8) to (9), the condition k1 � z1, k2 � z1 is used; thus equation (9) is
valid when (k1 − 1)(k2 − 1) and L are large. As a result, equation (10) is valid when
R is small. Numerical verification is presented in figure 2. When R = 2 the numerical
estimation is 1200 000, and the analytical value is 996 000; when R = 3 the simulation
value is 16 000, and the analytical value is 16 800; when R = 4 the simulation value is
9031, and the analytical value is 7605. The simulation values in all three cases are well
consistent with the corresponding analytical values. When R = 5, the simulation value
is 6062, and the analytical value is 1151; when R = 6, the simulation value is 3832, and
the analytical value is 176. The simulation values in the above two cases and in the cases
of R > 6 have significant discrepancy with the corresponding analytical values. This is
because, when R is large and L is small, the approximation k1 � z1, k2 � z1 does not hold
any more, and our analysis is not valid either. From figure 2, we can see that equation (10)
gives a good approximation of the relation between R and L for small values of R, and is
not valid for large values of R.

When a link lij is removed from the network, the decrement of the efficiency of the
network is approximately

ΔE ≈ 2

N(N − 1)

∑

(m,n)∈Γ

R(i, j) − 1

d2
mn

≈ 2(R(i, j) − 1)L(i, j)

D2N(N − 1)
, (11)

where the set Γ is all the node-pairs whose shortest length should increase as a result of
the removal of link lij, R(i, j) and L(i, j) are the range and load respectively of lij. Thus
the product (R − 1)L is a natural quantity to characterize the impact of removing a link
on the efficiency. For RSF networks,

ΔE ≈ hL(i, j)
ln(cN · z1/L(i, j))/ln(z2/z1)

1 − L/2Ncz1
, (12)
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where h is 2/D2N(N − 1). ΔE is an increasing function of L, and thus a decreasing
function of R. It can be concluded that links with small range are more important for the
efficiency of RSF networks.

In summary, by investigating the expected range and load of links in RSF networks,
we obtain an approximate analytical relation between range and load, and then give an
estimation of the impact of removal of links on the efficiency. Thus we prove analytically
that attacks on short-range links are more destructive for RSF networks. An insufficiency
in our work is that R(L) has a significant discrepancy compared with numerical results for
large value of R. However, the analytical results in this paper give a reasonable description
for the trend of the true relation between R and L for RSF networks.
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