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Abstract
We study electronic transport in quantum-dot structures made of graphene. Focusing on the
rectangular dot geometry and utilizing the non-equilibrium Green’s function to calculate the
transmission in the tight-binding framework, we find significant fluctuations in the transmission
as a function of the electron energy. The fluctuations are correlated with the formation of
quantum scarring states, or pointer states in the dot. Both enhancement and suppression of
transmission have been observed. As the size of the quantum dot is increased, more scarring
states can be formed, leading to stronger transmission or conductance fluctuations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene, a single, one-atom-thick sheet of carbon atoms
arranged in a honeycomb lattice, is the two-dimensional
building block for carbon materials of every other dimension-
ality. Due to its peculiar honeycomb lattice structure and
the resulting sp2 bonding, the transport bands arise from the
pz orbitals normal to the plane and have a linear energy–
momentum relation: E ∼ |�k| [1, 2]. As a result, the
quasi-particles are chiral, massless Dirac fermions having a
‘speed of light’ vF ≈ 108 cm s−1 [3]. Because of the nature
of these bands, the densities of the quasi-particles can be
controlled by external electric fields. It is then expected that
graphene will have important applications in nanoelectronics,
including both electronic field-effect devices and chemical
sensors. Indeed, graphene p-n junctions have been realized ex-
perimentally [4–7], where electron density changes gradually
between two limiting values as a function of position. Also,
the response to perpendicular external electric fields allows one
to build field-effect transistors (FETs) [8–10]. Experimental
results from transport measurements show that graphene has
a remarkably high electron mobility at room temperature,
with reported values in excess of 120 000 cm2 V−1 s−1 [11].
Graphene nanoribbons (GNRs) are thus potentially capable of
supplementing conventional semiconductor materials in a wide
range of nanotechnology [12, 13].

GNRs are especially useful, as these single layers are
cut in a particular lateral pattern to yield certain electrical
properties, including the opening of band-gaps due to this
lateral confinement. Depending on how the outside edges
are configured, say, zigzag or armchair, different properties
emerge. Calculations based on the tight-binding method
predict that zigzag GNRs are always metallic while armchair
GNRs can be either metallic or semiconducting, depending
on their exact width. While the metallic nature of zigzag
GNRs is maintained by edge states, armchair GNRs, when
semiconducting, have an energy gap scaling with the inverse
of the GNR width [14]. Indeed, experimental results show that
the energy gaps do increase with decreasing GNR width [15].
The high electrical and thermal conductivities of GNRs also
make them a possible alternative to copper for integrated circuit
interconnects. When a certain section of a GNR is designed to
have a wider geometry from the rest of the GNR, a dot structure
emerges, generating quantum confinement [16].

The complicated properties of graphene itself are only
now beginning to be understood, and the detailed many-body
physics has been shown to be important [17, 18]. Because
of the high mobility and long coherence length, the details of
many-body interactions and strong coherence over reasonable
device sizes means that the simple quasi-classical approaches
used in most semiconductors are not adequate in graphene.
Instead, non-equilibrium Green’s function (NEGF) formalism
should be employed.
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In this paper, we study electronic transport in graphene
quantum dots. Because of the relativistic characteristics
of electron motion in graphene, understanding the quantum
transport properties is a problem not only of fundamental
interest, but also of significant implications to device
development. To be concrete, we shall focus on a
particular class of dots, structures having a rectangular
geometry. The basic quantity characterizing quantum transport
is conductance. Since the conductance is determined by
transmission via the generalized Landauer formula, it suffices
to calculate the quantum transmission. As the electron energy
is changed, the transmission of a quantum dot typically exhibits
fluctuations. Through a systematic examination of patterns
of the local density of states (LDS), we find a correlation
between the fluctuations and the formation of scarring states
inside the dot structure. These are also known as pointer
states, the quantum states that remain robust when coupled
to the external environment [19]. We find that, at the local
maxima or local minima of the transmission curve, the LDS
tends to concentrate on particular regions, such as those around
periodic orbits when the dot structure is treated classically as
an open billiard. Equivalently, the scarring states correspond
to resonances in the transport dynamics. This is analogous
to the one-dimensional transmission problem through a finite
square potential well, where resonances can either enhance
or suppress transmission, depending on the phase of the
wavefunction. It should be noted that, in conventional
semiconductor quantum dots, the conductance fluctuations
have been found to be closely related to the appearance
and disappearance of various scarring states, which transit to
pointer states and to the quasi-classical region [20–22].

In section 2, we describe the non-equilibrium Green’s
function formalism as applied to graphene quantum-dot
structure. In section 3, we present results for transmission
fluctuations and evidence of scarring and establish a correlation
between them. A brief summary is given in section 4.

2. Non-equilibrium Green’s function formalism

Since GNRs and graphene quantum dots serve as the
fundamental component of any graphene devices, we focus on
calculating the conductance of these basic graphene structures,
via the standard Landauer formula that relates the conductance
G(EF) to the overall transmission TG(EF) as [23]:

G(EF) = 2e2

h
TG(EF), (1)

where

TG(EF) =
∫

T (E)

(
− ∂ f

∂ E

)
dE,

T (E) is the transmission of the device and f (E) = 1/[1 +
e(E−EF)/kT ] is the Fermi distribution function. At low
temperature, −∂ f/∂ E ≈ δ(E − EF), thus TG(EF) = T (EF)

and G(EF) = (2e2/h)T (EF). To be concrete, we focus on
the low-temperature conductance, or equivalently, the low-
temperature transmission T .

We use the tight-binding framework and employ the
NEGF formalism to calculate the transmission T (E) for

graphene quantum dots [24, 25]. In general, the system can be
divided into three parts: left lead, device, and right lead, where
the left and the right leads are assumed to be semi-infinite and
are not directly contacted (figure 1(a)). The device is chosen to
include all the irregular parts so that the left and the right leads
are uniform in the width. The Hamiltonian matrix can then be
written as

H =
( HL HLD 0

HDL HD HDR

0 HRD HR

)
, (2)

whose elements are −t for nearest-neighbor atoms and zero
otherwise. In the Hamiltonian, HD is a finite-size square matrix
of dimension ND × ND, ND is the number of atoms in the
device, and HL,R are the Hamiltonians of the left lead and
right lead, respectively. The various couplings between the
device and leads are given by the matrices HLD, HDL, HDR,
and HRD. Using layer indices as subscripts, the Hamiltonian
can be written in forms of layer Hamiltonians. For example,
for the device shown in figure 1(b), we have

HD =

⎛
⎜⎜⎜⎝

H11 H12 0 0 0
H21 H22 H23 0 0
0 H32 H33 H34 0
0 0 H43 H44 H45

0 0 0 H54 H55

⎞
⎟⎟⎟⎠ ,

where, for instance,

H11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −t 0 0 0 0 0 0
−t 0 −t 0 0 0 0 0
0 −t 0 −t 0 0 0 0
0 0 −t 0 −t 0 0 0
0 0 0 −t 0 −t 0 0
0 0 0 0 −t 0 −t 0
0 0 0 0 0 −t 0 −t
0 0 0 0 0 0 −t 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

is the Hamiltonian matrix for layer 1, whose size is N1 × N1 =
8 × 8, and

H12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −t 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 −t 0 0 0 0 0 0
0 0 0 0 0 0 −t 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −t 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

is the coupling matrix from layer 2 to layer 1, which has a size
of N1 × N2 = 8×10. Note that H11 = H00 = H−1,−1 = · · · =
H55 = H66 = · · ·, thus H11 is also the Hamiltonian for each
layer of the leads. t ≈ 2.8 eV is the nearest-neighbor hopping
energy [2]. Note that in the calculation of transmission T , t is
only a parameter in the energy, thus the results are independent
of t if we normalize all energies by t . The finite-temperature
conductance depends on t , though.

The NEGF G(E) is defined by

(E I − H )G(E) = I, (3)

where I is the identity matrix. Thus G(E) = (E I − H )−1.
Note that both G and H are for the whole system, which has
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Figure 1. (a) Schematic illustration of a typical quantum dot.
(b) Illustration of construction of various tight-binding Hamiltonians
for calculating Green’s function. The device consists of layer 1 to
layer 5. The left lead is from layer −∞ to layer 0; and the right lead
is from layer 6 to layer ∞. The numbers in the bottom of the figure
indicate the number of atoms in each layer.

an infinite size. To calculate Green’s function for the device,
the effects of the leads can be treated as self-energies: �L and
�R for the left and the right leads, respectively. Thus

GD(E) = (E I − HD − �L − �R)−1, (4)

where the self-energies are given by

�L ≡ HDLGL HLD, �R ≡ HDRGR HRD,

and GL,R are Green’s functions for the left and the right leads.
Consider now the self-energy caused by the left lead

(figure 2). Since only the nearest-neighbor interactions are
considered, the coupling matrix HLD, while having an infinite
size, has only a finite number of non-zero elements that
correspond to the coupling from the atoms on the left boundary
of the device to the atoms on the surface of the left lead. The
non-zero elements of the self-energy can be written as

�l = V †
0 G lV0,

where V0 is the coupling from the left boundary of the device
to the boundary of the left lead, and G l is Green’s function of
the boundary atoms of the left lead. If the left boundary of the
device has the same width as the left lead (which can always
be realized by choosing the ‘device’ properly), then �l satisfies
the self-consistent Dyson equation:

�l = V †
0 (E − H0 − �l)

−1V0, (5)

where H0 is the Hamiltonian of the left boundary atoms of the
device, which is also the Hamiltonian for each layer of the left
lead (figure 2). Similarly, the self-energy caused by the right
lead satisfies

�r = V0(E − H0 − �r )
−1V †

0 . (6)

The above equations for self-energies can be solved
numerically following a standard procedure [25]. Then the
self-energy matrices �L,R can be obtained from an initial zero
matrix of size ND × ND by filling the boundaries with �l,r ,
after which the Green’s function GD can be calculated.

The coupling matrices �L(E) and �R(E) are the
difference between the retarded and advanced self-energy
caused by the coupling from the leads:

�L,R = i(�L,R − �
†
L,R). (7)

Figure 2. Schematic of calculation of self-energy �L for the left
lead.

Finally, the transmission T is given by

T (E) = Tr(�L GD�RG†
D), (8)

and the local density of states (LDS) for the device is

ρ = − 1

π
Im[diag(GD)]. (9)

3. Results

We start with an infinite GNR. Figure 3(b) shows the band
structure for such a waveguide with zigzag boundaries, where
a0 = √

3a is the lattice constant and a = 1.42 Å is
the separation between the two neighboring carbon atoms in
graphene. In each vertical layer there are N = 24 atoms.
As the number of atoms becomes larger, the minimum energy
values of the positive energy band approach zero, also do the
maximum values of the negative energy band. In the limit
N → ∞, the two bands touch each other at the Dirac points,
giving rise to the linear energy–momentum relation that is
characteristic of relativistic motion. Figure 3(a) shows the
transmission coefficient T of the same GNR as a function
of the energy. Generally, for a given energy, the GNR may
allow several propagating modes, corresponding to different
kx values, which have distinct wavefunctions along the y
direction. These modes can be determined graphically by the
crossing points of E = constant with the various E ∼ kx

curves, as shown in figure 3(b). Each mode contributes unity
to the transmission. Thus the total transmission is equal to
the number of allowed propagating modes. Figure 3(c) shows
the number of propagating modes nE versus the energy E . It
is exactly the same as the transmission shown in figure 3(a),
validating our numerical algorithms.

Generally, when the shape of the device is non-uniform,
the whole system including the leads is no longer invariant
under translation in the x-direction, thus it does not have a
unified dispersion relation, the E ∼ k curve. If the device is
also a ribbon but with different width, then in each region (lead
or device), the dispersion curve can be approximated by that
for an infinite ribbon. Thus transport from one lead, say, left,
through the device to the other lead is effectively a quantum
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Figure 3. For an infinite zigzag GNR with 24 atoms in each layer, (a) transmission T versus energy E . (b) Band structure for kx > 0. The
circles indicate the allowed kx values for a given energy, which correspond to the allowed propagating states. (c) The number of allowed
propagating states nE versus energy E .

scattering process [26, 27] from one allowed propagating state
kx,L, among many others, in the left lead to another kx,D in
the device and then to kx,R state in the right lead, which
is not necessarily the same as that in the left lead. The
scattering is possible if the cross integrals of the transverse
waves corresponding to kx,L and kx,D, and also kx,D and kx,R,
are appreciable. As the energy varies, the allowed propagating
wave numbers and their corresponding transverse waves all
change, affecting the transmission. The transmission thus
depends sensitively on the energy. Since one state in the lead
can be scattered into several different allowed states in the
device and vice versa, the transmission no longer takes on
integer values, and the changes in transmission no longer occur
in steps, but rather are represented by continuous variations.

Figure 4 shows a representative rectangular graphene
quantum dot where the left and right leads are semi-infinite.
Figure 5 shows the transmission versus energy for dots of
different orientations and different sizes. The quantum dots
for figures 5(a)–(c) have zigzag boundaries and the same width
W0 and W while their lengths are increased from (a) to (c). We
observe that the transmission exhibits enhanced fluctuations as
the dot length is increased. For all these three cases, since W
is small, the transmission for low energies (contributed by the
edge states) has a smaller degree of fluctuations, as compared
to figure 5(d) where W is significantly larger. For case (a), the
length of the quantum dot is also small, thus the transmission
for high (or low) energy far from the Dirac point (E/t ≈ ±3),
corresponding to small wave vectors and long wavelengths, is
the same as that for GNR, since effectively the transmitting
waves cannot be scattered. The graphene dot for figure 5(d)
has the same length as figure 5(b) but with a much larger
width. As expected, this causes more disturbances to the edge
states and thus exhibits larger fluctuations in the low energy
region. Figures 5(e) and (f) show the transmission for graphene
quantum dots with armchair boundaries for different sizes.
Again, the fluctuation is enhanced as the dot becomes larger.
Zooming into the fluctuation pattern, the scale of a peak/dip
in terms of the energy is typically of the order of 0.0001t
or even smaller. We have examined conductance fluctuations
for several different dot shapes, including some shapes that
have regular billiard behavior classically and a shape that is
classically chaotic. For all the quantum dots studied we have
found significant fluctuations in the transmission curve. For

Figure 4. Rectangular graphene quantum dot with zigzag boundaries
along x directions.

the region of small energy, it has been suggested that the zero-
transmission resonance is due to the flux states [28]. In general,
as we will demonstrate below, the fluctuations are caused by
resonant transmission of electrons (or holes) in the graphene
quantum dots.

We have systematically calculated LDS as the energy
varies and found that generally, at a local peak or a local
valley of the transmission, the corresponding LDS exhibits
recognizable patterns. Near a peak or a valley, the pattern
changes drastically as the energy varies. For energy in between
local peaks and local valleys, the patterns become smeared
and do not change appreciably with the energy. Figure 6
shows the transmission curve (a) and a series of LDS patterns
((b)–(f)) at different energies. Note that the color scale in
different panels is different. In fact, for each pattern, we fix the
light color (determined by a three-component vector) for the
minimum value of LDS and the dark color for the maximum
value and linearly map the LDS values (a one-dimensional
interval) to the corresponding colors (a line segment in three-
dimensional color parameter space). Since the atoms reside on
a honeycomb lattice, we first sort the LDS value in ascending
order, then plot at each site a solid circle with corresponding
color code starting from those with small LDS values. When
the energy varies, the wavefunction changes. At certain points,
the wavefunction concentrates on small focused regions that
contain classically periodic orbits, where electrons bounce
back and forth along these orbits (see figures 6 and 7 for some
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Figure 5. Transmission versus energy for different rectangular graphene quantum dots with zigzag boundaries (a)–(d) and armchair
boundaries (e), (f). (a) W = 4

√
3a0, L = a0; (b) W = 4

√
3a0, L = 5a0; (c) W = 4

√
3a0, L = 20a0; (d) W = 10

√
3a0, L = 5a0. The width

W0 is given by W0 = 3
√

3a0 + 2a0/
√

3 = 11a, which is the same for all the quantum dots used in our computation. There are N = 16 atoms
in each layer and a maximum of 8 transmission modes. (e) W = 2a0, L = 2

√
3a0 − a = 5a; (f) W = 6a0, L = 6

√
3a0 − a = 17a.

W0 = 8a0, which supports a maximum of 8 transmission modes.

typical resonant orbits). This resonant behavior, which results
in the presence of Fano resonances [29, 30] may enhance
or suppress electron transmission through the quantum dot.
From the figure we see that the local peaks or the local
valleys in the transmission curve are associated with strong
resonances. Comparing figures 6(b), (e) (valleys) and (d)
(peak), we find that the resonance patterns corresponding
to local valleys have small LDS values in the lead region.
This can be seen intuitively since, as the electrons bounce
back and forth in the graphene quantum dot following the
concentration of the patterns, they are trapped within the dot,
leading to a low transmission. However, exception can occur.
As shown in figure 7, pattern (c) has small LDS values in
the lead region, but its corresponding transmission is in fact
a local maximum. When the patterns are well confined in
the graphene dots, the electrons will traverse the orbits for a
longer time before escaping. The longer the trapping time,
the narrower the resonances are in energy, resulting in sharper
peaks or dips in the transmission curve. This can be seen in
figures 6(e) and 7(c), also in figures 8(c) and 9(b) for armchair
boundaries.

To examine the dependence of LDS on lattice orientation,
we have also calculated the LDS for rectangular graphene
quantum dots with armchair boundaries along the x direction.
The results are shown in figures 8 and 9 with resonant orbits
indicated by the dashed lines. Comparing with the patterns
for the quantum dots with zigzag boundaries, we observe
similar patterns, e.g., those bouncing up and down in the y
direction. A systematic check of the two configurations reveals
that, although there are some common patterns, generally the
patterns have different inclines for the two configurations.
Specifically, the one with zigzag boundaries along x direction
tends to have horizontal line shapes with relatively fewer
vertical line shapes, while the other one has many resonant
patterns with vertical trajectories but fewer horizontal line
shapes. In contrary to the GaAs quantum dot where the
electron motion is described by the Schrödinger equation
with potential confinement in the dot boundaries [30], the
electron motion in graphene quantum dots at low Fermi
energy is described by Dirac equation. For a higher Fermi
energy, the constant energy curves acquire a nontrivial trigonal
warping distortion, thus the electron motion has to be analyzed
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Figure 6. (a) Transmission versus energy. The circles indicate the
energy and transmission values for the LDS patterns showing in
(b)–(f). Dark (red) regions in the patterns correspond to higher local
densities. The minimum and maximum LDS values of the patterns
are (5.29 × 10−4, 0.310), (5.86 × 10−4, 0.072), (9.60 × 10−4, 0.122),
(6.59 × 10−4, 1.198), (3.42 × 10−4, 0.389) for (b)–(f), respectively.
The size of the graphene dot is W0 = 8

√
3a0 − a = 23a,

W = 7
√

3a0 = 21a, L = 50a0. The corresponding classical orbits,
when appreciable, are plotted using solid or dashed line segments.

alternatively to include the distortions [31]. Since the electron
motion and thus the pattern line shapes are affected by the
E–k functional form, which is basically characterized by the
Dirac points for graphene, the difference in the tendency of
pattern line directions is caused by the inequivalence of the
configuration of the Dirac points for the two cases.

The observed resonant transmission is similar to the
transmission through a finite one-dimensional quantum square
well. Resonance causes fluctuation in the transmission
curve, but depending on the phase of the wavefunctions,
it may either enhance or suppress the transmission. For
a two-dimensional quantum dot, the same scenario holds.
For conventional semiconductor quantum dot of rectangular
geometry, the transmission can be solved via the mode-
matching technique [32]. For a graphene dot, the electron
motion is governed by the Dirac equation, and under
certain conditions the system can still be solved by mode-
matching [33]. Note that some of the patterns are focused on
classical periodic orbits. For irregular graphene quantum dots,
e.g., the stadium shape, we have observed similar patterns.
There is thus evidence of quantum scars in graphene quantum-
dot structures. Since strong resonance of electrons in the
quantum dot leads to local extreme values of transmission,
it can be expected that larger quantum dots supporting
more resonant states can exhibit stronger fluctuations in the
transmission curve, as shown in figure 5. Again this result is

Figure 7. Resonant transmission patterns in a different energy level.
The minimum and maximum LDS values of the patterns are
(1.45 × 10−2, 0.275), (0.877 × 10−2, 1.419), (1.52 × 10−2, 0.350),
(1.29 × 10−2, 0.534), (0.720 × 10−2, 0.541) for (b)–(f), respectively.
Other parameters are the same as in figure 6.

Figure 8. Resonant transmission patterns for a square graphene dot
with armchair boundaries along x direction. The minimum and
maximum LDS values of the patterns are (1.26 × 10−2, 0.550),
(2.97 × 10−2, 1.842), (1.73 × 10−2, 1.016) for (b)–(d), respectively.
The size of the graphene dot is W0 = 14a0, W = 12a0,
L = 29

√
3a0 − a = 86a. The corresponding classical orbits, when

appreciable, are plotted using solid or dashed line segments.

analogous to that from the one-dimensional finite square well
problem. For such a well with potential depth U0 and length
l, the transmission is maximum if

√
2m(E + U0)l/h̄ = nπ ,

where n is an integer, and minimum if
√

2m(E + U0)l/h̄ =
(n + 1/2)π . Thus when the length of the potential well l
is increased, the energy difference between a local maximum
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Figure 9. Resonant transmission patterns in a different energy level
for the armchair graphene quantum dot. The minimum and
maximum LDS values of the patterns are (0.709 × 10−2, 1.160),
(1.01 × 10−2, 0.511), (0.711 × 10−2, 0.519), (0.759 × 10−2, 0.268),
(0.904 × 10−2, 0.371) for (b)–(f), respectively. Other parameters are
the same as in figure 8.

and a neighboring minimum becomes smaller, leading to more
significant fluctuations in the transmission curve.

4. Conclusion

We have studied the transmission of graphene rectangular
quantum dots using the tight-binding approach and demon-
strated transmission fluctuations with energy. The fluctuations
are generally enhanced as the size of the dot is increased.
There is a correlation between the fluctuations and the
formation of scarring patterns in the LDS. In particular,
near the local maxima or local minima of the transmission,
scarring is relatively stronger, suggesting that the transmission
fluctuations can be explained by the occurrence of various
quantum resonances.
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[26] Lai Y-C, Blümel R, Ott E and Grebogi C 1992 Phys. Rev. Lett.

68 3491
[27] de Moura A P S, Lai Y-C, Akis R, Bird J and Ferry D K 2002

Phys. Rev. Lett. 88 236804
Bird J P, Akis R, Ferry D K, de Moura A P S, Lai Y-C and

Indlekofer K M 2003 Rep. Prog. Phys. 66 583
[28] Wakabayashi K and Sigrist M 2000 Phys. Rev. Lett. 84 3390

Wakabayashi K 2001 Phys. Rev. B 64 125428
[29] Fano U 1961 Phys. Rev. 124 1866
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