
Enhancing transport efficiency by hybrid routing strategy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 EPL 99 20007

(http://iopscience.iop.org/0295-5075/99/2/20007)

Download details:

IP Address: 221.7.37.140

The article was downloaded on 21/12/2012 at 13:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/99/2
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


July 2012

EPL, 99 (2012) 20007 www.epljournal.org

doi: 10.1209/0295-5075/99/20007

Enhancing transport efficiency by hybrid routing strategy

J.-Q. Dong
1
, Z.-G. Huang

1(a)
, Z. Zhou

1
, L. Huang

1
, Z.-X. Wu

1
, Y. Do

2 and Y.-H. Wang1

1 Institute of Computational Physics and Complex Systems, Lanzhou University - Lanzhou Gansu 730000, China
2Department of Mathematics, Kyungpook National University - Daegu, 702-701, Korea

received 3 May 2012; accepted in final form 25 June 2012
published online 24 July 2012

PACS 02.50.Le – Decision theory and game theory
PACS 89.75.Hc – Networks and genealogical trees
PACS 87.23.Ge – Dynamics of social systems

Abstract – Traffic is essential for many dynamical processes on real-world networks, such as
internet or urban traffic systems. The transport efficiency of the traffic system can be improved
by taking full advantage of the resources in the system. In this paper, we propose a hybrid routing
strategy model for network traffic system, to realize the plenary utility of the whole network.
The packets are delivered according to different “efficient routing strategies” (Yan G. et al.,
Phys. Rev. E, 73 (2006) 046108). We introduce the accumulating rate of packets, η, to measure
the performance of traffic system in the congested phase, and propose the so-called equivalent
generation rate of packet to analyze the jamming processes. From analytical and numerical results,
we find that, for proper selection of strategies, the hybrid routing strategy system performs better
than the single-strategy system in a broad region of strategy mixing ratio. The analytical solution
to the jamming processes is verified by estimating the number of jammed nodes, which agrees well
with the result from simulation.

Copyright c© EPLA, 2012

Introduction. – Recently, the real transportation or
communication systems such as computer networks [1,2],
power grid [3,4], airport line [5], and so on, have attracted
much attention due to the discovery of the topological
features of their self-organized structures. The complex
network theory [6–8], as well as the tools inherited from
nonequilibrium statistical physics [9] have been success-
fully applied to studying the dynamical properties of these
real systems. A common character for these transportation
or communication systems is to perform certain functions
by transporting objects among connected elements,
which often take the form of large sparse networks. Free
traffic flow on these networks is key to their normal and
efficient functioning. However, they may actually suffer
from the overload or traffic jam, which always disables the
system partially for a period of time, or even be fatal to the
whole system due to the consequential cascades of over-
load failures [10–15]. Therefore, many recent studies on
traffic networks have focused on the critical properties of
the jamming and congestion transitions [16–26]. Moreover,
the schemes to improve the performance of traffic systems
are dominantly from two aspects, namely, designing
efficient routing strategies [27–36], or optimizing the

(a)E-mail: huangzg@lzu.edu.cn

topology of the underlying network [19,37–40]. The
objectives of these schemes are, on the one hand, to avoid
the onset of congestion and, on the other hand, to have
short delivery times so as to enhance the throughput of
the system.
The routing algorithm proposed in recent works are

relied on the structural properties, as well as the global
or local information about the dynamical state of the
communication networks [27–36]. For example, the works
of biased random walk scheme introduce that the proba-
bility to visit a node should depend on its degree [28,29], or
the queue length of packets [30]. The works of the shortest-
path scheme assume that the delivering paths should have
minimized distance from any pair of source and desti-
nation [31]. For this scheme, the central nodes (with
highest connectivity) are highly over-congested, induc-
ing the bottleneck effect of the communication capac-
ity for the whole system. The expended version of the
shortest-path scheme with “effective distance” involving
the congestion state (queue length of routers) may bypass
the congested nodes locally and thus improve the perfor-
mance [32]. Meanwhile, the works of efficient-path schemes
[33] propose that the routing table of paths should have
the minimum summary of kβ , with a tunable β. For the
value of β = 1.0 this scheme can effectively redistribute
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the heavy load on the central nodes to some of the lower-
degree nodes, and the system can reach a capacity which
is more than ten times higher than that with shortest-path
scheme. We can see that, for a certain amount of traffic
request, the way to improve the performance of the system
is to take full advantage of all kinds of nodes.
These aforementioned researches have discussed the

system with a single routing strategy. However, in real-
istic traffic systems, the routing strategy can be diverse.
Therefore, how the diversity of routing strategy performs
is of high importance, yet such a diversity scheme is barely
investigated in the current literature. In this way, the
enhancement of transport capacity by better exertion of
all nodes in the system might be expected. In this paper,
we put forward a mechanism, that the communication
system possesses, of two different routing strategies. Here
we make use of the efficient-path schemes proposed in ref.
[33], and consider the routing strategies to be denoted by
different β. Then, the transport system with this multi-
strategy protocol will send packets according to differ-
ent fixed routing tables of efficient-path schemes. Though
the fixed routing algorithm becomes less advantageous
in huge communication systems, it is still widely used
in medium-sized or small systems [41,42], for its obvious
advantages in economical and technical costs, compared
with the dynamical routing algorithm and information
feedback mechanism. In this case, the diversity of the
fixed routing strategy is, of course, practical if it performs
better than the single-strategy scheme. Actually, through
our study, this improvement by the diversified strategy is
widely observed.

Traffic model. – In our traffic model of hybrid routing
strategy protocol, the packets with given sources and
destinations will be sent according to several different
fixed routing tables of efficient-path schemes (EPS). For
the EPS proposed in ref. [33], node i in the graph is

weighted by wi = k
β
i . ki is the degree of node i, and β

can be considered as the label of “routing strategy”. A
packet with source j1 and destination j2 will choose a
route with a minimum sum of weights:

∑
i∈σj1j2 k

β
i . σj1j2 is

the path from j1 to j2. Adjusted by the parameter β, the
single-strategy system will favor a certain kind of nodes
in routing, and may also leave some space to improve
the performance further. In our hybrid routing strategy
model, taking a two-strategies system with β1, and β2 as
an example, packets are assigned to the two corresponding
routing tables, with probability 1− p and p, respectively.
Here we name p as the mixing rate. For p= 0 (or 1), the
system returns to the single-strategy system with β = β1
(or β2).
Similar to the former work, at each time step, R

packets enter the system with randomly chosen sources
and destinations. All the nodes (routers) are assumed to
have the same capabilities in delivering packets, that is,
at each time step all the nodes can deliver at most C
packets one step toward their destinations according to

the routing tables. Here, we set delivery capacity C = 1
for simplicity. The maximal queue length of each node is
assumed to be unlimited, and the first-in-first-out (FIFO)
discipline is applied at each queue. Once a packet reaches
its destination, it is removed from the system.
In the previous study, the phase transition of traffic flow

is described by the the order parameter [16]

H(R) = lim
t→∞

C

R

〈∆W 〉
∆t

, (1)

where ∆W =W (t+∆t)−W (t), with 〈∆W 〉 calculated on
average over different time windows of width ∆t, andW (t)
is the total number of packets in the network at time t.
The critical value Rc (the packet generation rate) where
a phase transition takes place from free flow to congested
traffic, can reflect the maximum capability of a system.
The behavior of the critical point Rc on different

networks can be simply explained by their different
betweenness centralities (BC) distributions [31,43,44].
The BC of a node i for the single-strategy EPS system
[33] is defined as

gi(β) =
∑
j1 �=j2

σj1j2(β, i)

σj1j2(β)
, (2)

where σj1j2(β) is the number of routes going from j1
to j2, according to the EPS routing table with β, while
σj1j2(β, i) is the number of those also passing through i.
The critical value Rc can be estimated by the maximal
BC as in ref. [33],

Rc =
C ·N · (N − 1)
Max[gi(β)]

, (3)

where Max[gi(β)] is the maximal BC of the system with
strategy β.
For the hybrid routing strategy system with strategies
β1, β2, and probability p, the effective BC of one given
node i is

Gi(β1, β2, p) = (1− p) · gi(β1)+ p · gi(β2). (4)

Then, we have the expected load of node i, assigned from
the whole transport requirement of the system as

Li =
Gi(β1, β2, p) ·R
N · (N − 1) . (5)

The load of a node increases as R is increased. Therefore,
the critical value Rc can be estimated as

Rc =
C ·N · (N − 1)
Max[Gi(β1, β2, p)]

; (6)

here, Max[Gi(β1, β2, p)] is the maximal effective BC of the
hybrid routing strategy system.
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Fig. 1: (Color online) The accumulating rate η as a function
of β in the single-strategy system, for the systems of R= 50
and 60. The results are averaged over 10 realizations for each
network, 20 network ensembles, with size N = 1225.

Simulation result and analysis. – The communica-
tion networks typically show a scale-free (SF) distribution
for the number of links departing from and arriving to a
system element. In this paper, we choose the Barabási-
Albert (BA) network as the model of the communicating
network [45]. For this network model, starting fromm0 = 3
fully connected nodes, a new node with m= 2 is added
to the existing network on by one, until the network size
reaches N = 1225. The average degree of the network is
〈k〉= 4.
For the single-strategy system, the phase transition from

free flow to congested traffic has been discussed by Yan
et al. [33]. When the value of R crosses Rc, the number
of accumulated packets will increase with time (i.e., a
phase transition takes place from free flow to congested
traffic). Similarly, for the multi-strategy system, the phase
transition can also take place. The effect of the different
strategies, in free flow phase, leads to a difference of the
packet delivery time, while in the congested phase, many
more abundant phenomena occur. In the following, we
shall mainly focus on the congested phase as follows.
Firstly, let us revisit the behavior of the single-strategy

system in the congested phase. According to the work
of Yan et al. [33], the largest Rc (around 43), i.e., the
best performance of the system is achieved with strat-
egy β = 1.0 on BA network of N = 1225 and 〈k〉= 4.
From systematic simulation of various β systems in the
congested phase, we notice that the number of accumu-
lated packets increases linearly with t (with small fluctu-
ation). Namely, the accumulating rate η, defined as

η= lim
t→∞

〈∆W 〉
∆t

, (7)

is a constant on average. In fig. 1, we plot η as a function
of strategy β, with R in the region of the congested
phase (R= 50 and 60, larger than Rc). It is necessary to

emphasize that, although the so-called congestion occurs,
there still are, on average, R− η packets successfully
delivered to their destinations per unit time. This number
is actually much larger than R−Rc. That is to say, while
some nodes are jammed when R>Rc, a noticeable part
of the transport still functions in the system. This can
be understood from two aspects: 1) the “free flow” still
takes place on a large part of the system formed by the
unjammed nodes; and 2) the packets through the jammed
nodes are not stopped but just delayed.
We may say that the parameter Rc merely distinguishes

the so-called free and congested phases, which actually
indicates the free or jammed state of the most “frag-
ile” node (see eq. (3)). Rc cannot reflect the extent of
congestion, and the impact of the jammed nodes to the
performance of the system. Alternatively, the accumulat-
ing rate η is a good parameter to measure the perfor-
mance of the system in the congested phase. Obviously,
η is the sum of individual accumulating rate ηi over the

whole system as η=
∑
i ηi, with ηi = limt→∞

〈∆wi〉
∆t , where

∆wi =wi(t+∆t)−wi(t), and wi is the queue length of
node i. η indicates the extent of the jamming. Small η
implies that the system accumulates packets slowly, and
also the number of jammed nodes is small, and the major-
ity part of the system still have free flows. Large η indi-
cates that the system accumulates packets fast, usually
accompanied with a large number of jammed nodes which
affects the delivering efficiency significantly. Therefore, η
describes the performance of the jammed system, and a
smaller η is desired when a congested phase is inevitable.
For the sake of the detailed description to the jamming

processes, here, we introduce the individual jammed factor
of node i denoted by η′i,

η′i ≡Li−C =
Gi(β1β2, p) ·R
N · (N − 1) −C (8)

with Li (from eq. (5)) being the expected load of node
i assigned from the whole transport requirement. We
may notice that as R is increased, Li may increase over
the capability C and thus η′i increases from negative to
positive. For positive η′i, it exactly equals the individual
accumulating rate, i.e., η′i = ηi. The negative η′i (with
Li <C) is also meaningful, which corresponds to the
redundance of node i. Then, we have ηi = η

′
i ·Θ(η′i), where

Θ(·) is the Heaviside function.
In fig. 1, the non-monotonic behavior of η implies that

the medium β system performs better, similar to the
results in ref. [33] from the relationship between Rc and
β.
For the hybrid routing strategy system with β1 and β2

in the congested phase, the packets are assigned to the
two strategies with probability 1− p and p, respectively.
Figure 2 plots η of the system as a function of p. Here,
for p= 0 (or 1), η returns to that of the single-strategy
system with β = β1 (or β2). We can see that the mix of
different strategies is nontrivial and of interest. By taking
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Fig. 2: (Color online) The accumulating rate η for the hybrid
routing strategy system as a function of mixing ratio p of
the two strategies β1 and β2. Here, in (a), β2 is fixed to be
1.5, and in (b), β1 is fixed to be 0.5. The η of the single-
strategy system with optimal β = 0.9 (the red dotted line) is
also plotted for comparison. The results shown are averaged
over 10 realizations for 20 networks, with size N = 1225, and
R= 60.

the system with β1 = 0.5 and β2 = 1.5 in fig. 2(a) as an
example, for a certain medium value of p, it performs
even better than the optimal state that the single-strategy
system can achieve with β = 0.9 (which is also plotted by
the red dotted line in fig. 2). Furthermore, as has been
shown in fig. 2, it is also noteworthy that, when β1 and
β2 are chosen from each side of 0.9, there always exists an
optimal configuration p, which performs better than both
the single-strategy systems of β1 and β2.
This can be understood as follows. To design routing

strategy for the network transportation, there are two
factors that should be considered. 1) To bypass the hub
nodes which are obviously of heavy burden and prone
to jamming. 2) To choose shorter path to reduce the
delivery time, which helps to cat down the occupation
(life time) of packets travelling in the system and thus
avoiding jam. The system’s delivery efficiency can be
improved from the tradeoff of these two factors. However,
they are inconsistent in the communicating network with

heterogeneous topology. By taking the single-strategy
system in the congested phase as an example (see fig. 1,
the curve with R= 60), as β is increased from 0, the traffic
through the hub nodes is bypassed to the smaller-degree
nodes. The length of the paths adopted by the packets
are then elongated, which increases the probability of
jamming for the small-degree nodes. The system with β0
around 0.9, to a certain extent, balances these two factors,
achieving the optimal performance.
As β is increased further, the utility of the hubs is

not fully employed, while the remaining parts of the
system are overloaded. Actually, taking a full advantage of
each node in the system will lead to better performance.
Therefore, for the hybrid routing strategy system, the
strategy favoring to the hubs (β < β0) and that favoring to
the small nodes (β > β0) may complement each other and
perform better than the single-strategy one. Thus, non-
monotonous η can be observed when the β’s from both
sides of β0 are mixed.
The effect of multiple strategies in the congested phase

can also be understood analytically from the so-called
equivalent generation rate. In this routing strategy, packets
at the head of the queue on node i will be delivered to the
next node j according to the routing table, no matter if
node j is idle or jammed. Current servers also have this
properties. In this case, congestion in the system will not
spread out. Furthermore, counterintuitively, congestion
will make the system more “empty”. In each time step,
η more packets will queue at the jammed nodes, and as a
consequence, the load of the other nodes will be mitigated
slightly, as if the generation rate for the subsystem of these
remaining nodes is reduced to a smaller one R∗, which we
name as the equivalent generation rate. Here, we have

R∗ =R− η. (9)

Different from the case that the servers discard packets
when the queue length is over a threshold, in our model,
the queuing packets are not abandoned, and will finally be
delivered to their destination.
We sort nodes by the values of their individual jammed

factor in descending order, as η′1 > η′2 > . . . > η′N . From
eq. (8), we know that, when R is increased from 0, all these
η′i increases from −C. As soon as the maximum one, η′1,
increases from negative to positive, the system transforms
from free phase to congested phase. Suppose that η′2 < 0,
there are η′1 packets detained at the 1st node for each
time step. Then, the equivalent generation rate for the
subsystem (excluding the 1st node) is R∗ =R− η′1. As R
is increased further, the remaining nodes will be jammed
one after another (i.e., have positive η′i). Accordingly, we
may propose the theory to predict the number of jammed
nodes, and the accumulating rate of the system η from
two perspectives.
On the one hand, from eqs. (8) and (9), we get

R∗ =R−
I∑
i=1

[
Gi(β1, β2, p) ·R∗
N · (N − 1) −C

]
(10)
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with the following constraint applying:

LI =
GI(β1, β2, p) ·R∗
N · (N − 1) >C, (11)

LI+1 =
GI+1(β1, β2, p) ·R∗
N · (N − 1) <C. (12)

By solving these equations, we can get the number of
jammed nodes I and η, for given parameter values of R,
β1, β2 and p.
On the other hand, we can focus on the detailed process

of successional jamming which gradually modifies the
equivalent generation rate R∗, as well as the load Li of
the remaining nodes. The iterative procedure of R∗ can
be written as

R∗1 = R−
G1(β1, β2, p) ·R
N · (N − 1) +C,

R∗2 = R
∗
1 −
G2(β1, β2, p) ·R∗1
N · (N − 1) +C, (13)

. . . .

The iterative formula is

R∗i =R
∗
i−1−

Gi(β1, β2, p) ·R∗i−1
N · (N − 1) +C (i= 1, 2, 3, . . .).

(14)
R∗i and L′i decrease as the nodes of large load are jammed
one after another, until

L′I =
GI(β1, β2, p) ·R∗I−1
N · (N − 1) >C, (15)

L′I+1 =
GI+1(β1, β2, p) ·R∗I
N · (N − 1) <C, (16)

Different from eqs. (10) to (12), eqs. (14) to (16) depicts
that the jamming of the first I nodes steps down R∗

gradually until the value R∗I , where the (I +1)-th node, as
well as all its following nodes, is capable of dealing with
its load. Here, from the perspective of the successional
jamming process described by eq. (14), one can also get
the number of jammed nodes I, and η, analytically.
In fig. 3, we plot the analytical and simulation results

of the number of jammed nodes I in the hybrid routing
strategy system with β1 = 1.5 and β2 = 0.5. It can be seen
that the average number of jammed nodes from analysis
(red solid circle) coincides well with that from simulation
(black solid square). Interestingly, the value of I also
behaves non-monotonically and achieves the minimum
around p= 0.5, which is similar to the accumulating rate
η of the same system shown in fig. 2. Additionally, the
analytical results from eq. (10) and eq. (14) are very close
to each other, thus in fig. 3 we just plot the results from
eq. (14).
Here, we can also understand the non-monotonic behav-

ior of I from the following perspectives. The packet gener-
ation rate R can be divided into two parts, the packets
using routing table of β1 is R

β1 = (1− p)R, and that of β2

Fig. 3: (Color online) The number of jammed nodes from
analytical and simulation results, for the hybrid routing strat-
egy system with β1 = 1.5, β2 = 0.5. The sample data of analyti-
cal results (red open circle) are from 10 different networks, and
that of simulation results (black open square) are from 50 real-
izations of traffic on these 10 networks. The average number
of analytical and simulation results (red solid circle and black
solid square) are averaged over the corresponding sample data.
The system parameters are N = 1225, and R= 60. The analyt-
ical and simulation results (the red and black dotted lines)
from single-strategy system with β = 0.9 are also plotted for
comparison.

is Rβ2 = pR. From eq. (5), we can get the corresponding
loads of node i from these two parts of packets, denoted
by Lβ1i and L

β2
i (with Li =L

β1
i +L

β2
i ). For the case that

the mixing rate p= 0, we have Rβ1 =R, and the jamming
of nodes are all ascribed to the queue of β1 packets. As p
is increased from 0, the Rβ1 , as well as the Lβ1i decreases,
while that of β2 increases. If the β2 packets prefer to use
those complementary nodes instead of the nodes already
jammed by β2 packets, the number of jammed nodes I will
decrease with p. However, as p is large enough, the increase
of load Lβ2i from β2 packets induces new jamming of other
nodes. Therefore, we can see the non-monotonic behavior
of the number of jammed node, when the hybrid routing
strategy system is composed of the two strategies from
either side of β0.

Conclusion. – In summary, we propose a hybrid
routing strategy for the networked traffic system, which
is proved to be a doable and effective way to enhance
transport efficiency. Compared with the efficient routing
strategy [33], the hybrid routing strategy can make better
use of the resources in the traffic system, while there
appears no increase in its algorithmic complexity. The
performance of the hybrid routing strategy system can
be optimized by modulating the mixing rate of the
packets, in case that the two strategies share fewer key
nodes. Here, we introduce the accumulating rate η to
denote the performance of the communication system
in the congestion phase, which shows richer phenomena
than the critical generation rate Rc. Furthermore, we get
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analytical descriptions to the jamming processes by the
accumulating rate η and the equivalent generation rateR∗.
The number of jammed nodes estimated from analytical
formula coincides well with that from simulations.
While our model is based on computer networks, we

expect it to be relevant to many other practical transport
processes in general. Actually, in realistic systems, the
hybrid routing is worthy of considering, for the reason
that the sources and characters of massages delivering
or spreading in complex systems are diversified, which
induces the hybridization of various transportation modes.
In view of the common features for the networked traffic
and spreading, our work may shed light on the research of
packet delivery in technical networks, as well as the rumor
and opinion dynamics in social networks.
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[19] Guimerà R., Dı́az-Guilera A., Vega-Redondo F.,
Cabrales A. andArenas A., Phys. Rev. Lett., 89 (2002)
248701.

[20] Guimerà R., Arenas A., Dı́az-Guilera A. andGiralt
F., Phys. Rev. E, 66 (2002) 026704.
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