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Recently, it has been found that the synchronizability of a scale-free network can be enhanced by
introducing some proper gradient in the coupling. This result has been obtained by using
eigenvalue-spectrum analysis under the assumption of identical node dynamics. Here we obtain an
analytic formula for the onset of synchronization by incorporating the Kuramoto model on gradient
scale-free networks. Our result provides quantitative support for the enhancement of synchroniza-
tion in such networks, further justifying their ubiquity in natural and in technological systems.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2964202�

One important issue in the study of network synchroni-
zation is about how to optimize the network configura-
tion, by adjusting either the network topology or the net-
work couplings, in order of a higher synchronization
propensity. For a network of fixed topology and total cou-
pling cost, the optimization of network synchronization
relies on only the redistribution of the weight and direc-
tion of the network couplings. Previous studies on this
had been mainly carried out for networks of identical
node dynamics by the standard approach of eigenratio
analysis, where a number of configuration criteria had
been proposed to improve the network synchronizability.
As node dynamics in realistic networks is typically non-
identical, a natural question, therefore, is whether the
configuration criteria established in identical networks
are still workable for nonidentical networks. Meanwhile,
realistic networks generally consist of a large amount of
nodes, which makes the eigenratio approach infeasible in
practice. So the other question is how to evaluate analyti-
cally the improved network synchronization brought by
the configuration criteria. Here, by investigating the on-
set synchronization of a generalized Kuramoto model, we
show analytically how the adoption of gradient coupling,
an efficient coupling scheme discovered in identical net-
works, is helpful in enhancing the synchronization of
nonidentical networks.

I. INTRODUCTION

There has been much recent interest in synchronization
in complex networks,1–9 motivated by the observation that
synchronization is fundamental to various processes in na-
ture that involve the interactions of many interconnected
components.10 Currently there are two approaches to the
network-synchronization problem. The first is based on ana-
lyzing the eigenvalue spectrum of the coupling matrix of the
network under consideration. By assuming the idealized set-
ting where the dynamical processes on individual nodes are

identical across the entire network, a synchronization state
can be conveniently defined and its stability with respect to
external, desynchronous perturbations can then be deter-
mined. An elegant result coming out of this approach is that,
given specific node dynamics, a network is more likely to
achieve synchronization if the spread of the eigenvalues in
the underlying coupling matrix is smaller.2 In the past several
years, this approach has been applied to analyzing the syn-
chronizability of small-world networks,1–3 scale-free
networks,4 weighted complex networks,5,6 complex clustered
networks,8 and complex gradient networks.9 While there is in
principle no restriction on the complexity of the individual
node dynamics in this approach, analysis becomes possible
due to the assumption of identical node dynamics. One issue
is thus what might happen when this assumption is relaxed to
a certain extent. If there is heterogeneity in the node dynam-
ics, a simple synchronization state cannot be defined. In this
case, to make the problem tractable and the analysis feasible,
it is necessary to reduce the complexity of the local dynam-
ics. This leads to the second approach: to adopt the classical
Kuramoto model11,12 of globally connected networks to com-
plex networks.13 The individual node dynamics in the Kura-
moto model is extremely simple, as it is given by that of a

uniform rotation: �̇=�, where � is a phase variable and � is
the frequency. Heterogeneity in the local dynamics can be
realized by choosing different frequencies for different
nodes. Usually the frequencies are chosen randomly from a
prescribed distribution.11,12 This approach has yielded ex-
plicit formulas describing the transition to synchronization in
scale-free networks.13 In particular, as a coupling parameter
� is increased through a critical value �c, partial synchroni-
zation occurs, where nodes begin to form distinct, synchro-
nous clusters. The value of �c depends explicitly on statisti-
cal properties of both the degree distribution of the
underlying network and the frequency distribution of the
oscillators.13 As � is increased further through another criti-
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cal value �c�, full or global synchronization occurs where all
nodes in the network are synchronized. Recently, the
Kuramoto-model approach has been extended to predicting
�c� �Ref. 14� for complex clustered networks.15

A hallmark of modern network science is the discovery
of the ubiquity of scale-free networks in nature and in man-
made systems,16,17 in addition to the identification of small-
world property in complex networks.18 However, initial com-
parison study of network synchronizability indicates that a
scale-free network, while having smaller network distances
than a small-world network of the same size, can actually be
more difficult to synchronize.4 While this somewhat counter-
intuitive result can be understood as the consequence of a
blockade of communication on the network by a small set of
hub nodes in the network, the ubiquity of scale-free networks
and the importance of synchronization in network functions
seems to have generated a paradox. Since the setting under
which the result is obtained is unweighted and undirected
scale-free networks,4 a possible resolution to the paradox is
to consider weighted and directional interactions. Indeed,
several recent works have shown that coupling schemes in-
corporating weights and directionality can be articulated so
that scale-free networks so designed have a stronger synchro-
nizability than homogeneous networks of comparable
parameters.5–7,9 For example, we have constructed a general
class of gradient networks to account for both the direction-
ality and asymmetry.9 The idea is that an asymmetrical and
weighted network can be regarded effectively as the “super-
position” of a symmetrically coupled weighed network and a
directed weighed network, but a weighted, directed network
is in fact a gradient network,19,20 a network for which the
interactions among nodes are determined by some gradient
field. A few basic considerations of dynamics on realistic
networks lead to the construction of some appropriate gradi-
ent field, which in turn give rise to scale-free networks that
are significantly more synchronizable. Note that most of the
recent works5–7,9 along these lines assume identical node dy-
namics and are based on eigenvalue analysis to infer the
network synchronizability. For the few studies where net-
works of nonidentical node dynamics are considered, the re-
sults are based on direct simulations and are mainly used to
verify the findings obtained in identical networks.

In this paper, we investigate the onset of synchronization
in complex gradient networks in the Kuramoto framework.
There are two aims: �i� to provide analytic support for the
recent result9 that gradient field can enhance the network
synchronizability, and �ii� to infer the generality of the result
by incorporating heterogeneity in node dynamics. The trac-
tability of the Kuramoto paradigm allows us to obtain an
analytic formula for the critical coupling required for the
onset of synchronization as a function of the strength of the
gradient field, which is verified by numerical results. This
result provides a more solid footing that scale-free networks
can be quite synchronizable, giving further justification for
their ubiquitous appearance in large networked systems in
nature and technology.

In Sec. II, we describe our gradient network model and
derive a formula for the critical coupling parameter required

for the onset of synchronization. In Sec. III, we provide nu-
merical verifications. A brief discussion is presented in
Sec. IV.

II. GRADIENT SCALE-FREE NETWORKS
AND FORMULA FOR THE ONSET
OF SYNCHRONIZATION

A. Gradient scale-free networks

A theoretical framework to encompass synchronization
in gradient networks can be quite general. In fact, most sce-
narios of network synchronization considered so far2–7 can
be understood from the gradient-network point of view.

In the existing random gradient-field model,19,20 once a
field is established, the link between a pair of nodes is purely
directed. For example, if the gradient field stipulates a link
from node i to node j, it is directed in the sense that only i
can influence j, but not the other way around. However,
communication and/or interactions between two nodes in the
network can in general be bidirectional, although the cou-
pling strength can depend on the direction of interaction. It is
thus necessary to consider the situation in which, for in-
stance, the link from node n to node m carries more weight
than the link from m to n. The links can therefore be highly
asymmetrical, and so is the coupling matrix. Such a network
can be regarded as the superposition of two subgraphs: one
undirected, symmetric network and another unidirected gra-
dient network. In particular, let Cnm be the coupling from
node m to node n and we have Cnm�Cmn. Defining �Cnm

�Cnm−Cmn, we can write Cnm= �Cnm+Cmn� /2+�Cnm /2,
where the first term is a symmetrical coupling, and the sec-
ond term represents a directed coupling. Since �Cnm

=−�Cmn, the direction of the coupling is defined to be from
node m to n if �Cnm�0 and vice versa. The original network
can thus be regarded as being composed of a symmetrical
network characterized by the symmetrical coupling term, and
a gradient network represented by �Cnm. Both networks are
weighted since the coupling value depends on the indices n
and m.

The class of gradient networks to be treated in this paper
is constructed as follows. We start from the adjacent matrix
A= �anm�, where anm=1 if there is a link between nodes n and
m and 0 otherwise, and ann=0. The degree of node n is thus
kn=�manm. From the adjacent matrix A, we set snm=anm�1
+g� if kn�km, and snm=anm�1−g� if kn�km. We then obtain
the gradient matrix S= �snm�, where g characterizes the
strength of the gradient. The coupling matrix C= �cnm� is
defined by cnm=knsnm /� jsnj. The coupling gradient from
node m to node n, therefore, is �cnm=cnm−cmn. For positive
g, the gradient points from nodes with large degrees to nodes
with small degrees.

B. Kuramoto dynamics and order parameter

The Kuramoto model on a gradient network can be writ-
ten as
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�̇n = �n + ��
m=1

N

cnm sin��m − �n� , �1�

where �n and �n are the phase and natural frequency of os-
cillator n, respectively, and � represents the overall coupling
strength. In general, the frequency �n follows some probabil-
ity distribution ����. For theoretical tractability, we assume
that the network is densely connected and has a large size. A
global order parameter characterizing the degree of coher-
ence in the network is13

r �
�n=1

N rn

�n=1
N dn

in , �2�

where the local order parameter rn is given by

rnei�n � �
m=1

N

cnm	ei�m
t �3�

and

dn
in � �

m=1

N

cnm �4�

is the total incoming coupling strength of node n. The critical
coupling value �c for the onset of synchronization is defined
to be the point where r starts to increase from 0. In Ref. 13,
a general formula is provided for the order parameter for the
coupling regime �	�c. It is

r2 =
1


1
2
2

	dindout
3

	�din�3dout
	din
2� �

�c
− 1�� �

�c
�−3

, �5�

where dn
out=�m=1

N cmn denotes the total outgoing coupling
strength of node n, and the two constants 
1 and 
2 are given
by


1 = 2/����0�� and 
2 = − ����0�
1/16, �6�

which are determined by the first-order ���0�� and the
second-order ����0�� approximations of the frequency distri-
bution, respectively. The critical coupling �c is given by

�c = 
1
	din


	dindout

, �7�

where 	·
 denotes some ensemble average.
For our gradient-field network model, the total incoming

coupling strength din and the total outgoing coupling strength
dout at each node assume real values and they are in general
unequal. The main task of this paper is to investigate, ana-
lytically, how the balance between din and dout will affect the
onset of network synchronization.

C. Formula for onset of synchronization

Since din and dout determine the onset of synchroniza-
tion, we shall evaluate these quantities analytically. First, let
us examine din. For node n, dn

in=�mcnm=�mknsnm /� jsnj =kn.
Therefore, the total incoming coupling din is just the degree
k. By definition, the total outgoing coupling of node n is
dn

out=� jcjn=� jkjsjn /�lsjl. To work out dout, rearrange the
nodes by their degrees in descending order, i.e., k1�k2

� ¯ �kN. Thus the gradient matrix S becomes regular in the
sense that the elements snm in the upper triangular region of
the matrix�m�n� are �1−g� or 0, depending on whether the
two nodes are connected or not, and the elements in the
lower triangular region are �1+g� or 0. Denoting

i = �
j

sij/ki,

we have

i =
1

ki
�

j

sij

=
1

ki
�

j�i

aij�1 + g� + �
j�i

aij�1 − g��
=

1

ki
· �kiQ�k � ki��1 + g� + kiQ�k � ki��1 − g��

= 1 + g�Q�k � ki� − Q�k � ki�� ,

where

Q�k� = kP�k�/	k


is the probability that the node has degree k if it is reached by
following a randomly selected link, or the degree distribution
of neighboring nodes. Assuming P�k�=CPk−�, k�kmin,
kmax�kmin, and ��2, then for a large network, we have
CP���−1�kmin

�−1. And Q�k� can be written as Q�k�
=CQk1−� ,k�kmin, where CQ���−2�kmin

�−2. Therefore, we get

Q�k � ki� = �
ki

kmax

Q�k�dk =
CQ

� − 2
�ki

2−� − kmax
2−�� ,

Q�k � ki� = �
kmin

ki

Q�k�dk =
CQ

� − 2
�kmin

2−� − ki
2−�� ,

where kmin and kmax are the minimum and the maximum
node degree of the network. This leads to

i = 1 + g
CQ

� − 2
�2ki

2−� − �kmin
2−� + kmax

2−��� .

Letting C2=kmin
2−�+kmax

2−�, we can further simplify the above
expression as

i = 1 −
gCQC2

� − 2
+

2gCQ

� − 2
ki

2−� = a + bki
2−�, �8�

where a=1−gCQC2 / ��−2� and b=2gCQ / ��−2�.
Going back to the coupling matrix, we have cin=sin /i

and, hence,

dn
out = �

i

cin

= �
i

sin

i

= �
i�n

ain�1 − g�
i

+ �
i�n

ain�1 + g�
i

= kn�
kn

kmax Q�k��1 − g�
a + bk2−� dk + �

kmin

kn Q�k��1 + g�
a + bk2−� dk�
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= kn�
kmin

kmax Q�k�
a + bk2−�dk

+ g��
kmin

kn Q�k�
a + bk2−�dk − �

kn

kmax Q�k�
a + bk2−�dk�� .

Noting that

� Q�k�
a + bk2−�dk =� CQk1−�

a + bk2−�dk

=
CQ

�2 − ��b
ln�a + bk2−�� ,

we have

dn
out = kn CQ

�2 − ��b
ln

a + bkmax
2−�

a + bkmin
2−�

+ g
CQ

�2 − ��b
ln

�a + bkn
2−��2

�a + bkmin
2−���a + bkmax

2−��� . �9�

Since b=2gCQ / ��−2�, we have CQ / ��2−��b�=−1 / �2g�.
Since it is assumed that the degree exponent ��2 and
kmax�1, we have kmax

2−� �1. Then we can neglect the term
kmax

2−� and further simplify Eq. �9�. Recalling that CQ= ��
−2�kmin

�−2 and C2=kmin
2−�+kmax

2−� �kmin
2−�, we obtain

a = 1 −
gCQC2

� − 2
= 1 −

gCQ

� − 2
kmin

2−� = 1 − g

and

b =
2gCQ

� − 2
=

2g

kmin
2−� .

Inserting all these expressions into Eq. �9�, we obtain

dn
out = kn 1

2g
�ln

1 + g

1 − g
+ g ln�1 + g��1 − g��

− ln�1 − g + 2g� kn

kmin
�2−��� . �10�

Letting

F =
1

2g
�ln

1 + g

1 − g
+ g ln�1 + g��1 − g��

=
1

2g
��1 + g�ln�1 + g� − �1 − g�ln�1 − g�� �11�

and

Gn = − ln�1 − g + 2g� kn

kmin
�2−�� , �12�

we can rewrite Eq. �10� as

dn
out = kn�F + Gn� . �13�

Since F does not depend on the node’s degree, it can be
regarded as the symmetrical part of the couplings of each
link, which depends only on the gradient parameter g and is
decreased as the absolute value of g increases. In contrast,
the term G is a joint function of g and kn. While G depends

on g monotonically, its exact value, however, is strongly af-
fected by the node’s degree: nodes of larger degrees have
larger G �Eq. �12��. For small g, we have

F � 1 − g2/6 and G � g − 2g�k/kmin�2−�.

Therefore, the leading term of G is g, and when g approaches
0, dn

out returns to kn.
Finally, we have

	dindout
 = �
kmin

kmax

�F + G�k��k2P�k�dk

= F · 	k2
 + 	G�k�k2
 . �14�

Equation �14� is our key result, which gives, implicitly, the
dependence of �c on the coupling gradient parameter g and
the network-topology parameter ���.

From Eq. �13�, we see that the introduction of coupling
gradient changes only the weights H=F+G of the outgoing
couplings at each node, while the total coupling cost of the
network is kept unchanged. That is to say, gradient changes
the distribution of H from an even form �H=1 in an un-
weighted network� to an uneven form �H=H�g ,k� in a
weighted network�. According to the value of H, we are able
to divide the nodes into two groups: nodes with degrees
larger than a critical value kc have H�1, while those with
degrees smaller than kc have H�1 �for positive g�. The criti-
cal degree kc can be calculated by requiring H=1,

F − ln�1 − g + 2g� kc

kmin
�2−�� = 1,

which yields

kc = kmin · ln1

2
−

1

2g
�1 − eF−1��1/2−�

. �15�

The heterogeneous distribution of H becomes more apparent
when considering the extreme cases of k�kmax and k�kmin.
From Eqs. �11� and �12�, we have

H�kmax� � F − ln�1 − g� =
1

2g
�1 + g�ln

1 + g

1 − g
�16�

and

H�kmin� � F − ln�1 + g� =
1

2g
�1 − g�ln

1 + g

1 − g
. �17�

Clearly, H�kmax��H�kmin�. Since the total outgoing coupling
is a constant for the network, i.e., �idi

out=�iHiki=�i,jcij

=�iki
in=�iki, the gradient effect can thus be understood as a

shifting of partial of the outgoing coupling from small-
degree nodes to large-degree nodes.

Now we can write down H explicitly,

H = F − ln1 − g + 2g� k

kmin
�2−�� . �18�

For a fixed gradient strength g, an increase of the network
homogeneity, i.e., the degree exponent �, leads to a suppres-
sion of the term 2g�k /kmin�2−�, which will make the distribu-
tion of H more homogeneous. As a result, it will hinder
synchronization in the sense that the value of critical cou-
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pling �c increases with the increase of the degree exponent �.
Our analysis provides a base for understanding the inter-

play between the coupling gradient and the network topology
in shaping the network synchronization, as follows. A change
in the gradient strength g or in the degree exponent � does
not change the total coupling cost of the network; it only
redistributes the weight of the outgoing couplings at each
node according to its degree information. When gradient g
�0 is introduced, the outgoing couplings of small-degree
nodes with k�kc are reduced by an amount that is added to
large-degree nodes having degree k�kc. As a result, a het-
erogeneous distribution in H arises which, in turn, decreases
the value of �c �see Eq. �14��. This enhancement of network
synchronization, however, is modulated by the network to-
pology. By increasing the degree exponent �, the distribution
of H tends to be homogeneous �i.e., H�1� and, conse-
quently, network synchronization is suppressed. These are
the mechanisms that govern the roles of coupling gradient
and network topology in synchronization. Our analysis sug-
gests that �i� in the presence of coupling gradient, synchro-
nization in a network of even nonidentical node dynamics
can generally be enhanced, and �ii� in comparison with ho-
mogeneous networks, coupling gradient appears to be more
advantageous for heterogeneous networks in the sense that,
under the same gradient strength, they are more synchroniz-
able.

III. NUMERICAL VERIFICATIONS

To provide numerical support for our theory, we use gen-
eralized scale-free networks generated by using the algo-
rithm in Ref. 21, where the degree exponent � can be ad-
justed. The frequency distribution of the phase oscillators is
chosen to be

���� = ��3/4��1 − �2�, − 1 � � � 1

0, � � − 1 or � � 1.
�19�

The initial phases of the oscillators are randomly distributed
in �0,2��. In the computations, data for a transient period of
time �T0=100� are disregarded and the global order param-
eter is calculated for T=100 for different values of the gra-
dient parameter g. Figure 1 shows, for g=0.5, 0, and −0.5, r2

versus the coupling parameter �. For each case, r starts to
increase from zero when � increases through some critical
value �c, indicating the onset of synchronization among the
phase oscillators in the network. The remarkable observation
is that the value of �c for g=0.5 is smaller than that for g
=0. Since a positive value of g corresponds to the situation in
which the coupling gradient points from larger-degree nodes
to small-degree nodes, we see that such a positive gradient
field enhances the network synchronization. In contrast,
when the gradient field points in the opposite direction, i.e.,
from small-degree nodes to large-degree nodes, the network
becomes more difficult to synchronize, as characterized by a
larger value of �c comparing with that in the nongradient
�g=0� case. The solid curves in Fig. 1 are from Eq. �5�,
which agree reasonably well with the numerics. In particular,
the agreement between the theoretical and numerical values
of �c is good.

Numerical support for our main analytic result Eq. �14�,
which enables the dependence of �c on the gradient param-
eter g to be implicitly calculated, is shown in Fig. 2, where
the data points are from direct numerical simulation, and the
solid curve is our analytic prediction. In simulation, �c is
defined as the point from where r2�2�10−2 in Fig. 1. The
agreement is reasonable. We observe a monotonic reduction
of �c as g is increased from a negative value. Figure 2 thus
represents a quantitative verification, on a paradigmatic class
of solvable network-dynamics model, for the qualitative re-
sult concerning the synchronizability of gradient networks
obtained previously.9

Simulations have also been conducted to uncover the
dependence of �c on �. In particular, the degree exponent �
is varied systematically from 3 to 25, during which the size
and average degree of the network are maintained at con-
stant. Our result, Eq. �18�, suggests that �c increase mono-

FIG. 1. �Color online� For an ensemble of ten scale-free networks of N
=1500 nodes and of degree exponent �=3, the average value of the square
of the global order parameter r2 vs the coupling parameter � for three values
of the gradient parameter g. The average degree of the networks is chosen to
be rather large: 	k
=400. �The reason is that the theoretical formulas Eqs.
�5� and �7�, originally derived in Ref. 13, hold only for reasonably densely
connected networks.� We see that a positive gradient field, which points
from large-degree to small-degree nodes, can enhance synchronization in the
sense that the onset of synchronization occurs for a smaller value of � as
compared with the nongradient case �g=0�. A negative gradient field tends
to hinder synchronization.

FIG. 2. For an ensemble of scale-free networks, the critical coupling param-
eter �c vs the gradient parameter g. The solid curve is from the main analytic
result Eq. �14�. The network parameters are N=5000, �=3, and 	k
=100.
We observe a monotonic decrease in �c as g is increased from a negative
value and a reasonable agreement between theory and numerics.
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tonically with �, and direct numerical computations indeed
indicate so, as shown in Fig. 3 for the cases of g=0.01 and
0.2. For g=0.01, the analytic prediction �the solid curve that
matches the corresponding data� is very good. However, for
g=0.2, the theoretical and numerical results do not agree
with each other well, except for the cases in which � is
small. This is somewhat expected, as the starting point of our
theoretical treatment, Eqs. �5� and �7�, is valid under the
assumption of large and dense networks. For large value of
g, as � is increased, the network size and linkage density
need to be increased to maintain the applicability of Eqs. �5�
and �7� while, for comparison purpose, the simulations in
Fig. 3 are carried out under constant network size and aver-
age degree.

Remarks. By a descending order of the predicating pre-
cision �or, by an ascending order of the computing effi-
ciency�, in Ref. 13 the authors proposed four approximating
approaches: the time average theory �TAT�, the frequency
distribution approximation �FDA�, the perturbation theory
�PT�, and the mean-field theory �MF�. Among them, the MF
approach requires only knowledge of the frequency distribu-
tion and the degree distribution of the network, and thus is
the only feasible approach for analyzing realistic networks
when detailed information about the network structure �the
coupling matrix� is not available. We have thus chosen the
MF approach. As discussed in Ref. 13, the MF approxima-
tion is based on the assumption that the eigenvector u asso-
ciated with the largest eigenvalue � satisfies uno�kn, with kn

the degree of node n. We have verified that this assumption is
usually satisfied for relatively small gradient strength, e.g.,
g�0.1. Thus predictions based on the MF theory are good
for the small g regime. As g becomes large, the discrepancies
between the MF predictions and numerics grow. To improve
the theoretical prediction in the large g regime, one can use
the more exact formula obtained, for example, by using the
perturbation theory. In this case, there is no explicit formula
for the largest eigenvalue of the coupling matrix; it needs to
be calculated numerically.

IV. DISCUSSIONS

It has been demonstrated that gradient field on a com-
plex network, when properly designed, can enhance the net-
work’s ability to achieve synchronization.9 For example, for
a scale-free network, when the gradient field is such that the
couplings from hub nodes to smaller-degree nodes in the
network are stronger than the respective couplings in the
opposite direction, network synchronizability can be en-
hanced significantly. This result provides insight into a para-
dox in network science: scale-free networks are ubiquitous in
natural and technological systems but they appear to be more
difficult to synchronize than random networks.4 The key is
weight and asymmetrical interactions: their effects on net-
work can be understood by the dynamics of some equivalent
gradient networks. This study of the synchronizability of gra-
dient networks is qualitative in the sense that it is based on
the standard approach of master-stability function22 and
eigenratio analysis,2 which requires that all node dynamics
be identical. The purpose of the present paper is to provide
analytic results to place the phenomenon of enhanced syn-
chronization in complex gradient networks on a more quan-
titative and therefore firmer ground.

We have shown here that analytic treatment of the
gradient-network synchronization problem is indeed possible
when the complexity of the local node dynamics is reduced.
Our choice is the classical Kuramoto model where the local
dynamics is that of a simple phase oscillator. Since the local
oscillator dynamics are initially different with different fre-
quencies, the Kuramoto model provides a paradigm for ad-
dressing synchronization in a network with heterogeneous
local dynamics, making the results more general as com-
pared with those from the synchronizability analysis. A key
to our work is the recent analysis of the Kuramoto model on
scale-free networks where analytic formulas of the order pa-
rameter and of the critical coupling parameter for the onset
of synchronization have been derived.13 Based on these re-
sults, we are able to obtain, for complex gradient networks,
an implicit formula relating the critical coupling parameter to
the gradient field strength and a parameter characterizing the
network topology. The formula has been verified by numeri-
cal results on a class of scale-free networks. The formula can
also be used to understand recent numerical findings23 that
the onset of synchronization in a scale-free network requires
less coupling than that for more homogeneous networks.
While our theory is derived for large and densely connected
networks, the general finding that synchronization can be
enhanced by gradient couplings applies to any network. Syn-
chronization in complex networks has been an active field of
research, but most existing results concern the network syn-
chronizability and they are qualitative. Our result represents
one of the few more quantitative results in this area.
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