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For a microelectromechanical �MEM� resonator, the combination of mechanical nonlinearity and
electrical driving force can lead to bistability. In such a case, the system exhibits two coexisting
stable oscillatory states �attractors�: one with low and another with high energy. Under the influence
of noise, with high probability the system can be perturbed into the low-energy state. We propose
a robust control scheme to place the system in the high-energy state. Our idea is not to pull the
system out of the bistable regime but instead to take advantage of the nonlinear dynamics to achieve
high-energy output. In particular, our control scheme consists of two steps: bifurcation control that
temporarily drives the system to a regime with only one attractor, one that is the continuation of the
high-energy attractor in the bistable regime; and ramping parameter control that restores the bista-
bility while maintaining the system in the high-energy attractor. We derive an analytic theory to
guide the control, provide numerical examples, and suggest a practical method to realize the control
experimentally. Our result may find potential usage in devices based on MEM resonators where
high output energy is desired. © 2008 American Institute of Physics. �DOI: 10.1063/1.2825598�

Small-sized devices such as microelectromechanical sys-
tems (MEMS) and nanoelectromechanical systems have
become common in many fields of science and
engineering.1–7 These devices have a simple structure but
they show surprisingly rich dynamical behaviors such as
bistability, chaos, and energy localization. A main chal-
lenge in applications of small-sized devices is how to
achieve high output energy. This is important for practi-
cal devices such as resonators and microgenerators. One
way to address this problem is to use large arrays of
coupled MEMS resonators to obtain large output.6 How-
ever, there are potential difficulties to employ this scheme
in realistic applications due to the many complex and
undesirable dynamical behaviors associated with it, such
as energy localization7 and spatiotemporal chaos.8 An al-
ternative approach is to use a strong driving force to en-
hance the oscillating energy of the MEM beam. In such a
case, a common obstacle to high-amplitude oscillation is
bistability, where two stable states coexist: one of high
and another of low amplitude. There is usually a high
probability that the system dynamics approaches the low-
energy state for random initial conditions. A remedy to
overcome this difficulty is to use control to stabilize the
system in a high-energy oscillation mode. In this paper,
we develop a robust control scheme to achieve this goal.
In particular, we investigate a MEM cantilever-beam
resonator, perhaps the most common element in MEM
devices. Assuming that the system is in a bistable regime,
we articulate a control strategy that consists of two steps:
bifurcation control to place the system in the vicinity of
an attractor that is the continuation of the high-energy
mode in the bistable regime, and ramping parameter con-
trol to bring the system back to the original parameter
regime while maintaining the high-energy oscillations.

The controls are guided by analytic formulae that we ob-
tain using the averaging method. We also suggest an ex-
perimental implementation of the control strategy. Our
work provides a well justified and practically viable ap-
proach to achieving desirable performance from MEM
resonators.

I. INTRODUCTION

Microelectromechanical �MEM� resonators in the form
of cantilever or doubly clamped beams have attracted a great
deal of attention in recent years.1–6 These resonators are the
core of many MEM based, state-of-the-art technologies.
While the small sizes of MEM resonators can bring signifi-
cant benefits in a variety of applications, such as microgen-
erators, the outputs of such resonators are accordingly small,
which may lead to low sensitivity, for example, in a sensor
application. This can degrade the system performance when
electrical and/or mechanical noise is present. It is thus of
interest to investigate viable approaches to enhancing the
output energies of MEM resonators. In basic physics, the
dynamics of MEM oscillators are also of great interest. For
instance, an array of coupled MEM cantilever beams can
exhibit the phenomenon of energy localization,7 which is
ubiquitous in many other systems in condensed matter and
optical physics.9 Due to its accessibility to high-precision
and demanding experimental studies, MEM oscillator arrays
have become a paradigm for understanding the energy-
localization phenomenon in complex physical systems.9 In
order to achieve large energy output from a MEM resonator,
its key component, typically a cantilever beam, needs to os-
cillate with a large amplitude. One may attempt to address
the problem by searching for better materials. However,
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there are limits to material properties.10 An alternative ap-
proach is to employ a strong background driving force to
enhance the oscillation of the MEM beam. This approach is
feasible if the underlying system is linear, where a high input
would correspondingly generate a high output. The difficulty
is that a MEM beam system, when subject to strong external
forcing, typically behaves nonlinearly.1–6 For a nonlinear dy-
namical system, strong input can result in low output that
cannot possibly meet the energy requirement. In this regard,
for a MEM beam resonator the most common obstacle to
high-amplitude oscillation is bistability, where the system ex-
hibits two stable states �attractors�: one of high and another
of low amplitude. For a randomly prepared initial state, there
is a high probability that the system dynamics approaches the
low-amplitude state. This is so because, if the initial energy
of the system is low, its dynamical state will be in the basin
of the low-energy attractor. Even when the system is initially
in a high-energy state, random parameter drift, noise, and
external perturbations can all move the system into the low-
amplitude state. To achieve certain desired energy output, a
control strategy is necessary.

In this paper, we develop an effective control method to
maintain a MEM beam resonator in its high-energy state.
Assume the system operates in a bistable regime so that
high-amplitude oscillations are one of the allowed states of
the system. Our idea is based on bifurcation control to per-
turb the system by changing an accessible parameter so that
it is in a regime where only one attractor exists, which is the
continuation of the high-energy attractor in the bistable re-
gime. The parameter is then changed gradually back to its
original value in a way so as to keep the system in the vi-
cinity of the high-amplitude attractor. We call this step ramp-
ing parameter control. To demonstrate the working of our
control method, we shall consider a simplified model of
MEM cantilever beam and obtain analytic understanding of
the bifurcation of the system by using the averaging method
�Sec. II�. A control law can then be derived based on the
analytic formula and numerical demonstration will be pro-
vided �Sec. III�. A possible scheme for experimental imple-
mentation of our control method will be proposed �Sec. IV�.

II. BIFURCATION ANALYSIS

The dynamics of a MEM cantilever beam is in general
described by a sophisticated nonlinear partial differential
equation3 that involves complicated mechanical and electri-
cal interactions between the beam and its surroundings.
However, if one focuses on the motion of the free end of the
beam, the system equation can be simplified greatly as the
following nonlinear ordinary differential equation:11

mẍ + bẋ + k2x + k4x3 = m� cos�2�ft� , �1�

where m is the equivalent mass of the beam, x�t� is the dis-
placement of the beam’s free end, b is the damping coeffi-
cient, k2 and k4 are the harmonic and quadratic spring con-
stants, respectively. The sinusoidal driving force term of the
amplitude m� �� is the acceleration� and frequency f come
from the interaction of the beam with an external time-
varying electrical field. If � is large, the frequency response

of the beam will be strongly nonlinear, typically exhibiting
bistability. To obtain an analytic understanding of the dy-
namical behavior of the system, we make use of the averag-
ing method.14 In particular, we write x�t�=U�t�cos��t�
+V�t�sin��t�, where �=2�f is the angular velocity of the
driving, U�t� and V�t� are sinusoidal amplitude-modulating
functions. Let u�t� and v�t� be the averaged functions of U�t�
and V�t�, respectively, over one driving period T=2� /�. We
obtain, from Eq. �1�, the following set of two coupled
equations:14

du

dt
= ��2 − �0

2�v −
3

4

k4

m
v�u2 + v2� +

�0

Q
�u ,

�2�
dv
dt

= ��2 − �0
2�u −

3

4

k4

m
u�u2 + v2� −

�0

Q
�v + � ,

where �0=�k2 /m is the intrinsic linear frequency of the
beam and Q=�mk2 /b is the quality factor of the beam. The
average amplitude function is H�t�=�u2�t�+v2�t�, and from
Eq. �2�, we obtain

����0
2 − �2� −

3

4

k4

m
H�2

+
�2�0

2

Q2 	H = �2. �3�

It can be seen that if k4=0, Eq. �3� represents the standard
linear frequency response equation. Note that the model
equations are not made dimensionless so that comparison
with experimental results is convenient. In particular, to il-
lustrate the occurrence of bistability, we set the following
parameter values: �m , b , k2 , k4 , f , ��= �5.46�10−13 kg,
6.24�10−11 kg /s , 0.303 N /m, 5�108 N /m3, 1.25�105

Hz, 1.56�104 m /s2�, which are chosen based on the experi-
mental MEM cantilever beam in Ref. 7. For relatively small
value of the driving acceleration �, the frequency response is
similar to that from a linear system, as shown by the lower
curve in Fig. 1. As � is increased, bistability gets in, causing
the frequency response to be nonlinear, as shown by the up-
per trace in Fig. 1, where the two vertical lines denote the
boundaries of the bistable regime in which there are two
stable solutions, one of relatively large amplitude and an-
other of smaller amplitude, and an unstable solution �dashed
curve� in between the stable solutions. In the bistable regime,
the frequency response thus exhibits a hysteresis behavior.
Dynamically, bistability is induced by saddle-node bifurca-
tions of the system as � is varied. At the lower-frequency
boundary, the stable solution with large amplitude is continu-
ous, and the low-amplitude solution is generated by a saddle-
node bifurcation. Likewise, the saddle-node bifurcation that
creates the high-amplitude solution occurs at the upper-
frequency boundary of the bistable regime, at which the
lower-amplitude solution is continuous. We observe that for
given parameter values, oscillations of large amplitude oc-
curs in the bistable regime. Our goal is to stabilize the sys-
tem in the large-amplitude state.

Suppose now the system is in the bistable regime. With-
out control, there is a high probability that the system will be
in the low-amplitude state. In order to achieve high output
energy, it is necessary to “place” the system at the high-
amplitude branch. One way to achieve this is to apply control
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to shift the bistable regime toward large frequencies so that,
when the driving frequency is fixed, the system gets out of
the bistable regime and is in a regime where the high-
amplitude state is the only stable solution �bifurcation con-
trol�. To guide the bifurcation control, it is necessary to pre-

dict the saddle-node bifurcation at the lower-frequency
boundary of the bistable regime. In the following, we derive
an analytic formula for this bifurcation point.

The Jacobian matrix of system �2� at its fixed point
X= �u ,v� is

DF�X� =
1

2�
 −
�0�

Q
+

3k4uv
2m

− ��2 − �0
2� +

3k4�u2 + 3v2�
4m

�2 − �0
2 −

3k4�3u2 + v2�
4m

−
�0�

Q
−

3k4uv
2m

� . �4�

Denote the two eigenvalues of DF�X� as �1 and �2, respec-
tively. At a saddle-node bifurcation point, at least one of
these two eigenvalues is zero. Thus, a criterion for saddle-
node bifurcation is

�1�2 = �DF�X��

=
1

4�2�0
2�2

Q2 + ��2 − �0
2� −

3k4

m
��2 − �0

2��u2 + v2�

+
27k4

2

16m2 �u2 + v2�2� = 0, �5�

which gives

�0
2�2

Q2 + ��2 − �0
2� −

3k4

m
��2 − �0

2�H +
27k4

2

16m2H2 = 0. �6�

Substituting Eq. �6� into Eq. �3�, we obtain

H3 −
4m

3k4
��2 − �0

2�H2 −
8m2�2

9k4
2 = 0. �7�

Denoting p=−4m��2−�0
2� / �3k4�, q=0, r=−8m2�2 / �9k4

2�.
We can express Eq. �7� as H3+ pH2+qH+r=0. The cubic
roots of Eq. �7� can be written as

H1 = p/3 + A + B ,

�8�
H2,3 = p/3 − �A + B�/2 ± �A − B��− 3/2,

where

A = �3 �M2 + N3 − M, B = b�3 − �M2 + N3 − M ,

M = �2p3 − 9pq + 27r�/54, N = �3q − p2�/9.

At the saddle-node bifurcation, one of the stable fixed points
coalesces with the unstable fixed point so that there are only
two roots of Eq. �7� at the bifurcation point. Thus, a neces-
sary condition for saddle-node bifurcation is

M2 + N3 = ��2p3 − 9pq + 27r�/54�2 + ��3q − p2�/9�3 = 0. �9�

Since q=0, we obtain

p3 = − 27/2r . �10�

Utilizing the definitions of the quantities p , q, and r, we
obtain the critical frequency �or resonant frequency� �c at
the bifurcation point,

�c =�k2

m
+

3

2
3k4�2

2m
�1/3

. �11�

For ���c, the system has one stable fixed point, but for
���c, there are two stable fixed points, as shown in Fig. 1.
Equation �6� can also be derived by a perturbation method,15

but the explicit form of �c �Eq. �11�� is not given in this
reference.

Figure 2 shows the numerically obtained value of the
bifurcation point �c as a function of the harmonic spring

FIG. 1. �Color online� Response amplitude as a function, obtained from Eq.
�3�, of the frequency �. Solid curves are stable solutions and the dashed
curve indicates an unstable solution. The driving acceleration is �
=31.2 m /s2 for the lower line and �=104 m /s2 for the upper line. The left
vertical line is from theory �Eq. �11��.
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constant �open circles�. They are obtained by estimating the
lower boundaries of the bistable regime in driven system �1�,
as shown in Fig. 1. The solid line lying on top of the numeri-
cal points is from the theoretical prediction derived from Eq.
�11�: �c

2=k2 /m+1.5�3k4�2 / �2m��1/3, in which �c
2 and k2

have a linear relationship. For the parameters used in simu-
lation, the values of the first term in the square root of Eq.
�11� range from k2 /m=8�1010 to 5.55�1011, and the sec-
ond term is 1.5�3k4�2 / �2m��1/3=1.04�1010. One can see
that the nonlinearity of the beam can shift the resonant fre-
quency, and for small k2, the shift can be as large as 10%.

One feature of Eq. �11� is that �c does not depend on the
damping coefficient b. This indicates that the saddle-node
bifurcation determining the lower boundary of the bistable
regime is constant with respect to the variation of b. Since,
for a MEM resonator, the damping is mostly due to the in-
fluence of the environment in which the cantilever beam is
embedded, the independence of �c on b suggests that any
control scheme designed according to the saddle-node bifur-
cation approach be robust.

III. IMPLEMENTATION OF CONTROL

The goal of our control scheme is to stabilize a MEM
cantilever beam in a high-amplitude oscillation state, taking
advantage of the nonlinear dynamics of the system, in par-
ticular bistability. To achieve this, we first choose the system
parameters such that it is in a bistable regime. We then apply
a control so that the system moves out of the bistable regime
to a regime where there is one stable solution; i.e., the one
that is the continuation of the high-amplitude solution in the

bistable regime. Referring to Fig. 1, we see that this can be
achieved by “pushing” �c, the lower saddle-node bifurcation
point, toward the right. From Eq. �11�, we see that a simple
way to achieve this is to “enhance” the harmonic spring con-
stant k2 by an appropriate amount. In particular, we generate
a quantity ke�0 and add it to k2. This additional amount of
the harmonic spring constant ke can be realized electrically
through a proper feedback scheme.16 Suppose the system
operates at frequency �. The amount ke can be determined
by requiring

�c
e =�k2 + ke

m
+

3

2
3k4�2

4m
�1/3

� � . �12�

In Sec. IV, we will discuss a practical scheme to realize this
in realistic device applications. After the bifurcation control,
the system settles in the high-amplitude oscillation state. In
order to bring the system back to its original parameter set-
ting while maintaining the high-energy operation, we can
apply ramping parameter control by reducing ke gradually to
zero, which is necessary to keep the system in the basin of
the high-energy state.

In the following subsections, we analyze the two steps of
our control scheme: bifurcation control and ramping param-
eter control.

A. Bifurcation control

With the linear feedback control term kex, the controlled
system can be written as

mẍ + bẋ + �k2 + ke�x + k4x3 = m� cos�2�ft� . �13�

Utilizing the averaging method, we can calculate the
asymptotic oscillation amplitude of the system as a function
of the controlled spring constant k2+ke. A representative ex-
ample is shown in Fig. 3. We observe a saddle-node bifurca-
tion for k2+ke�0.3315 N /m. Beyond this point, the system
possesses only one stable solution, the continuation of the
high-amplitude solution in the bistable regime.

Equation �13� involves k4, the aharmonic spring con-
stant, which is relatively more difficult to measure, say, than
the harmonic spring constant k2

12,13 due to the difficulty to
measure �c accurately in realistic situations where noise is
present. Here we derive a criterion to place the system in the
high-energy state without explicit knowledge of k4. Our idea
is to make use of the phenomenon of resonance. In particu-
lar, if the aharmonic force is weak as compared with the
harmonic force, the system can be regarded as having an
approximate intrinsic frequency. When this frequency
matches the external driving frequency, a resonance occurs,
which can cause the system to oscillate with a maximally
possible amplitude. To proceed, we note from Eq. �4� that the
eigenvalues of the system satisfy

�1 + �2 = − �0/Q � 0. �14�

Thus, at least one of the eigenvalues is negative. If �0=�,
we have

FIG. 2. �Color online� The square of the value of saddle-node bifurcation
point �c

2 as a function of the harmonic spring constant k2. In the
figure, �m , b , k4 , � ,��= �5.46�10−13 kg, 6.24�10−11 kg /s , 5�108

N /m3, 7.85�105 rad /s , 1.56�104 m /s2�. The solid line is the theoretical
result from Eq. �11� and the circles are simulation results obtained by esti-
mating the lower boundary of the bistable regime from the original system
Eq. �1�.
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�1�2 = �DF�X��

=
1

4�2��0
2�2

Q2 + ��2 − �0
2�

−
3k4

m
��2 − �0

2�H +
27k4

2

16m2H2�
=

�0
2

4Q2 +
27k4

2

64m2�0
2H2 � 0. �15�

Equations �14� and �15� imply that both eigenvalues be nega-
tive, indicating the lack of any unstable solution. That is,
when resonance occurs ��0=��, the system is necessarily
outside the bistable regime. The occurrence of resonance
stipulates that the system be in the high-energy state. Thus, it
is only necessary to change ke to induce a resonance to place
the system in the high-energy state.

To achieve an approximately linear resonance state,
knowledge of the aharmonic spring constant k4 is not neces-
sary. That is, we can set �=��k2+ke� /m, which gives the
required control perturbation to k2,

ke = �2m − k2. �16�

B. Ramping parameter control

In the bistable regime, the system possesses two stable
fixed-point attractors, one with high and the other with low
energy, each with its own basin. As a parameter of the sys-
tem changes, the system, which is already in the high-energy
state via a proper bifurcation control, can move into the basin
of the low-energy attractor. The purpose of ramping param-
eter control is to keep the system in the high-energy state.

Figure 4 shows, in the two-dimensional phase space
�u ,v�, a typical structure of the averaged system in the

bistable regime, where the fixed point attractors are denoted
by closed circles, and the unstable saddle fixed point by open
circle. The stable and unstable manifolds of the unstable
fixed point are also shown. In this planar system, the two
stable fixed-point attractors are in the enclosures of the un-
stable manifold originated from different directions of the
saddle-fixed point, and its stable manifold is the boundary
separating the basins of the fixed-point attractors.14 The lo-
cations of the fixed points and the basin boundary depend on
the control parameter. After the bifurcation control, the sys-
tem is in the vicinity of the attractor that is the continuation
of the high-energy attractor in the bistable regime. This at-
tractor is located at the star in Fig. 5. If the control is sud-
denly removed, i.e., we make the harmonic spring constant
k2 to change from k2

0+ke to k2
0, where k2

0 is the original un-
controlled harmonic spring constant, the system will move
along the dashed trace in Fig. 5, which is in the basin of the
low-energy attractor for k2. However, if we reduce k2 gradu-
ally from k2

0+ke to k2
0, the high-energy attractor will move its

location smoothly, so will the basin boundary. If the rate of
the parameter change is not too large, the system will always
have time to approach and stay in the vicinity of the high-
energy attractor, despite its shift in the phase space. This
behavior is shown by the solid trace in Fig. 5. We see that,
after the parameter control, the system parameters have been
set back to their original, uncontrolled values, but the system
has been firmly placed in the high-energy attractor.

C. Simulation of control

To actually implement the control scheme, we first set
k2=k2

0. The control parameter k2 is then set to k2=k2
0+ke,

where ke is determined by Eq. �16� based on the consider-

FIG. 3. Response amplitude as a function of k2+ke. The solid curves are
stable solutions and the dashed curve is unstable solution. In the figure, �
=7.85�105 rad /s and k4=5�108 N /m3.

FIG. 4. �Color online� Stable and unstable manifolds of the saddle point in
phase space. The parameters used in this figure are �m , b , k2 , k4 , � , ��
= �5.46�10−13 kg, 6.24�10−11 kg /s , 0.303 N /m, 5�108 N /m3,
7.85�105 Hz, 1.56�104 m /s2�, which are the same as the ones given in
Sec. II.
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ation of resonance. For our parameter setting, we obtain ke

�0.034 N /m. The simulation result is shown in Fig. 6. Ini-
tially we have k2=k2

0 and the system exhibits near-zero am-
plitude oscillation; i.e., it is in the vicinity of the low-energy
attractor. Bifurcation control is applied at t=0.07 s so that
�k2�k2−k2

0 is increased from zero to ke, after which the
system is in a regime where there is only one attractor, the
continuation of the high-energy attractor. At t=0.14 s, ramp-
ing parameter control begins, where �k2 starts to decrease
gradually from k2 to zero. We observe that, despite the pa-

rameter changes, the system oscillates with larger and larger
amplitude, as it has been kept in the vicinity of the high-
energy attractor, which moves further away from the lower
boundary of the bistable regime as k2 �or �e� is reduced. As
a result, the oscillation amplitude associated with the high-
energy attractor keeps increasing as k2 is reduced. At t
=0.21 s, ramping parameter control is ended, and the system
parameters have been set back to their initial values before
the control. Apparently, due to the control, the system oscil-
lates with much larger amplitude, as shown in Fig. 6.

IV. DISCUSSION

In summary, we have devised a robust control scheme to
allow a MEM cantilever beam to oscillate with a much larger
amplitude than that which would occur without control. The
basic guideline is to take advantage of the nonlinear dynam-
ics of the system, in particular bistable frequency response.
The system is first brought into an operational regime via
some proper bifurcation control where the only attractor state
is one that can be continued to the state with much higher
energy in the bistable regime. The amount of parameter
change necessary for the bifurcation control has been ob-
tained analytically. Ramping parameter control is then ap-
plied to bring the system back to the bistable regime, but the
system is maintained in the large-amplitude oscillation state.
Since the high-energy state is associated with a fixed-point
attractor in the phase space, small noise will not affect the
control as, throughout the control, the system is always in the
vicinity of the attractor, which is reasonably distant from the
basin boundary. Our control scheme is thus expected to be
robust and can be applied in realistic device application.

The central technical approach to realizing our control
scheme is to modulate the harmonic spring constant of the
MEM cantilever beam. Here we suggest a method that is
potentially experimentally implementable. Say we fabricate a
thin beam that is vertically attached to the resonant cantilever
beam and then apply an electrostatic force through an elec-
trode, the magnitude of which is determined by the voltage
difference between the attached beam and the electrode. The
instantaneous displacement x�t� of the resonant cantilever
beam can be measured by devices such as position-sensing
circuit or optical microprobe.17 The displacement is then fed
into a properly designed circuit that provides a voltage signal
proportional to the feedback control signal kex�t�, which then
determines the desirable electrostatic force.
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