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There has been mounting evidence that many types of biological or technological networks possess
a clustered structure. As many system functions depend on synchronization, it is important to
investigate the synchronizability of complex clustered networks. Here we focus on one fundamental
question: Under what condition can the network synchronizability be optimized? In particular, since
the two basic parameters characterizing a complex clustered network are the probabilities of inter-
cluster and intracluster connections, we investigate, in the corresponding two-dimensional param-
eter plane, regions where the network can be best synchronized. Our study yields a quite surprising
finding: a complex clustered network is most synchronizable when the two probabilities match each
other approximately. Mismatch, for instance caused by an overwhelming increase in the number of
intracluster links, can counterintuitively suppress or even destroy synchronization, even though
such an increase tends to reduce the average network distance. This phenomenon provides possible
principles for optimal synchronization on complex clustered networks. We provide extensive nu-
merical evidence and an analytic theory to establish the generality of this phenomenon. © 2008
American Institute of Physics. �DOI: 10.1063/1.2826289�

The complex-network approach has recently been used
widely to investigate and understand the dynamics and
statistical properties of many-body systems, such as neu-
ron systems1 and computer networks.2,3 Synchronization
is one of the fundamental properties characterizing the
collective motion of a complex many-body system. There
has been much interest in this topic, but most existing
works have focused on the small-world4 and the
scale-free5 network topologies. In the past several years,
the importance of complex clustered topology has been
recognized, especially in biological, social, and certain
technological networks. Such a network can be repre-
sented by a collection of sparsely linked clusters of nodes,
where the connectivity within any individual cluster is
dense. Examples of complex clustered networks include
certain computer networks,2,3 protein-protein interaction
networks,6–8 and metabolic graphs.9 Investigation of syn-
chronization in complex clustered networks has begun
only recently.10,11 In this paper we focus on one basic
question: under what condition can the synchronizability
of a complex clustered network be optimized? One way
to address this question is to recognize the two basic pa-
rameters characterizing a complex clustered network:
the probabilities of intercluster and intracluster connec-
tions. It is thus insightful to investigate, in the corre-
sponding two-dimensional parameter plane, regions
where the network can be best synchronized. Our study
yields a quite surprising finding: a complex clustered net-
work is most synchronizable when the two probabilities

match each other approximately. Mismatch, for instance
caused by an overwhelming increase in the number of
intracluster links, can counterintuitively suppress or even
destroy synchronization, even though such an increase
tends to reduce the average network distance. This sug-
gests that, to achieve robust synchronization in a complex
clustered network, simply counting the number of links is
not enough. Instead, links should be classified carefully
and placed properly between or within the clusters to
optimize possible synchronization-related functions of the
network. The potential significance of our result can be
illustrated by a specific example: efficient computation on
a computer network. Suppose a large-scale, parallel com-
putational task is to be accomplished by the network, for
which synchronous timing is of paramount importance.
Our result can provide useful clues as to how to design
the network to achieve the best possible synchronization
and consequently optimal computational efficiency.

I. INTRODUCTION

Recent years have witnessed a growing interest in the
synchronizability of complex networks.12–24 Earlier
works12–18 suggest that small-world4 and scale-free5 net-
works, due to their small network distances, are generally
more synchronizable than regular networks. It has been
found, however, that heterogeneous degree distributions typi-
cally seen in scale-free networks can inhibit their
synchronizability,19 but adding suitable weights to the net-
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work elements can enhance their chances to synchronize
with each other.20–23 Synchronizability of complex clustered
networks has begun to be studied only recently.10,11 In par-
ticular, the dependence of synchronizability on the number of
clusters in the network has been investigated in Ref. 10, with
the result that a network can become more synchronizable
with the number of clusters if there are random, long-range
links. In the absence of such links, the synchronizability
would deteriorate continuously as more clusters appear in the
network.

Viewing biological cells in terms of their underlying net-
work structure is a useful concept and has attracted much
attention recently.25–29 Over the past several years, network
science has been developed and mathematical treatments
have been employed to understand the relation between the
topological structure of networks and their functions.29–33

Organizing biological information using the network idea
has been fundamental to utilizing various system-level ap-
proaches to understanding biological function. A key organi-
zational feature in many biological systems is the tendency
to form a clustered network structure.6–9 For example, pro-
teins with a common function are usually physically associ-
ated via stable protein-protein interactions to form larger
macromolecular assemblies. These protein complexes �or
clusters� are often linked together by extended networks of
weaker, transient protein-protein interactions to form interac-
tion networks that integrate pathways mediating the major
cellular processes.6,7 As a result, a protein-protein interaction
network can be viewed naturally as an assembly of intercon-
nected functional clusters, or a complex clustered network.
Another example is the metabolic network of organisms. It
has been found that various metabolic networks are orga-
nized into many small, highly connected clusters that com-
bine in a hierarchical manner into larger, less cohesive units.
For example, within the Escherichia coli, the uncovered hi-
erarchical modularity is highly correlated with known meta-
bolic functions. It is possible that the clustered network ar-
chitecture is generic to system-level cellular organization.9

Recent works have also revealed that the clustered topology
is fundamental to many types of social and technological
networks.34–36

In biology, synchronization is one of the most funda-
mental dynamics.37 For examples, fireflies in Southeast Asia,
stretching for miles along the river bank, by adjusting the
rhythms on receiving signals from others, can flash
synchronously.38 The heart’s pacemaker, the so-called si-
noatrial node, consists of about 10 000 synchronous cells,
and generates the electrical rhythm that commands the rest of
the heart to beat.39 Other examples include the rhythmic ac-
tivity of cells of the pancreas40 and of neural networks.41 As
the complex, clustered network topology is necessary for de-
scribing and understanding the dynamics and function of
some key biological systems, it is important to study the
synchronizability of such networks.

Given a complex network with a fixed �large� number of
nodes, it is believed that its synchronizability can be im-
proved by increasing the number of links. This is intuitive as
a denser linkage makes the network more tightly coupled or,
“smaller,” thereby facilitating synchronization. However, we

have recently published a short Letter11 presenting a phe-
nomenon that apparently contradicts this intuition. In par-
ticular, a complex clustered network is typically small-world,
so that its average distance is small. Moreover, its degree
distribution can be made quite homogeneous. The surprising
phenomenon is that more edges �links�, which make the net-
work smaller, do not necessarily lead to stronger synchroni-
zability. There can be situations where more edges can even
suppress synchronization if they are placed improperly. We
find that the synchronizability of a clustered network is
largely determined by the interplay between the intercluster
and the intracluster connections of the network. Strong syn-
chronizability requires that the numbers of the interlinks and
intralinks be approximately matched. In this case, increasing
the number of links can indeed enhance the synchronizabil-
ity. However, if the number of one type of links is fixed
while the number of the other type is changed so that the
matching is deteriorated, synchronization can be severely
suppressed or even totally destroyed.

The oscillator models employed in our short Letter11 are
discrete-time maps. In biological and technological systems,
however, continuous-time oscillator models are more realis-
tic. One aim of this contribution is to address whether syn-
chronization can be optimized in continuous-time oscillator
networks with a clustered structure. Another aim is to gener-
alize our finding by considering an alternative coupling
scheme that has not been treated previously. We shall de-
velop a theory based on analyzing the spectral properties of
the network coupling matrix, which are the key to the net-
work’s ability to synchronize. Direct numerical simulations
of a class of actual oscillator clustered networks provide
strong support for the theory. From the viewpoint of compu-

tation, most previous works on network synchronization12–24

are focused on the eigenvalue properties of the underlying
networks. The numerical results in this paper are from direct
assessment of whether or not the underlying oscillator net-
work can achieve synchronization, which involves quite in-
tense computations. Our results imply that, in order to
achieve robust synchronization for a clustered biological or
technological network, the characteristics of the links are
more important than the number of links. Simply counting
the number of links may not be enough to determine its
synchronizability. Instead, links should be carefully distin-
guished and classified to predict possible synchronization-
related functions of the network.

In Sec. II, we describe a general linear-stability analysis
for dealing with synchronization in continuous-time oscilla-
tor networks. In Sec. III, we develop theory and present nu-
merical results for optimization of synchronization in com-
plex clustered networks. To be as general as possible, two
types of coupling schemes have been considered. An exten-
sive discussion of the main result and its biological implica-
tions is offered in Sec. IV.

II. LINEAR-STABILITY ANALYSIS
FOR SYNCHRONIZATION IN CONTINUOUS-TIME
OSCILLATOR NETWORKS

The approach we take to establish the result is to intro-
duce nonlinear dynamics on each node in the network and
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then perform stability and eigenvalue analyses.42,43 The the-
oretical derivation yields the stability regions for synchroni-
zation in the two-dimensional parameter space defined by the
probabilities of the two types of links. The analytic predic-
tions are verified by direct numerical simulations of the dy-
namical network. To be specific, in this paper we consider
the following general clustered network model: N nodes are
classified into M groups, where each group has n=N /M
nodes. In a group, a pair of nodes is connected with prob-
ability ps, and nodes belonging to different groups are con-
nected with probability pl. This forms a clustered random
network. For a clustered network, the number of intercon-
nections is typically far less than the number of intraconnec-
tions. As a result, the parameter region of small pl values is
more relevant.

We consider the synchronization condition of clustered
networks of continuous-time oscillators in the network pa-
rameter space. Each oscillator, when isolated, is described by

dx

dt
= F�x� , �1�

where x is a d-dimensional vector and F�x� is the velocity
field. Without loss of generality we choose a prototype oscil-
lator model—the Rössler oscillator—for which x= �x ,y ,z�T

��*�T denotes transpose�, and

F�x� = �− �y + z�,x + 0.2y,0.2 + z�x − 9��T. �2�

The parameters of the Rössler oscillator are chosen such that
it oscillates chaotically. The network dynamics are described
by

dxi

dt
= F�xi� − ��

j=1

N

GijH�x j� , �3�

where H�x�= �x ,0 ,0�T is a linear coupling function, � is glo-
bal coupling parameter, and G is the coupling matrix de-
scribing the network topology �to be explained below�. The
matrix G satisfies the condition � j=1

N Gij =0 for any i, where N
is the network size, therefore the system permits an exact
synchronized solution: x1=x2= ¯ =xN=s, where ds /dt
=F�s�. Since the couplings can be weighted, we will con-
sider two typical types of coupling schemes �to be explained
below�.

For the system described by Eq. �3�, the variational
equations governing the time evolution of the set of infini-
tesimal vectors �xi�t��xi�t�−s�t� are

d�xi

dt
= DF�s� · �xi − ��

j=1

N

GijDH�s� · �x j , �4�

where DF�s� and DH�s� are the Jacobian matrices of the
corresponding vector functions evaluated at s�t�. Diagonaliz-
ing the coupling matrix G yields a set of eigenvalues
��i , i=1, . . . ,N� and the corresponding normalized eigenvec-
tors are denoted by e1 ,e2 , . . . ,eN. The eigenvalues are real
and non-negative and can be sorted as
0=�1��2� ¯ ��N.43 The smaller the ratio �N /�2, the
stronger the synchronizability of the network.19–23 The trans-
form �y=O−1 ·�x, where O is a matrix whose columns are

the set of eigenvectors, leads to the block-diagonally decou-
pled form of Eq. �4�:

d�yi

dt
= �DF�s� − ��iDH�s�� · �yi.

Letting K=��i �i=2, . . . ,N� be the normalized coupling pa-
rameter, we can write

d�y

dt
= �DF�s� − KDH�s�� · �y . �5�

The largest Lyapunov exponent from Eq. �5� is the master-

stability function ��K�.42 If ��K� is negative, a small dis-
turbance from the synchronization state will diminish expo-
nentially; thus, the system is stable and can be synchronized;
if ��K� is positive, a small disturbance will be magnified and
the system cannot be synchronized.

For the Rössler oscillators we used in the simulation, an
example of the master stability function is shown in Fig. 1.
The function ��K� is negative in the interval �K1 ,K2�, where
K1	0.2 and K2	4.62. Thus, for K1�K�K2, all eigenvec-
tors �eigenmodes� are transversely stable and the network
can be synchronized, which gives the condition of the
boundary of synchronization region:

�2 �
K1

�
, �6�

�N �
K2

�
. �7�

The boundaries determined by these equations and the nu-
merical simulation results are shown in Fig. 2 for type-I cou-
pling and Fig. 7 for type-II coupling. The analysis and the
numerical result agree well.

III. SYNCHRONIZATION IN CONTINUOUS-TIME
OSCILLATOR CLUSTERED NETWORKS

We shall consider two types of distinct coupling schemes
for complex clustered networks and develop theoretical
analysis for synchronization.

FIG. 1. For the Rössler oscillator network, an example of the master stabil-
ity function ��K� calculated numerically from Eq. �5�.
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A. Type-I coupling

For type-I coupling, we consider a normalized coupling
matrix: for any i �1� i�N�, Gii=1, Gij =−1 /ki if there is a
link between nodes i and j, and Gij =0 otherwise, where ki is
the degree of node i �the number of links�. The coupling
matrix G is not symmetric since Gij =−1 /ki, while Gji

=−1 /kj. Depending on the initial conditions and the network
realization, the Rössler system may have desynchronization
bursts.44,45 It is thus necessary to characterize the network
synchronizability in a statistical way. Define Psyn as the prob-
ability that the fluctuation width of the system W�t� is
smaller than a small number � �chosen somewhat arbitrarily�
at all time steps during a long observational period T0 in the
steady state, say, from T1 to T1+T0, where W�t�
= 
�x�t�− 
x�t�� � �, and 
·� means average over the nodes of the
network. If � is small enough, the system can be deemed as
being synchronized in the period T0; thus, Psyn is in fact the
probability of synchronization of the system in the period T0,
with Psyn=1 if the networks for the given parameters can
synchronize. Practically, Psyn can be calculated by the en-
semble average; i.e., the ratio of the number of synchronized
cases over the number of all random network realizations. In
addition, the ensemble average and time average of fluctua-
tion width 

W�T0

�e can be a direct indicator of the degree of
synchronization, too. Since Psyn changes drastically from 0
to 1 in a small region in the parameter space, it is possible to
define the boundary between synchronizable region and un-
synchronizable region as follows: for a fixed ps, the bound-
ary value plb is such that the quantity 
�Psyn�ps , pl� 


����Psyn /�ps�2+ ��Psyn /�pl�2��ps,pl�
is maximized at �ps , plb�.

Figure 2 shows the synchronization boundary in the param-
eter space �ps , pl� from both numerical calculation and theo-
retical prediction of Eqs. �6� and �7�. It can be seen that the
two results agree with each other. If the number of interclus-
ter connections is fixed, say, pl=0.2 �the dashed line in Fig.
2�, as the number of intracluster links exceeds a certain value
�as ps exceeds 0.78�, the system becomes desynchronized.
Figure 3 shows the synchronization probability Psyn on the
dashed line in Fig. 2. When ps is small, e.g., around 0.2, the
number of the intercluster connections and the number of the
intracluster connections are approximately matched, and the
networks are synchronized. As ps becomes larger and larger,
the matching condition deteriorates, the networks lose their
synchronizability, even though their average distances be-
come smaller. That is, too many intracluster links tend to
destroy the global synchronization. The same phenomenon
persists for different parameter values. One remark concern-
ing the physical meaning of the result, as exemplified by
Figs. 2 and 3, is in order. Consider two clustered networks
where �A� the two types of links are approximately matched
and �B� there is a substantial mismatch. Our theory would
predict that network A is more synchronizable than network
B. This statement is meaningful in a probabilistic sense, as
whether or not a specific system may achieve synchroniza-
tion is also determined by many other factors such as the
choice of the initial condition, possible existence of multiple
synchronized states, and noise, etc. Our result means that,
under the influence of these random factors, there is a
higher probability for network A to be synchronized than
network B.

Figure 4 shows the dependence of �N and �2 on the
network parameters �pl, ps� for the two-cluster network. The
shape of the boundary in Fig. 2 depends on the coupling
strength � �Eqs. �6� and �7�� and on the contour lines of �2

and �N. For the clustered network of Rössler oscillators, Eq.
�7� is always satisfied. Thus, �2 determines the synchroniz-
ability of the system. In the following, we shall derive a

FIG. 2. �Color online� Synchronization boundary of the coupled Rössler
oscillators on a two-cluster network. The dotted line is the numerically
obtained boundary from the computation of Psyn; the solid line is from
theoretical analysis �Eq. �6��, where �2 is calculated numerically. The hori-
zontal dashed line indicates the position of the cross section of Psyn shown in
Fig. 3. Simulation parameters are N=100, M =2, �=0.01, T0=104, and �
=0.5. Each datapoint is the result of averaging over 1000 network realiza-
tions. The data for this figure was obtained with five Pentium®-IV 2.80 GHz
CPUs for about two weeks.

FIG. 3. Synchronization probability Psyn vs ps for pl=0.2 of a clustered
network of Rössler oscillators with N=100 and M =2. �=0.01, T0=104, and
�=0.5. Each datapoint is the result of averaging over 1000 network
realizations.
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theoretical formula to understand the dependence of �2 on pl

and ps for small values of pl, which is the typical parameter
regime of clustered networks.

For a clustered network, the components of the eigen-
vector e2 have approximately the same value within any
cluster, while they can be quite different for different clus-
ters, as demonstrated in Fig. 5. Thus, we can write e2

	�ẽ1 , . . . , ẽ1 , ẽ2 , . . . , ẽ2 , . . . , ẽM , . . . , ẽM�T, and for each I, 1
� I�M, there are n ẽI’s in e2. By definition, G ·e2=�2e2 and

e2 ·e2=1, we have �2=e2
T ·G ·e2=�i,j=1

N e2iGije2j, where e2i is
the ith component of e2. Expanding the summation in j
yields

�2 = �
i=1

N

e2i�Gi1ẽ1 + Gi2ẽ1 + ¯

+ Ginẽ1 + Gin+1ẽ2 + ¯ + GiNẽM� . �8�

Recall that Gii=1; and if i and j belong to the same cluster,
Gij equals −1 /ki with probability ps and 0 with probability
1− ps; while if i and j belong to different clusters, Gij equals
−1 /ki with probability pl and 0 with probability 1− pl, where
ki is the degree of node i. Thus,

�2 = �
i=1

N

e2i�− n
pl

ki
ẽ1 − n

pl

ki
ẽ2 + ¯ + ẽI

− n
ps

ki
ẽI + ¯ − n

pl

ki
ẽM� ,

where ẽI is the value corresponding to the cluster that con-
tains node i. Noting that 1−nps /ki= �N−n�pl /ki, we have

�2 = �
i=1

N

e2i��N − n�
pl

ki
ẽI − n

pl

ki
�
J�I

M

ẽJ�
= �

i=1

N

e2i�N
pl

ki
ẽI − n

pl

ki
�
J=1

M

ẽJ� .

For the clustered random network models, the degree distri-
bution has a narrow peak centered at k=nps+ �N−n�pl; thus,
ki	k. The summation over i can now be carried out in a
similar manner,

�2 	 �
I=1

M

nẽI�N
pl

k
ẽI − n

pl

k �
J=1

M

ẽJ�
= N

pl

k �
I=1

M

nẽI
2 − �n�

J=1

M

ẽJ�2
pl

k
.

Note that �I=1
M nẽI

2	�i=1
N e2i

2 =1, and n�J=1
M ẽJ=�i=1

N e2i; thus,
we have

�2 =
Npl

nps + �N − n�pl
− ��

i=1

N

e2i�2
pl

k
. �9�

The normalized eigenvector e1 of �1 corresponds to the syn-
chronized state; thus, its components have constant values:
e1= �1 /�N , . . . ,1 /�N�T. If G is symmetric, then eigenvectors
for different eigenvalues are orthogonal; i.e., ei ·e j =�ij,
where �ij =1 for i= j and 0 otherwise. Taking i=1 and j=2,
we have �l=1

N e2l=0. Although the coupling matrix G is
slightly asymmetric, �i=1

N e2i is nonzero but small, and the
second term in Eq. �9� can be omitted, leading to the final
form

�2 	
Npl

nps + �N − n�pl
. �10�

Since n=N /M, the above equation can be rewritten as

FIG. 4. �Color online� Contour plots of �N �a� and �2 �b� in the �pl , ps� space
for type-I coupling. N=100 and M =2. Each datapoint is averaged over 100
realizations.

FIG. 5. A typical profile of components of the eigenvector e2. Parameters
are N=150, M =3, pl=0.01, and ps=0.9.
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�2 	
Mpl

ps + �M − 1�pl

or

�2 	
Mpl/ps

1 + �M − 1�pl/ps
. �11�

Figure 6�a� shows for several fixed pl values, the depen-
dence of �2 on ps, from direct numerical calculation �sym-
bols� and Eq. �10� �curves�. For fixed pl and large ps, �2

decreases as ps increases; thus, the network becomes more
difficult to be synchronized. This provides an analytic expla-
nation for the numerically observed abnormal behavior in the
network synchronizability. For small ps, when ps� pl, the
network becomes a single random network; thus, �2 approxi-
mately follows the formula for random networks, which is an
increasing function of ps.

46 This makes clear the increasing
behavior of �2 at small ps cases. Furthermore, since �2 de-
pends only on the ratio of pl / ps, this explains the straight-
line patterns in Fig. 4�b� for ps	 pl.

From Eq. �11�, we can see that �2 is determined by the
number of clusters M; it does not depend on the network size

N, or the size of each cluster n, insofar as M is given. Figure
6�b� shows �2 versus M. The symbols are form direct nu-
merical simulations and the curves are from theory �Eq. �11��
for two values of the ratio pl / ps: 0.05 /0.8 and 0.1 /0.8. Two
cluster sizes �n=50 and n=200� are used. One can see that
numerics agrees with the theory well for all cases. The larger
cluster size case �crosses� agrees with the theory better. Since
the synchronization boundaries is determined mainly by �2,
it can be inferred that the synchronization boundary changes
with the number of clusters. Even though the straight-line
pattern of �2 in the �pl, ps� plane persists, thus the synchro-
nization boundary in the plane will have a similar straight-
line pattern as for the M =2 case, and our result that large ps

can deteriorate synchronization persists.
For large M values �M�1�, �2 can be approximated as

�2	Mpl / �ps+Mpl�. For a given ps value, the density of
links within a cluster is fixed. Suppose the dynamical model
of each node is also given; thus, the critical value of �2 for
synchronization is fixed. As a result, for networks with many
clusters, the probability of intercluster connections pl re-
quired for achieving synchronization decreases as 1 /M. Note
that n2�M −1�pl	n2Mpl is the average number of interclus-
ter links per cluster. This means, insofar as the average num-
ber of intercluster links per cluster is larger than certain criti-
cal value �depending on the dynamics�, the network is
always synchronizable, regardless of the number of clusters
�the network size�. This result is consistent with that in Ref.
43, which states that for random networks, one can have
chaotic synchronization for any arbitrarily large network
size, if the average degree is larger than some threshold.

The above analysis can be extended to more general
clustered networks, i.e., those with different cluster sizes or
heterogeneous degree distributions in each cluster, by replac-
ing n with nI—the size of the Ith cluster—for each I, and
using the degree distribution PI�k� of the Ith cluster in the
summation over 1 /k. In this case, ps and pl can be regarded
as effective parameters, and may vary for different clusters.
A formula similar to Eq. �10� can be obtained, because even
in such a case, the contribution of the second term in Eq. �9�
to �2 is small. This justifies that the observed abnormal
synchronization phenomenon is due to the clustered network
structure, and does not depend on the details of the
dynamics.

B. Type-II coupling

For type-II coupling, the coupling matrix is defined as
follows: for any i �1� i�N�, Gii=ki, Gij =−1 if there is a
link between nodes i and j, and Gij =0 otherwise. The simu-
lation results are shown in Fig. 7. In this case, we fix pl

=0.1 �so the number of intercluster connections is fixed�, and
examine the synchronizability of the system versus ps. When
ps is small, there are frequent desynchronization bursts;44,45

thus, the average fluctuation width 

W�T0
�e is large and the

system has a lower synchronization probability Psyn. As ps

increases, the system becomes more synchronizable and the
intermittent desynchronization bursts become rare, and fi-
nally it stays synchronized in the whole time interval T0

�about ps=0.1�. As ps is increased further passing through a

FIG. 6. �Color online� �a� �2 vs ps for a network with two clusters. From
bottom to top, pl=0.01 �squares�, pl=0.03 �circles�, and pl=0.05 �up tri-
angles�. N=100 and n=50. �b� �2 vs the number of clusters M for n=50
�pluses� and n=200 �crosses�. ps=0.8; pl=0.05 for the lower set of data and
pl=0.1 for the upper set of data. Note that the network size N=Mn is
changed with M. The symbols are obtained numerically and each data point
is the average of 100 network realizations. The curves are from theory
�Eq. �10��.
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stable range �0.1,0.8�, the system becomes unstable. For
even larger values of ps, the system diverges for almost every
network realization tested, which accounts for a small syn-
chronization probability Psyn. The vertical lines in Fig. 7
show the positions of the synchronization boundaries ob-
tained from Eqs. �6� and �7�. It can be seen that the theory
agrees well with the numerical simulations. The eigenvalues
have been obtained numerically, and contour plots of �N and
�2 in the network parameter space �pl, ps� are shown in Fig.
8. Therefore, under the stability boundary conditions Eqs. �6�
and �7�, the phenomenon that the synchronizability is dete-
riorated and destroyed in the presence of the mismatch in the
numbers of intercluster and intracluster links for type-II cou-
pling is also originated from the clustered structure and does
not depend on the details of dynamical oscillators.

For type-II coupling, both �N and �2 will affect the syn-
chronizable region, therefore we shall provide a theoretical
approach for �N and �2 in terms of ps and pl for the case of
pl�ps. For pl�ps, the largest eigenvalue of the system �N

is on the same order of magnitude as the largest eigenvalue
of one cluster �n; thus, it is reasonable to write �N=�n+�,
where � depends on pl. Let us first consider �n. Since each
cluster is a random network with size n and connecting prob-
ability ps, �n is the largest eigenvalue of the coupling matrix
of this random subnetwork Gn. Gn can be decomposed as
Gn=Dn−An, where Dn is a diagonal matrix and �Dn�ii=ki,

and An is the adjacency matrix of the random subnetwork
defined as �An�ij =1 if there is a link between node i and node
j and 0 otherwise. It is known that the largest eigenvalue of
An approaches nps for large n, and the spectra density of the
other eigenvalues satisfies a semicircle law:47–50


��� = ��2��2�−1�4�2 − �2, if ��� � 2� ,

0, otherwise,

where �=�nps�1− ps�. Thus, the eigenvalues of −An have a
minimum value of −nps and the others are approximately
distributed in �−2� ,2��. Since the degree distribution of the
random network is binomial with mean value of nps and
standard variation �k=�=�nps�1− ps�, which is much
smaller than the mean value nps, Dn can be approximated as
Dn	npsIn, where In is the identity matrix of order n. Adding
Dn to −An only shifts all the eigenvalues of −An by the
amount nps, and moves the minimum eigenvalue of −An to
0, which is �1 of Gn. Therefore, the largest eigenvalue of Gn
is

�n�ps� = nps + 2� = nps + 2�nps�1 − ps� . �12�

To assess �, note that when pl is small, � approximately
depends on pl only; i.e., �� /�pl��� /�ps. Thus, ��pl , ps�
	��pl�, which can be estimated at the point ps= pl:

��pl� = �N�pl,pl� − �n�pl� .

For ps= pl, the whole system is a homogeneous random net-
work with connecting probability pl; thus, the largest eigen-

FIG. 7. Properties of the coupled Rössler system for type-II coupling. �a�
The synchronization probability Psyn vs the intracluster connectivity prob-
ability ps. �b� Ensemble averaged and time averaged fluctuation width


W�T0

�e, where pl=0.1, T0=20 000, �=0.001, �=0.083, N=100, and M =2.
Vertical lines indicate the positions of the synchronization boundaries ob-
tained from Eqs. �6� and �7�, where the eigenvalues are calculated numeri-
cally. The absence of datapoints for large ps in �b� means the system vari-
ables diverge. Each datapoint is the result of averaging over 1000 network
realizations. The data for this figure were obtained with ten Pentium®-IV
2.80 GHz CPUs for about two weeks.

FIG. 8. �Color online� Contour plots of �N �a� and �2 �b� in the �pl, ps� space
for type-II coupling, N=100 and M =2. Each datapoint is averaged over 100
realizations.
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value can be obtained from Eq. �12�: �N�pl , pl�=Npl

+2�Npl�1− pl�. We have

��pl� = �N − n�pl + 2��N − �n��pl�1 − pl� ,

and the largest eigenvalue of the random clustered network
can be expressed as

�N�pl,ps� = �n�ps� + ��pl�

= nps + �N − n�pl + 2�nps�1 − ps�

+ 2��N − �n��pl�1 − pl� . �13�

Figure 9�a� shows the simulation results �symbols� of �N for
different cases. The curves are from Eq. �13�. It can be seen
that the two fit well. Note that Eq. �13� is valid only for
pl�ps. For pl	 ps, the clustered structure vanishes and the
decomposition of �N into �n is invalid.

We now turn our attention to �2. The corresponding ei-
genvector has a similar structure for type-II coupling as that
for type-I coupling �see Fig. 5�, therefore we have the same
equation as Eq. �8�. The coupling matrix is different from
that of type-I coupling. In particular, Gii=ki, and if i and j
belong to the same cluster, Gij equals −1 with probability ps

and 0 with probability 1− ps, while if i and j belong to dif-
ferent clusters, Gij equals −1 with probability pl and 0 with
probability 1− pl. We can thus write �2 as

�2 = �
i=1

N

e2i�− nplẽ1 − nplẽ2 + ¯ + kiẽI − npsẽI + ¯

− nplẽM� ,

where ẽI is the value corresponding to the cluster that con-
tains node i. Noting that ki	k=nps+ �N−n�pl, under similar
manipulations to those for type-I coupling, we have

�2 = �
i=1

N

e2i��N − n�plẽI − npl�
J�I

M

ẽJ�
= �

i=1

N

e2i�NplẽI − npl�
J=1

M

ẽJ�
	 �

I=1

M

nẽI�NplẽI − npl�
J=1

M

ẽJ�
= Npl�

I=1

M

nẽI
2 − �n�

J=1

M

ẽJ�2

pl.

Note that �I=1
M nẽI

2	�i=1
N e2i

2 =1, and n�J=1
M ẽJ=�i=1

N e2i=0 �G is
symmetric for type-II coupling�, finally, we have

�2 	 Npl. �14�

Figure 9�b� shows the dependence of �2 on ps. The theory
�Eq. �14�, curves� agrees well with the numerical simulations
�symbols�. The analytical results about �N and �2 �Eqs. �13�
and �14�� explain the patterns in Fig. 8 for the pl� ps region.
Since �N increases with ps, for large ps, �N could be too
large, leading to an instability in the corresponding eigen-
mode of the system. This explains that too many intracluster
links can depress the synchronizability of the system.

IV. DISCUSSION

In conclusion, we have presented theory and numerical
evidence that optimal synchronization of continuous-time os-
cillator clustered networks can be achieved by matching the
probabilities of intercluster and intracluster links. That is, at
a global level, the network has the strongest synchronizabil-
ity when these probabilities are approximately equal. Over-
whelmingly strong intracluster connection can counterintu-
itively weaken the network synchronizability. This can be
better understood by the following considerations. Network
synchronizability is usually characterized by the spread of
the nontrivial eigenvalues. What our analytical formulae sug-
gest is that spread becomes minimal when the two probabili-
ties are approximately matched. For instance, when the in-
tercluster linking probability pl is fixed, increasing the
intracluster connection probability ps could result in desyn-
chronization. On the other hand, for realistic clustered net-
works, pl is always smaller than ps, and is usually much
smaller. Our analysis indicates that, insofar as the network is
clustered �ps	 pl�, a larger pl will lead to better synchroniz-
ability. To give another example, consider a particular set of
�pl, ps� values for which the network cannot be synchronized.
Then, increasing pl while decreasing ps �so as to keep the
average degree fixed� can lead to synchronization �Figs. 4
and 8�. While our theory gives a general picture for the net-

FIG. 9. �Color online� For type-II coupling, �a� the largest eigenvalue �N vs
ps for pl=0.01 and N=100, 200, 400 from bottom to top, where M =2.
Symbols are from direct numerical simulation, curves are from Eq. �13�. �b�
The smallest nontrivial eigenvalue �2 vs ps for N=200, M =2, and pl

=0.01, 0.02, 0.03 from bottom to top. Symbols are from direct numerical
simulation, the solid lines are from Eq. �14�. Each datapoint is averaged over
100 realizations.
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work synchronizability in the two-dimensional parameter
plane �pl, ps�, the optimal cases where the two probabilities
match approximately do not seem to occur in realistic situa-
tions, where pl is usually much smaller than ps.

While our network model is somewhat idealized, we
have argued that similar phenomena should persist in more
general clustered networks. In real biological or technologi-
cal systems with a clustered structure, if global synchroniza-
tion is the best performance of the system, special attention
needs to be paid to distinguishing the interconnections and
intraconnections as in this case, a proper distribution of the
links is more efficient than adding links blindly. For biologi-
cal networks, such as the metabolic network and the protein-
protein interaction network, certain nodes may have many
more links than the others, forming a hierarchical clustered
structure.29 This indicates a power-law distribution of the
degree k: P�k��k−
. Therefore, it is interesting to study clus-
tered scale-free networks, networks where each cluster con-
tains a scale-free subnetwork. We have studied the synchro-
nizability of such clustered networks. In particular, for each
cluster, the subnetwork was generated via the preferential
attachment rule.5 Initially, there is a fully connected small
subset of size m0, then a new node is added with m links, and
the probability that a previous node i is connected to this new
node is proportional to its current degree ki. New nodes are
continuously added until a prescribed network size n is
reached. In our simulation, we take m0=2m+1, so that the
average degree of this network is 2m. M such scale-free
subnetworks are generated. We then connect each pair of
nodes in different clusters with probability pl. For this model,
pl controls the number of intercluster links, and m controls
the number of intracluster links. We have carried out numeri-
cal simulations, and have found that the patterns for the ei-
genvalues �N and �2 are essentially the same as that for the
clustered network where each cluster contains a random sub-
network �Figs. 4 and 8�. In fact, we have compared the simu-
lation results to Eq. �10� for the type-I coupling, where we
took ps=2m /n. The mean field theory Eq. �10� fits reason-
ably well with the simulation results. This indicates that op-
timization of synchronization by matching different types of
links is a general rule.

The general observation is that the synchronizability of
the clustered networks is mainly determined by the underly-
ing clustered structure. Insofar as there is a clustered struc-
ture, details such as how nodes within a cluster connect to
each other, what kind of dynamics are carried by the network
and what the parameters are, do not appear to have a signifi-
cant influence on the synchronization in the coupled oscilla-
tor networks supported by the clustered backbone. A practi-
cal usage is that, even if the details about the dynamics of a
realistic system are not available, insofar as the underlying
network has a clustered structure, we can expect similar syn-
chronization behaviors as presented in this paper.

An interesting issue about the synchronization dynamics
on a clustered network is how it desynchronizes. As dis-
cussed in Refs. 44 and 45, when desynchronization occurs,
the deviation from the synchronization state, xi− 
xi�, will
have the same form as the unstable eigenmodes �eigenvec-
tors�. As a result, if the desynchronization is caused by �2’s

being too small �violation of condition �6��, the desynchro-
nized dynamics will have a clustered structure, due to a clus-
tered structure in the corresponding eigenvector e2: nodes
within a cluster have approximately the same dynamical
variables, while they can be quite different among clusters.
That is, desynchronization occurs among clusters. However,
if the desynchronization is caused by �N’s being too large
�violation of condition �7��, the deviation xi− 
xi� will not
have a clustered structure, since eN typically does not exhibit
any clustered features. In this case, desynchronization occurs
both among and within clusters.

The clustered topology has also been identified in tech-
nological networks such as computer networks and certain
electronic circuit networks.2,3,51 For a computer network, the
main functions include executing sophisticated codes to
carry out extensive computations. Suppose a large-scale, par-
allel computational task is to be accomplished by the net-
work, for which synchronous timing is of paramount impor-
tance. Our result can provide useful clues as to how to design
the network to achieve the best possible synchronization and
consequently optimal computational efficiency.
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