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Blind spots in sensor networks, i.e., individual nodes or small groups of nodes isolated from the rest
of the network, are of great concern as they may significantly degrade the network’s ability to
collect and process information. As the operations of many types of sensors in realistic applications
rely on short-lifetime power supplies �e.g., batteries�, once they are used up �“off”�, replacements
become necessary �“on”�. This off-and-on process can lead to blind spots. An issue of both theo-
retical and practical interest concerns the dynamical process and the critical behavior associated
with the occurrence of blind spots. In particular, there can be various network topologies, and the
off-and-on process can be characterized by the probability that a node functions normally, or the
occupying probability of a node in the network. The question to be addressed in this paper concerns
how the dynamics of blind spots depend on the network topology and on the occupying probability.
For regular, random, and mixed networks, we provide theoretical formulas relating the probability
of blind spots to the occupying probability, from which the critical point for the occurrence of blind
spots can be determined. For scale-free networks, we present a procedure to estimate the critical
point. While our theoretical and numerical analyses are presented in the framework of sensor
networks, we expect our results to be generally applicable to network partitioning issues in other
networks, such as the wireless cellular network, the Internet, or transportation networks, where the
issue of blind spots may be of concern. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2745232�

Recent years have witnessed an increasing use of sensor
networks in a wide range of applications.1 Examples in-
clude monitoring and collection of information on objects
ranging from plankton colonies,2 endangered species,3

soil and air contaminants4 to traffic flow,5 biomedical
subjects,6 building and bridges,7 etc. Sensor networks
also find critical applications in homeland defense such as
detection of chemical or biological agents and pattern
recognition.1 In a sensor network, the issue of blind spots
is of particular importance as the power supplies main-
taining the normal operation of the sensors are usually of
finite lifetime. As a result, blind spots, i.e., isolated nodes
or isolated clusters of nodes, can occur. A central question
concerns the onset of blind spots and its dependence on
network topologies, i.e., What type of networks are more
resilient or more susceptible to blind spots? Here we ad-
dress this question by investigating four types of sensor
network topologies: regular, random, mixed, and hetero-
geneous. Based on the degree-distributions of these net-
works, we have obtained, for the first three types of net-
works, explicit formulas for the critical value of the
occupying probability, below which blind spots are likely.
For heterogeneous networks, we have derived a compu-
tational procedure that allows the critical occupying
probability to be determined implicitly. Excellent agree-
ment has been found between the theoretical predictions

and numerical simulations. We expect our results to be
useful not only for designing specific sensor networks, but
also for deriving control strategies to restore the net-
works from catastrophic events as in the aftermath of a
large-scale attack.

I. INTRODUCTION

Wireless sensor networks have increasingly been de-
ployed in various applications that are important for improv-
ing the quality of life in a modern society.1 In many applica-
tions, sensors are powered by sources that have relatively
short lifetime, such as batteries, for which routine replace-
ment or recharging is necessary.8 Because of this require-
ment, at any given time a number of sensors in the network
are not operational, or are in an “off” state, and another
group of sensors are turned back on. The off-and-on process
can be characterized by the probability that a node functions
normally, or the occupying probability of a node in the net-
work. Intuitively, if the number of “off” sensors is small, we
expect the network to remain fully connected, which is de-
sired. However, as the number becomes large, situations can
arise where some of the sensors in the network, while still
functional, become isolated from other sensors. These are the
blind spots.9,10 The occurrence of blind spots can be a serious
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issue of concern, as they may result in loss or interruption of
critical data or information.

There is vast engineering literature on sensor networks,
but results on blind-spot dynamics are scarce. In particular,
there has been no study of the interplay between the dynam-
ics and the network architecture. Our point is that this dy-
namics problem can be addressed by using tools from statis-
tical physics, e.g., percolation theory.11 A network is
integrable and functional if a substantial fraction of nodes are
connected. Theoretically, the problem can be treated in the
framework of percolation where one can ask, for instance,
under what conditions a global spanning cluster of nodes,
which contains a considerable fraction of the active nodes,
can be formed.12–15 Intuitively, one may expect that networks
with a stronger ability to form spanning clusters should be
more capable of “absorbing” isolated nodes and, hence, such
networks should be more robust against the occurrence of
blind spots. In the language of percolation, this is to say that
networks with smaller percolation thresholds should be more
easily to be fully connected as the occupying probability is
increased through the threshold. However, our recent brief
work on blind-spot dynamics in scale-free networks10 results
in a finding that is contrary to the intuitive thinking: blind
spots are more probable in networks that are more suscep-
tible to percolation for the same type of networks.10 Retro-
spectively, this can be understood by noting that, the perco-
lation threshold is generally smaller for relatively more
heterogeneous networks, when the average degree is fixed,
there is also a higher probability for these networks to pos-
sess more small-degree nodes, making more difficult a full
connection.

Sensor networks, a typical class of networks in which
the nodes exhibit an on-off behavior due to finite power sup-
ply, are not necessarily scale free. Due to practical con-
straints, a sensor network can be random or regular with a
homogeneous degree distribution. In this paper, we shall
present a systematic study of the occurrence of blind spots
on several different types of sensor networks. Since larger
networks are more susceptible to blind spots, we pay special
attention to the dependence of the critical condition for the
occurrence of blind spots on the network size. That is, scal-
ing laws underlying the blind-spot occurrence with respect to
the network size are our focus. In particular, we shall dem-
onstrate that from the statistical point of view, the occurrence
of blind spots can be characterized by the occupying prob-
ability; i.e., the probability that a node is “on” or “off” for a
static case, which can be studied via ensemble statistics.
Therefore, the main issue of interest concerns how the num-
ber of blind spots depends on the occupying probability for
any given network architecture, and what the scaling laws
should be between the critical values for the occurrence of
blind spots and the network size, and how they depend on
the network structure. We shall adopt the basic analytic
scheme introduced in Ref. 10 and develop more detailed
analysis for four different types of sensor networks: regular,
random, mixed, and heterogeneous. Based on a few simple
assumptions, the degree distribution for each type of sensor
network can be obtained, yielding the desirable scaling laws.
For the first three types of networks, explicit formulas can be

obtained for the critical value of the occupying probability,
below which blind spots are likely. Numerical simulations
are carried out and compared with the theories. For hetero-
geneous networks, a computational procedure is derived,
which allows the critical occupying probability to be deter-
mined implicitly. These results should be useful not only for
designing specific sensor networks, but also for deriving con-
trol strategies to restore the networks from catastrophic
events as in the aftermath of a large-scale attack.

In Sec. II, we outline our theoretical approach to the
blind-spot problem. In Sec. III, we derive analytic formulas
for critical occupying probability for different types of net-
works and provide numerical confirmation. Conclusions and
discussions are presented in Sec. IV.

II. THEORETICAL APPROACH TO BLIND SPOTS

Because of power limitation, physically a sensor can
communicate with sensors within a certain range only. On
average, it is convenient to introduce a communication ra-
dius rc to model this effect: there can be a link between any
pair of sensors �nodes� only if their distance is smaller than
rc. Topologically, sensors can be regarded as being distrib-
uted in a two-dimensional region. A sensor network can be
defined naturally based on these considerations. This con-
struction is motivated by the observation that sensor net-
works arising in a variety of practical situations1 can be re-
garded as being effectively embedded in a two-dimensional
space. The blind-spot dynamics in “two-dimensional” sensor
networks is the focus of this paper.

From the standpoint of theoretical analysis, there is an
important advantage associated with sensor networks embed-
ded in a space of dimension greater than 1. That is, the prob-
ability for multinode blind spot is typically much smaller
than that for single-node blind spot. This is so because a
multi-node region has a larger perimeter and more neighbor-
ing nodes than any single node in the network. In order to
isolate such a region, all its neighboring nodes need to be
disabled at the same time, the probability of which is in
general much smaller than that for a single isolated node. As
a result, multinode blind spots can be neglected. In fact, this
approximation makes analytic derivations of the scaling laws
associated with the critical behavior of the blind spots fea-
sible for a number of network connecting topologies. As we
will show in this paper, direct numerical simulations of the
blind-spot dynamics generate results that are in excellent
agreement with the theoretical predictions, providing further
justification to the approximation.

A. On-off processes

The process of battery drainage and replacement is
equivalent to an on-off process, which can be modelled sta-
tistically. For a large network, in the long term the on-off
process, which is highly dynamic, can be treated in the
framework of percolation theory. Let non denote the number
of on-nodes and noff be the number of off-nodes, which sat-
isfy non+noff=N. At each time step, there is a finite probabil-
ity �1 for an on-node to be off, due to the battery drainage or
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sensor failure. Likewise, every off-node has probability �2 to
be turned on, due to recharge, repair, or sensor replacement,
etc. We have

�non = − non�1 + noff�2.

In the continuous-time limit, this becomes

dnon

dt
= − non�1 + noff�2. �1�

Using non+noff=N and the initial condition non�0�=N, Eq.
�1� can be solved explicitly as

non�t� =
N

�1 + �2
��2 + �1e−��1+�2�t� . �2�

Letting q=non/N, where q is the occupying probability in the
language of percolation, we obtain

q�t� =
1

�1 + �2
��2 + �1e−��1+�2�t� . �3�

As t→�, we have q�t�→�2 / ��1+�2�. In this way, the on-
off dynamical process is completely equivalent to a percola-
tion problem. Given a sensor network, solutions to the on-off
problem can be obtained by solving the corresponding per-
colating dynamics. For example, suppose a network has a
percolation threshold qth. For q�qth, there exists a spanning
cluster and the network is globally connected and functional,
while it is disintegrated and loses its global function for
q�qth. The threshold qth in general depends on network de-
tails such as its size and degree distribution. Say we have
determined the threshold qth. Given a particular value of �1

�which usually depends on the sensors�, it is necessary to
adjust �2 �through sensor recharging or replacement� to
guarantee �2 / ��1+�2��qth. That is, the network integrity
can be maintained by increasing �2 to minimize the likeli-
hood of losing a spanning cluster.

A special case is �2=0, where sensor batteries are never
replaced. We have

q�t� = e−�1t � e−t/�, �4�

where �=1/�1 is the characteristic average lifetime of sensor
battery.

B. Blind spots

In sensor networks, coverage plays a critical role for
fielding monitoring and information collecting. An intimately
related issue is the blind spot, where a blind spot is a node or
a cluster of several connected nodes isolated from other parts
of the network. This boils down to the occurrence of blind
spots.

To analyze the occurrence and the number of blind spots,
we consider single-node blind spots. A node having k neigh-
bors is isolated if it is on but all its neighbors are off. The
probability of this event is qpk, where p=1−q is the prob-
ability that a node is off. Let N be the network size and P�k�
be the degree distribution.16 On average, NP�k� nodes have k
neighbors. The total number of single-node blind spots is
n1=�kqpkNP�k�. Similarly, the probability for multinode,
say, m-node blind spot is proportional to qmpk1+¯+km−2li for a

given configuration that the m nodes have li internal links.
For a networks with homogeneous connections and average
degree �k�, there are N�k� /2 edges, and we have

li = �m�m − 1��/�N�N − 1��N�k�/2 	 m�m − 1��k�/�2N� .

Thus, the probability of m-node blind spot is approximately
proportional to qmpm�k��1−�m−1�/N�	qmpm�k�, where 1�m�N.
Near the critical point where blind spots begin to appear,
p�1, the probabilities of various multi-node blind spots are
negligible.

From a physical point of view, blind spots are single
nodes or small clusters of nodes left out of a percolating
process. At the percolation threshold where a spanning clus-
ter forms, the remaining clusters can have various sizes that
follow a power-law distribution. As q is increased further, the
size distribution of the remaining clusters becomes exponen-
tial and most of them have small size. At the critical point
where the last remaining cluster merges into the spanning
cluster, the remainder will consist mostly of single, isolated
nodes. Thus, near the critical point, it is reasonable to focus
on single-node blind spots. We emphasize that this consider-
ation applies to networks embedded in space of dimension
higher than 1 only. For networks embedded in one dimen-
sion, multinode blind spots are as likely as single-node blind
spots.17 For instance, for a one-dimensional regular lattice,
we have k1+ ¯ +km−2li=2, which is independent of the
value of m.

Under the single-node blind spot approximation, the
number of blind spots is given by

ns 	 n1 = �
k

qpkNP�k� . �5�

We see that ns /N depends only on the degree distribution.
For a given degree distribution, there is a scaling law such
that ns=Nf�q�. Furthermore, Eq. �5� does not depend on the
detailed construction of the network. That is, for a network
with certain degree distribution, regardless of the ways that it
is generated �e.g., by randomly picking up a pair of nodes
and connecting them, by some preferential-attachment rule,
or by connecting nearest spatial neighbors�, it will have the
same function f�q� and the same scaling laws near the criti-
cal point qc. This may be interesting, considering that the
percolation threshold is sensitive to fine details such as the
degree correlation,18,19 the degree of clustering,20 ways of
embedding into a Euclidean space,21,22 etc.

To determine the critical point qc, we note that for a
given network size N, blind spots can practically occur if
�ns��1, while they are unlikely for �ns��1, where �ns� is the
ensemble-averaged value of ns. Thus, we can conveniently
choose ns=1 to be the criterion for determining qc, which
can be solved as a function of network size N and some
network parameter � characterizing the degree distribution:
qc=qc�N ,��. Knowing qc, by solving Eq. �3� with q=qc, we
can determine the critical time tc when the first blind spot
occurs, provided that the network undergoes an on-off
process.
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III. SOLUTIONS TO BLIND-SPOT PROBLEM
FOR DIFFERENT NETWORK TOPOLOGIES

A. Regular sensor networks

Imagine that a sensor network is built up according to
the geometry of a regular lattice, where the distances be-
tween any nearest neighboring pairs of sensors are constant.
The degree distribution is thus a delta function P�k�=1 if
k=m and 0 otherwise, where m is the number of nearest
neighbors. The number of blind spots is

ns = Nqpm. �6�

As the probability p goes to zero, ns /N also approaches zero.
For a given network of size N, there exists a pc such that
ns�1 for p� pc. Setting ns=c, we have

ns = Nqcpc
m = c .

As qc is varied, the change of ns is dominated by the factor
pc

m= �1−qc�m. We can thus treat qc as a constant and obtain

pc = 
Nqc

c
�−1/m

	 c�N−1/m, �7�

where c� is a constant. To obtain the scaling law for tc, we
substitute qc=1− pc into Eq. �3� and note q�tc�=qc. This
yields

tc = − � ln qc = − � ln�1 − c�N−1/m� . �8�

For m=4, this result reduces to the previous one obtained in
Ref. 9.

For a given network, starting with all nodes on, in simu-
lation the on-off process can be applied and the critical time
tc at which the first blind spot arises can be measured. Figure
1 shows the behavior of the critical time of two regular sen-
sor networks, where the decrease of tc as N goes large can be
seen. The data points are from numerical computation and
the curves are from theory. Both agree well.

B. Random sensor networks

In this case, nodes are distributed randomly within a
region S. Two nodes are connected if their distance is less

than the responding distance rc. Thus, node i is connected
with all its neighbors that are located in a circle of radius rc

centered at i. We call it the connecting circle. The degree
distribution can be obtained as follows. For a given node i,
the N−1 other nodes in the network are distributed randomly
in S. One can thus imagine randomly dropping particles over
an area S and ask the probability for a particle to fall in the
connecting circle of i. This is basically a point process and
the probability is given by the Poisson distribution

P�k� =
e−kaka

k

k!
,

with parameter

ka = �N − 1��rc
2/S 	 N�rc

2/S .

The average degree is �k�=�kP�k�k=ka; thus, P�k�
=e−�k��k�k /k!. Substituting the distribution into Eq. �5�, we
obtain

ns = �
k

qpkNe−�k� �k�k

k!
= Nqe−�k�ep�k� = Nqe−q�k�. �9�

When p approaches 0, ns decays exponentially to Ne−�k�.
For a given value of �k�, when the network size N is large
enough, e.g., larger than e�k�, blind spots will occur for arbi-
trary small probability p that a node is turned off. This comes
from the fact that for the Poisson degree distribution, the
probability that a node has no connection is P�0�=e−�k�. For
N�1/ P�0�, even if all nodes are on, there still exist blind
spots; i.e., those with no neighbors by the way of network
construction. This property illustrates that, for random place-
ment of sensors, blind spots are almost certain, particularly
when the number of sensors is large. However, when N is not
so large as compared with e�k�, whether blind spots can arise
depends on the value of q.

Assuming N�e�k�, we now obtain the scaling laws for qc

and tc. Setting ns=c, we have

ns = Nqce
−qc�k� = c .

Since qc varies much more slowly than e−qc�k�, the main de-
pendence of qc upon N comes from the latter term. We can
write the solution as

qc =
1

�k�
ln
Nqc

c
� .

Neglecting the slow variation of qc and absorbing it into c,
i.e., c�=c /qc, we obtain

qc =
1

�k�
ln�N/c�� . �10�

From Eq. �3� with q�tc�=qc, we can find the scaling law
for tc:

tc = ��ln�k� − ln ln�N/c��� . �11�

Compare to Eq. �8� for regular networks, the critical time for
random sensor networks decreases much faster as N in-
creases.

To construct a numerical model for random sensor net-
works, we can fix rc and S �N is proportional to S�. The

FIG. 1. Critical time tc vs the network size N for lattice networks. Data
points are numerical results for m=12 �squares� and m=20 �circles�. The
parameters are �1=0.01, �2=0, and �=100. Each data point is averaged
over 104 realizations. Curves are from Eq. �8� with c�=1.01.
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average degree is �k�=N�rc
2 /S, which is independent of N.

For convenience, periodic boundary conditions can be as-
sumed.

Since the critical point pc �or qc� depends on the network
size, we focus on the scaling relation pc�N�. The probability
that the network formed by all on-nodes under a given occu-
pying probability is fully connected depends on N as
f�p / pc�N��, where f�x� may have a universal form for given
degree distribution. Having numerically determined
f�p / pc�N�� for a set of N values, we can adjust the parameter
pc�N� so that all the f-curves overlap with each other com-
pletely. This way the relation pc�N� can be obtained. Figure
2�a� shows the dependence of f�p / pc�N�� on p / pc�N� for a
set of random sensor networks with different sizes, which
indeed exhibits a universal form after proper adjustment of
pc�N�. The scaling relation pc�N� is shown in Fig. 2�b�,
where symbols are the data of pc�N� obtained from Fig. 2�a�,
and the line is from the theoretical distribution Eq. �9� by
setting ns=1. Both are normalized so that their values for
N=2500 are unity. Theory and numerical simulations agree
quite well.

Figure 3 shows that the critical time tc decreases as the
network size is increased. The solid curve is the theoretical
prediction from Eq. �11�. There is again a good agreement
between numerics and theory.

C. Mixed sensor networks

A mixed network is not strictly a regular lattice, nor is it
completely random. Such a network can be constructed by
using the Gaussian degree distribution:

P�k� =
1

�2�	2
exp−

�k − �k��2

2	2 � ,

for k�0, where �k� is the average degree, 	2 is the variance,
which is assumed to be small compared with �k� so that the
summation of P�k� from −� to 0 in the normalization can be
disregarded. Note that when 	2 approaches to 0, the Gauss-
ian distribution limits to delta function P�k�→
�k− �k��;

thus, the network approaches regular network. While if 	2

approaches �k�, the Gaussian distribution approaches to the
Poisson distribution, and the network is effectively a random
sensor network. Substituting P�k� into Eq. �5�, we have

ns = �
k=0

�

Nqpk 1
�2�	2

e−�k − �k��2/2	2

= Nqp�k� 1
�2�	2�

k=0

�

pk−�k�e−�k − �k��2/2	2

= Nqp�k� 1
�2�	2�

k=0

�

e�ln p��k−�k��e−�k − �k��2/2	2

= Nqp�k�e	2�ln p�2/2 1
�2�	2�

k=0

�

e−�k − �k� − 	2 ln p�2/2	2
. �12�

If the variance 	2 is small compared with the new mean
�k�+	2 ln�p�, the summation in Eq. �12� can be approxi-
mated by a standard Gaussian integral. We obtain

ns = Nqp�k�e	2�ln p�2/2. �13�

Notice that as 	2 goes to zero, this equation reduces to Eq.
�6�. If 	2 is nonzero but small as compared with the average
degree, the scaling laws for qc and tc can be obtained, as
follows.

First, setting ns=c yields

ns = Nqcpc
�k�e	2�ln pc�2/2 = c .

Taking the logarithm of both sides, we have

	2�ln pc�2

2
+ �k�ln pc + ln�Nqc/c� = 0.

Absorbing qc into c�, i.e., c�=c /qc, we have

ln pc = −
1

	2��k� − ��k�2 − 2	2 ln�N/c���

or

FIG. 2. �Color online� For random sensor networks with �k�=20, �a� uni-
versal behavior in the probability � fc of full network connection vs the
normalized occupying probability p / pc�N� for eight different network sizes:
2500, 5625, 10 000, 16 900, 28 900, 40 000, 62 500, and 90 000, where each
data point is the result of ensemble average of 1000 networks, and �b�
log10 pc�N� vs log10 N. The solid curve in �b� is calculated from the theory
�Eq. �9�� by setting ns=1.

FIG. 3. Critical time tc vs network size N of random sensor network with
�k�	20. Data points are obtained from the numerical simulations with pa-
rameters �1=0.01 and �2=0 ��=100�. Each data point is averaged over 104

realizations. The solid curve is from Eq. �11� with c�=0.8. Inset: tc vs
ln ln N. The straight line is only a guide to the eye.

023132-5 Sensor networks and blind-spot dynamics Chaos 17, 023132 �2007�

Downloaded 15 Aug 2007 to 129.219.51.205. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



pc = exp−
1

	2��k� − ��k�2 − 2	2 ln�N/c���� . �14�

From Eq. �3� with q�tc�=qc=1− pc, the scaling law for tc

becomes

tc = − � ln qc = − � ln�1 − e�−1/	2���k�−��k�2−2	2 ln�N/c���� .

�15�

When 	2 approaches 0, employing Taylor expansion, Eqs.
�14� and �15� will reduce to Eqs. �7� and �8� respectively, by
noting that �k�=m.

Figure 4 shows the scaling of pc for mixed networks
with Gaussian degree distribution, where we observe a good
agreement between the theoretical formula �14� and numeri-
cal computations. Figure 5 shows the dependence of tc on N.
There is also a good agreement between the numerics and the
formula �15�.

D. Scale-free sensor networks

The three types of sensor networks discussed so far all
are homogeneous networks in the sense that the sensors are
distributed uniformly in space. While homogeneous net-
works allow for analytic treatment in terms of the scaling
laws, in reality nonuniform or locally preferred distribution
of sensors, e.g., hybrid sensor networks,23,24 are also of in-
terest. For example, hierarchical sensor network can consist
of a large number of cheap sensors and a few more powerful
gateways which could naturally lead to heterogeneous degree
distributions. Heterogeneous networks such as scale-free net-
works would naturally fit in such a situation. This can be
further argued by considering the degree distribution. Say the
density � of sensors is not uniform, but depends on r in a
polar-coordinate system: �=��r�. If ��r� has the form of
��r��r−, then the degree distribution of the sensor network
in the limiting case will be scale free: P�k��k−�, where
�=D /, D is the spatial dimension.

To show this, suppose the connecting radius rc of a sen-
sor is much smaller than the characteristic scale of the sys-
tem. A sensor located at r will on average have k�r�
=��r�Vc���r��r− neighboring sensors, where Vc is the
volume of the D-dimensional sphere of radius rc. We thus
have r�k−1/. The number of sensors in a spherical shell of
radius r and width �r is n�r����r�rD−1�r�r−rD−1�r.
From the relation between r and k, we have �r�k−1/−1�k.
If we set �k=1, the shell is such that the sensors in it have
on average the same degree. The quantity n�r� thus becomes

n�k�r�� � kk−�D−1�/k−1/−1 = k−D/.

After normalization, the degree distribution becomes
P�k��k−D/. In the situation in which the physical space in
which the sensors are distributed is two-dimensional, we
have �=2/.

Numerical support for the scale-free nature of heteroge-
neously distributed sensor networks is shown in Fig. 6,
where the degree distributions of several sensor networks

FIG. 4. �Color online� For a mixed network with Gaussian degree distribu-
tion, �k�=20, 	2=4, �a� the probability � fc of full connection vs the nor-
malized occupying probability p / pc�N� for seven different network sizes:
2500, 5625, 10 000, 16 900, 28 900, 40 000, and 250 000, where each data
point is the result of ensemble average of 1000 network realizations, and �b�
log10 pc�N� vs log10 N. The solid line in �b� is from theory �Eq. �13��.

FIG. 5. Critical time tc vs size N for mixed networks having Gaussian
degree distribution with parameters �k�	20 and 	2=4. Data points are nu-
merical results with simulation parameters �1=0.01, �2=0, and �=100.
Each data point is averaged over 104 realizations. The solid curve is from
the theoretical formula Eq. �15� with c�=1.24.

FIG. 6. Degree distribution of sensor networks on a two-dimensional disk.
=1.25, 1.0, 0.8, 2 /3 for squares, circles: diamonds, and triangles, respec-
tively. The ratio of the connecting radius of a sensor rc and the radius of the
disk R is 0.01. The number of sensors is N=104. Each data point is averaged
over 100 realizations. The lines are power-law distribution with exponent
�=2/, which are �=1.6, 2.0, 2.5, and 3.0 from up to down.
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located in a two-dimensional disk �symbols� are plotted, to-
gether with theoretical results. We observe a power-law be-
havior in the degree distribution and the exponent agrees
well with the theory.

In a strict sense, the degree distribution can be written as
P�k�=k−� / ��k=m

� k−�� for k�m, where m is the minimum de-
gree. Substituting the degree distribution into Eq. �5� yields10

ns = Nqpm�k=0
� �pk/�k + m���

�k=m
� k−�

. �16�

As p goes to zero, ns /N also approaches zero, meaning that
scale-free sensor networks may be resilient to blind spots, as
compared with, say, random networks. The critical value qc

can be obtained numerically from Eq. �16� by setting
ns�qc�=c�, where c�	1 is a constant. The critical time tc can
be obtained from qc as tc=−� ln qc. Figure 7 shows the de-
pendence of tc on the network size for scale-free networks.
The theory and the numerical simulation agree well.

IV. DISCUSSION

In conclusion, we have studied the critical behavior of
the occurrence of blind spots in sensor networks. In such
networks, at any time a sensor may be off due to battery
drainage or may be turned back on if it is recharged. We have
proposed a simple model to describe this on-off process. We
have shown that, in the long-time limit, the dynamical on-off
process is equivalent to a static percolation model and have
then studied the occurrence of blind spots in four classes of
topologically distinct networks: regular, random, mixed, and
scale free. Scaling relations for the critical parameters pc and
tc with the network size N have been obtained. Our result for
tc is reduced to the known result of Franceshetti et al.9 under
the same condition. The scaling relations for different types
of networks can be significantly different; i.e., from power-
law form to logarithmic. For realistic applications, the type
of the network should be identified carefully in order to ap-
ply the scaling relations. Since our analysis depends only on
degree distribution, it can be applied to other realistic net-
works such as the wireless cellular network, the Internet, or
the transportation network, where the issue of blind spots

may be of concern. For example, in wireless cellular net-
works, the likelihood that the network is totally disinte-
grated, i.e., the disappearance of a global spanning cluster, is
small. Users of the network are more concerned with
whether they can get access to the network �e.g., to receive
and make phone calls�. This is also determined by the occur-
rence of blind spots.

For the purpose of comparison, we have shown in Fig. 8
the number of blind spots ns versus the occupying probabil-
ity q for the four classes of networks considered in this pa-
per, where N=104 is identical for all networks. We observe
that for a fixed value of q, ns is the smallest for the regular
network, indicating that it is relatively more resilient to blind
spots. Figure 9 compares the critical time tc that the blind
spots begin to occur in the circumstance of the dynamical
on-off processes for the four types of networks with various
network sizes. We observe that the random sensor network
has the smallest tc; thus it is most susceptible to having blind

FIG. 7. Critical time tc vs size N for scale-free networks with parameters
�=3.5 and m=12. Data points are simulation results with parameters �1

=0.01, �2=0, and �=100. Each data point is averaged over 104 realizations.
The solid curve is the numeric solution from the theory with c�=0.65.

FIG. 8. �Color online� Comparison of the number of blind spots for the four
classes of networks. Squares: random sensor network; circles: scale-free
network with �=3.5; triangles: mixed network with 	2=4; diamonds: regu-
lar network. N=104 and �k�=20 for all networks. Each data point is the
average of 106 random realizations. Curves are from theory.

FIG. 9. �Color online� Comparison of the critical time tc when blind spots
begin to occur for the four classes of networks. Squares: random sensor
network; circles: scale-free network with �=3.5; triangles: mixed network
with 	2=4; diamonds: regular network. N=104 and �k�=20 for all networks.
�1=0.01, �2=0, and �=100. Each data point is the average of 104 random
realizations. Curves are from theory.
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spots. For example, take N=90 000, blind spots occur at 50
time steps for the random sensor network, while for the regu-
lar network, it takes 85 time steps for the first blind spots to
occur. Although in reality it is not always possible to have
regular sensor networks due to practical restrictions �e.g.,
time-varying link conditions�, our result provides a criterion
for minimizing the occurrence of blind spots: try to make the
network as regular as possible.

In an event-driven sensor network, total disintegration of
the network is highly unlikely; i.e., whether there is a span-
ning cluster may not be a pressing issue �e.g., for intrusion
detection�. What one is concerned with most is whether in-
dividual nodes with information can get access to the net-
work; i.e., the occurrence of blind spots. Since blind spots
are more probable in networks that are more susceptible to
percolation,10 this may present a significant challenge to the
design of secure and reliable networks: to make the network
robust against attacks or random failures, it is necessary to
reduce the percolation threshold, but the network may be
unreliable from the standpoint of individual users because of
the relatively higher likelihood of blind spots.
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