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a b s t r a c t

In a recent work (Shao et al., 2009), a nonconsensus opinion (NCO) model was proposed, where two
opinions can stably coexist by forming clusters of agents holding the same opinion. The NCO model on
lattices and several complex networks displays a phase transition behavior, which is characterized by
a large spanning cluster of nodes holding the same opinion appears when the initial fraction of nodes
holding this opinion is above a certain critical value. In the NCO model, each agent will convert to its
opposite opinion if there are more than half of agents holding the opposite opinion in its neighborhood.
In this paper, we generalize the NCO model by assuming that each agent will change its opinion if the
fraction of agents holding the opposite opinion in its neighborhood exceeds a threshold T (T ≥ 0.5). We
call this generalizedmodel as the NCOTmodel.We apply the NCOTmodel on different network structures
and study the formation of opinion clusters.We find that theNCOTmodel on lattices displays a continuous
phase transition. For random graphs and scale-free networks, the NCOT model shows a discontinuous
phase transition when the threshold is small and the average degree of the network is large, while in
other cases the NCOT model displays a continuous phase transition.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The dynamics of opinion sharing and competing has become
an active topic of recent research in statistical physics [1]. One of
the most successful methodologies used in opinion dynamics is
agent-based modeling [1]. The idea is to construct the computa-
tional devices (known as agents with some properties) and then
simulate them in parallel to model the real phenomena. In physics
this technique can be traced back to Monte Carlo (MC) simulations
[2]. Beyond relevance as physics models, the ferromagnetic Ising
model [3–5], the XYmodel [6] and the Pottsmodel [7,8] can be seen
as agent-based models for opinion dynamics. Other versions of
opinionmodels have also been proposed, such as the Sznajdmodel
[9], the majority rule model [10–12], the voter model [13,14], and
the social impact model [15]. Some models display a disorder–
order transition [16–25], from a regime in which opinions are ar-
bitrarily diverse to one in which most individuals hold the same
opinion. Other models focus the emergence of a global consensus,
in which all agents finally share the same opinion [26–36].
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It has been known that the formation of opinion clusters plays
an important role in opinion dynamics [37,27,38,39]. An opinion
cluster is defined as a connected component (subgraph) fully
occupied by nodes holding the same opinion. Recently, Shao et al.
proposed a nonconsensus opinion (NCO)model [40] in which each
node adopts the majority opinion in its neighborhood at each time
step. It was found that a large spanning cluster of nodes holding the
same opinion appears when the initial fraction of nodes holding
this opinion exceeds a certain threshold [40,41]. Motivated by the
NCOmodel, Li et al. proposed an inflexible contrarian opinion (ICO)
model in which some agents never change their original opinion
but may influence the opinions of others [42]. It was found that
the threshold above which a large spanning cluster appears is
increased with the fraction of inflexible contrarians.

In both the NCO and ICO models, an agent will adopt the opin-
ion that is held by more than half of neighbors. However, in many
real-life situations, a quorum far larger than one half is necessary to
pass a resolution. For example, a referendum to recall the president
of the United States requires the support of two-thirds of the sen-
ators. Based on the above reasons, in this paper we generalize the
NCOmodel by assuming that an agentwill change its opinionwhen
the fraction of agents holding the opposite opinion in its neighbor-
hood exceeds a threshold T ≥ 0.5. We call this generalized model
as the NCOT model. When the threshold T = 0.5, the NCOT model
recovers to theNCOmodel.When T = 1, theNCOTmodel becomes
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the standard percolation without opinion dynamics. Both the NCO
and ICOmodels focus on the critical value for finite-size networks.
By the standard finite-size scaling approach, we have obtained a
critical point at which the phase transition takes place in the limit
of infinite network size. It is interesting to find that, continuous or
discontinuous phase transitions can arise in the NCOT model, de-
pending on the value of T and the network structure.

The paper is organized as follows. In Section 2, we introduce
the NCOTmodel. In Section 3, we study the NCOTmodel on square
lattices, random networks and scale-free networks, respectively.
Finally, conclusions and discussions are presented in Section 4.

2. A nonconsensus opinion model with the threshold (NCOT)

In the NCOT model on networks, each node holds one of the
binary opinions denoted by +1 and −1. Initially, a fraction f of
nodes with the opinion +1 and 1 − f with the opinion −1 are
selected at random. The neighborhood of node i is composed of
node i and its nearest neighbors. At each time step, each node will
convert to its opposite opinion, if the fraction of nodes holding the
opposite opinion in its neighborhood exceeds a threshold T (T ≥

0.5). The system is considered to reach a stable state if no more
changes occur.

3. Main results

We focus on the formation of opinion clusters in the NCOT
model. We denote by S1 the size of the largest +1 cluster and S2
the size of the second largest +1 cluster in the steady state. Then
we define s1 = S1/N and s2 = S2/N , where N is the network
size. In the following, we carry out simulations systematically by
employing the NCOT model on square lattices, random networks
and scale-free networks respectively.

3.1. The NCOT model on square lattices

In this subsection, we study the NCOT model on an N = L × L
square lattice with periodic boundary conditions. Our extensive
numerical simulations reveal that the phase transition of the NCOT
model on square lattice can be roughly divided into three regimes
(different universality classes of percolation) by tuning the param-
eter T , namely, T ∈ [0.5, 0.6), [0.6, 0.8) and [0.8, 1]. In the same
regime, the results are insensitive to the values of T . Particularly, it
is noted that for 0.5 ≤ T < 0.6, the corresponding phase transi-
tionpertains to the class of invasionpercolationwith trapping [40];
while for 0.8 ≤ T ≤ 1, it gives rise to a phase transition subjecting
to regular site percolation. The percolation threshold is fc ≃ 0.506
for T ∈ [0.5, 0.6) [40] and fc ≃ 0.5927 for T ∈ [0.8, 1] [43], re-
spectively. For 0.6 ≤ T < 0.8, the phase transition has some in-
teresting features and has not been reported before, which will be
a focus for this section. To be specific, in the following simulation,
we choose T = 0.7.

Fig. 1 shows the normalized size of the largest cluster s1 and
the second largest cluster s2 as a function of f when T = 0.7 and
N = 106. We find that there exists a critical value fc(N), below
which s1 approaches 0 and above which s1 continuously increases
as f increases. At the critical value fc(N), s2 displays a sharp peak, a
characteristic of a second-order phase transition [40]. Fig. 2 shows
the normalized size of the second largest cluster s2 as a function of f
for different values ofN . FromFig. 2,we observe that the location of
fc(N) changes with N . The percolation threshold fc(N) of a system
of finite size N obeys the relation [44]

fc(N) − fc ∼ N−1/ν, (1)

where fc is the percolation threshold for a system of infinite size
and ν is the correlation critical exponent. Then a simple linear fit
Fig. 1. The normalized size of the largest cluster s1 and the second largest cluster s2
as a function of f on a 1000 ∗ 1000 square lattice. T = 0.7. Each curve is an average
of 1000 different realizations.

Fig. 2. The normalized size of the second largest cluster s2 as a function of f on a
square lattice with different values of L. T = 0.7. Each curve is an average of 10000,
5000, 3000 and 1000 realizations for L = 100, 200, 400 and 1000, respectively.

(based on the maximization of Pearson’s correlation coefficient)
of fc(N) versus N−1/ν allows to simultaneously compute both
values of fc and ν [45,46]. At the percolation threshold fc , the
normalized size of the largest cluster s1 and the susceptibility χ =

N


⟨s21⟩ − ⟨s1⟩2 versus the system sizeN follow a power-law form:

s1 ∼ N−β/ν and χ ∼ Nγ /ν .
From simulation results, we obtain fc ≃ 0.5492 for T = 0.7.

Fig. 3 shows fc−fc(N), s1 andχ as a function ofN respectively. From
Fig. 3(a)–(c), we estimate the critical exponents 1/ν = 0.36(1),
β/ν = 0.054(1) and γ /ν = 0.955(8) as the best fit of the data
points.

For square lattice, our numerical simulations reveal that the
critical point fc increases as T becomes larger. This is because for
square lattice, the critical point fc is typically larger than 0.5. Thus
in this region, a larger T hinders the transition of opinion−1 to+1
as it requires more +1 neighbors, reducing the final fraction of +1
nodes in the steady state, which in turn, will need a larger f for the
spanning cluster of opinion +1 to emerge.

3.2. The NCOT model on random networks

In this subsection, we study the NCOT model on Erdös–Rényi
(ER) random networks [47]. ER networks are characterized by a
Poisson degree distribution with P(k) = e−⟨k⟩

⟨k⟩k/k!, where k is
the degree of a node and ⟨k⟩ is the average degree of the network.
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Fig. 3. (Color online) Log–log plot of (a) fc − fc(N), (b) the normalized size of the largest cluster s1 and (c) the susceptibility χ , as a function of the system size N , respectively.
The percolation threshold fc ≃ 0.5492 for T = 0.7. In (a)–(c), The slopes of fitted lines are −0.36(1), −0.054(1) and 0.955(8) respectively. Each data point is an average of
10000, 5000, 4000, 3000, 2000 and 1000 realizations for L = 100, 200, 300, 400, 600 and 1000, respectively.
Fig. 4. The normalized size of the largest cluster s1 as a function of f for different
values of T . The insets shows the normalized size of the second largest cluster s2
versus f for different values of T . The ER network size N = 106 and the average
degree ⟨k⟩ = 4.

Fig. 5. The percolation threshold fc as a function of T on ER networks with the
average degree ⟨k⟩ = 4.

We perform simulations with different network sizes N . Each data
point presented below is an average over 10000, 8000, 6000, 4000,
3000, 2000 and 1000 different realizations for N = 104, 2 × 104,
5 × 104, 105, 2 × 105, 5 × 105 and 106, respectively.
We have found that, when the average degree is small, the
phase transition is continuous, while when the average degree
is adequately large, depending on T , the transition can become
discontinuous.

To be specific, we have found that when the average degree
⟨k⟩ = 4, the opinion percolation belongs to a continuous phase
transition for the whole range of the parameter T . As shown in
Fig. 4, for different values of T ranging from 0.5 to 1, the normal-
ized size of the largest cluster s1 continuously increases with f and
the normalized size of the second largest cluster s2 peaks at a cer-
tain critical value of f . Fig. 5 shows the percolation threshold fc as a
function of T when the average degree ⟨k⟩ = 4. The general trend
is that as T increases, the critical threshold fc decreases. This can
be understood that when T = 0.5, a node switches its opinion
when half of its neighbors (including itself) has the opposite opin-
ion, therefore nodes tend to form clusters with the same opinions.
But since T is small, the cluster is not compact, but rather sparsely
connected. In the region where the initial fraction of nodes with
+1 opinion f < 0.5, nodes with −1 are majority, the node is more
likely to be surrounded by neighbors with opposite opinions. Thus
if T is small, a node with +1 is more likely to switch to −1, there-
fore the effective fraction of nodes with+1 becomes smaller, mak-
ing itmore difficult for a spanning cluster to emerge. As T increases,
it is harder for a node to switch its opinion (requires more neigh-
bors with opposite opinions), leading to a larger effective fraction
of nodeswith+1, and therefore a higher probability for a spanning
cluster to emerge. Note that the effective fraction of nodeswith+1
will still be smaller than f since nodes with −1 are still majorities
therefore more nodes with+1will be switched to−1 than the op-
posite process.

A surprising phenomenon is that there exists an optimal value
of T (about 0.7) leading to theminimum of fc . This could be a result
of higher order interaction between the network topology and the
opinion dynamics. For example, although a larger T means more
difficult for a node to switch its opinion, but once the condition is
satisfied and this node switches, the cluster grows and it will be
more compact, and it will be more resistive to changes caused by
outside nodes, leading to a nonmonotonic behavior of fc versus T .
The nonmonotonic relation between fc and T can also be confirmed
in Fig. 4. From Fig. 4, we can see that the critical value of f that
corresponds to the peak of s2 is the smallest when T = 0.7.

When the average degree ⟨k⟩ is adequately large (e.g., ⟨k⟩ = 10),
the opinion percolation can display a continuous or a discontinu-
ous phase transition, depending on the value of T . Fig. 6 shows the
normalized size of the largest cluster s1 as a function of f for dif-
ferent values of T when ⟨k⟩ = 10. From Fig. 6(a) and (b), we ob-
serve that there exist two abrupt transition points when T is small
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Fig. 6. The normalized size of the largest cluster s1 as a function of f for (a) T = 0.5, (b) T = 0.6 and (c) T = 0.8. The ER network size N = 106 and the average degree
⟨k⟩ = 10.
0

a b

Fig. 7. The normalized size of the largest cluster s1 as a function of f for different
values of the network size N . The average degree of ER networks is ⟨k⟩ = 10 and
T = 0.6. The initial fraction of nodes with the +1 opinion f is around fc for (a) and
f is around f ∗

c for (b).

(e.g., T = 0.5 and T = 0.6). At the first abrupt transition point
denoted by fc , s1 jumps from zero to a finite value. At the second
abrupt transition point denoted by f ∗

c , s1 jumps from a finite value
to one. Between the two abrupt transition points, s1 continuously
increases with f . However, for the large value of T (e.g., T = 0.8),
s1 approaches zero continuously as f is decreased from 1 to 0 (see
Fig. 6(c)). These numerical results indicate that the behavior of s1
versus f could be a discontinuous phase transition for the small
value of T and a continuous phase transition for the large value of
T . From Fig. 6, it is seen that the system has a symmetry, i.e., the
curves are unchanged if f → 1 − f and s1 → 1 − s1. This is be-
cause, in this case, the nodes are densely connected, therefore one
can neglect the small clusters for either+1 or−1 opinions. Denote
s∗1 as the normalized size for the largest cluster for −1, we have
s1 + s∗1 ≈ 1. Since the dynamics for the evolution of +1 into −1
and vice versa are the same, this imposes a duality between +1
and −1 states. Therefore, for a given f after the opinion dynam-
ics reach the steady state the normalized size of the largest cluster
for +1 is s1, is actually the same process for −1 opinions with a
given initial fraction 1 − f and a largest cluster with normalized
size s∗1(f ) ≈ 1 − s1(f ). But since the dynamics for +1 and −1 are
the same,when the initial fraction for+1 is 1−f , the largest cluster
for +1 will also be s∗1(f ), which is approximately 1 − s1(f ).

Fig. 7 shows that s1 as a function of f for different values of the
network size N when ⟨k⟩ = 10 and T = 0.6. One can see that
all the curves intersect at one point (the phase transition point). In
Fig. 8, we investigate the number of iterations (NOI), which is the
Fig. 8. The number of iterations (NOI) as a function of f on ER networks. The
network size N = 106 , the average degree ⟨k⟩ = 10 and T = 0.6.

number of time steps needed to reach the steady state, as a func-
tion of f when ⟨k⟩ = 10 and T = 0.6. Note that NOI characterizes
the long range correlation, i.e., if the correlation is local, the sys-
temwill quickly settle down to the steady state;while if there exist
long range correlations, it needsmore iterations to reach the steady
state since each status change for a node haswider impacts.We can
observe that the NOI exhibits two symmetric peaks. According to
Ref. [48], in a discontinuous phase transition, the location of the
peak of the NOI determines the critical threshold of the transition.
In Fig. 8, the location of the left peak determines the critical thresh-
old fc belowwhich s1 = 0 and the right peak determines the critical
threshold f ∗

c above which s1 = 1. From simulation results shown
in Figs. 7 and 8, for ⟨k⟩ = 10 and T = 0.6, we obtain fc ≃ 0.4408
and f ∗

c ≃ 0.5592. It is noted that fc + f ∗
c = 1, which is consistent

with the previous symmetry analysis.
To further classify the transition class, we carry out finite size

scaling analysis. Fig. 9 shows the normalized size of the largest
cluster s1, the susceptibility χ and the number of iterations (NOI),
as a function of the system size N at the discontinuous transition
points fc and f ∗

c , respectively. Fig. 9(a) shows that s1 scales asN−β/ν ,
withβ/ν ≈ 0, indicating a discontinuous phase transition. Fig. 9(b)
illustrates that χ scales as Nγ /ν , with γ /ν ≈ 1. Fig. 9(c) shows that
NOI scales as Nδ , with δ ≈ 0.28, consistent with the theoretical
result 1/4 [48].

Fig. 10 shows the percolation threshold fc as a function of T
when the average degree ⟨k⟩ = 10. One can see that fc decreases to
0.1 as T increases. There exists a certain critical value Tc (between
0.7 and 0.75), below which the phase transition is discontinuous
while above which the phase transition becomes continuous. The
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Fig. 9. Log–log plot of (a) the normalized size of the largest cluster s1 , (b) the susceptibility χ and (c) the number of iterations (NOI), as a function of the system size N ,
respectively. In (a)–(c), The slopes of fitted lines are about 0, 1 and 0.28 respectively. The average degree of ER networks ⟨k⟩ = 10 and T = 0.6. The phase transition points
are fc ≃ 0.4408 and f ∗

c ≃ 0.5592.
Fig. 10. The percolation threshold fc as a function of T on ER networks with the
average degree ⟨k⟩ = 10. The phase transition is discontinuous for small values of
T (filled circles), while it becomes continuous for large values of T (empty circles).

development to the first-order-like phase transition is originated
to the consolidation of clusters with the same opinions [49,50].
Two key factors are needed. The first one is the network topology,
which needs to be dense enough in order to promote clustering
process during the evolution of the opinions [41]. The second one
is the opinion dynamics, where T should be small to lower the
barrier for a node to switch its opinion to facilitate the formation
of clusters. Therefore, in the regionwhen ⟨k⟩ is large and T is small,
one could expect disrupt emerging of spanning clusters; while in
the opposite casewhen ⟨k⟩ is small and T is large, onewould expect
continuous transitions.

3.3. The NCOT model on scale-free networks

In this subsection,we study theNCOTmodel on Barabási–Albert
scale-free networks (BA) [51]. BA networks are characterized by
a power-law degree distribution with P(k) ∼ k−3. We perform
simulations with different network sizes N . Each data point is an
average over 10000, 6000, 4000, 3000, 2000 and 1000 different
realizations forN = 104, 2×104, 5×104, 105, 2×105 and 5×105,
respectively.

Fig. 11 shows the normalized size of the largest cluster s1 as a
function of f for different values of T . We can see that, for ⟨k⟩ = 4
(Fig. 11(a)), s1 approaches zero continuously as f decreases for
different values of T , indicating a continuous phase transition.
a

b

Fig. 11. The normalized size of the largest cluster s1 as a function of f for different
values of T . The average degree of BA networks is (a) ⟨k⟩ = 4 and (b) ⟨k⟩ = 12,
respectively. The network size N = 5 × 105 .

While for ⟨k⟩ = 12 (Fig. 11(b)), there exists two abrupt transition
points when T is small (e.g., T = 0.6), and the transition becomes
continuous for a larger T (T = 0.8). At the first abrupt transition
point denoted by fc , s1 jumps from zero to a finite value. At the
second abrupt transition point denoted by f ∗

c , s1 jumps froma finite
value to one. We have checked that fc + f ∗

c = 1, which is the same
as that in ER networks.

Fig. 12 shows the percolation threshold fc as a function of T for
different values of ⟨k⟩. One can see that fc decreases as the increase
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Fig. 12. The percolation threshold fc as a function of T for different values of the
average degree ⟨k⟩ of BA networks. Filled circles denote that the phase transition
is discontinuous, while empty circles and empty triangles represent that the
transition is continuous.

of T . When the average degree ⟨k⟩ is small (e.g., ⟨k⟩ = 4), the
percolation belongs to a continuous phase transition for all the
values of T . When ⟨k⟩ is large (e.g., ⟨k⟩ = 12), the percolation
behaves a discontinuous transition for the small values of T while
it displays a continuous phase transition when T is large.

4. Conclusions and discussions

In conclusion, we have proposed a generalized nonconsensus
opinion model in which an agent changes its opinion when the
fraction of nodes holding the opposite opinion in its neighborhood
exceeds a threshold T (T ≥ 0.5). We apply the model on various
network structures to study the formation of opinion clusters. It is
found that the behavior of the normalized size of the largest cluster
versus the initial concentration of nodes holding the same opinion
can display a discontinuous or continuous phase transition. For
regular lattices, the phase transition is continuous independent
of T . For complex networks such as random networks and scale-
free networks, if the average degree is small, then the phase
transition is continuous, regardless of the value of T . For complex
networks with the large average degree, the phase transition is
continuous when T is large but it becomes discontinuous when T
is small. Particularly, there exists two symmetric critical values in
the case of the discontinuous phase transition. The studied opinion
disappears below the first critical value while it takes over the
whole population above the second critical value.

We also study the relationship between T and the percolation
threshold fc above which a large spanning cluster of nodes holding
the same opinion appears. Note that when T = 1, the phase tran-
sition of our model reverts to the regular site percolation and the
opinion percolation threshold is equal to that of site percolation.
For square lattices, the percolation threshold fc increases as T in-
creases from 0.5 to 1. For Erdös–Rényi random networks with the
small values of the average degree, there exists an optimal value of
T , leading to the minimum fc . For Erdös–Rényi random networks
with the large values of the average degree or Barabási–Albert
scale-free networks, fc decreases as the increase of T .
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